0000000000
982 0 1997 O 220-233 | 220

Comments on the Entropy Differehtial in Extended Irreversible

Thermodynamics

Masakazu Ichiyanagi (Gifu Univ. of Econ., Ogaki, Gifu)

1. Introduction-

Recently there have appeared a number of theories which purport to
extend the usual theory of irreversible thermodynamics [1- 8). The classical
theory, due to Onsager [9], uses the extensive variables as the basic
thermodynamic quantities which characterize the condition of a macroscopic
aged system. The choice of the thermodynamic state variables, however, is
determined not only by the physical nature of the system under study but also
by the scheme adopted and hoped-for precision in the description; so the
number of thermodynamic state variables may vary from one system and
theory to other ones. In the classical theory, time dependence is introduced
through the time derivatives of the extensive variables, which are referred to
as the thermodynamic (dissipative) fluxes. One introduces the thermodynamic
forces which are seen as causing the corresponding fluxes. Near equilibrium
the forces are written as linear functions of the deviations of the extensive
variables from their equilibrium values. To complete the theory we have to
write the constitutive equations relating fluxes and forces in a particular
system. These equations are introduced not as a time evolution equation but
as a constitutive equation rendering the necessary conditions to yield a

complete set of equations for the variables.



In its simplest form extended irreversible thermodynamics (EIT)
includes dissipative fluxes in the set of independent thermodynamic variables
to characterize the condition of a nonequilibrium open system. EIT uses a
generalized entropy which, in addition to the usual extensive variables,
includes the dissipation fluxes as independent variables, and is interested in
obtaining evolution equations for the dissipative fluxes, compatible with the
second law of thermodynamic formulated in terms of the generalized entropy.

The various contributions to EIT describe the work of the groups. The
theory has not undoubtedly achieved its final form yet. Indeed, it has been
argued strenuously by Eu [ 3] that some derivations, based on a generalized
entropy, are actually incorrect [10]. He shows that the entropy differential for
systems away from equilibrium cannot be an exact form.

Our definition of thermodynamic variables is within the spirit of
Onsager's, since we are interested in a discontinuous system. The method to
be used here is based on the principle of maximum entropy [11], which is
known to provide a systematic recipe for the calculation of any macroscopic
observable character of a system away from equilibrium. It will be shown that
the procedure of maximum entropy is 'reasonable’ in that it defines a
nonequilibrium entropy which enjoys the Gibbs relation of a known form. In
order to assign a Gibbs space of thermodynamic variables, we use the notion
of observation level by Fick and Sauermann [12]. By this we can find a
sufficient condition for the choice of the Gibbs space.

In this paper, we want to find a possible relation between the statistical
and the thermodynamic entropies. To do this, we utilize the notion of relative
entropy [13,14] which measures an entropic distance between two states
characterized by density matrixes. This description involves, besides the usual
statistical entropy defined in terms of the nonequilibrium density matrix, also
another entropy written in terms of the generalized canonical density matrix,

the latter of which enjoys the (extended) Gibbs relation.
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2. The principle of maximum entropy

In order to characterize the thermodynamic state of an open system we
require the expectation values of a set of observables { H, A; ;i=12,....,f }
which are supposed to be known from a measurement. Let the operators A; be
the operators other than the Hamiltonian of the system, H, and be linearly
independent. Using such a set, we define an observation level [12]. Note that
the choice of the thermodynamic state variables is determined not only by the
physical nature of the system under study but also by the scheme adopted
and hoped-for precision in the description; so the number of thermodynamic
state variables may vary from one system and theory to other ones.

These pieces of information represent the following constraints on the

nonequilibrium density matrix assignment;

Trp(t) =1, ; 2.1
Trp(HH = E(t), 2.2)
Trp(MA; = ai()), (i=1,...,1). (2.3)

Here, E(t) and a;(t) are the macroscopic variables to be used in nonequilibrium
statistical thermodynamics. p(t) denote the density matrix which is a solution
of the von Neumann equation characterizing dynamics of an open system
interacting with its surroundings. Hence, we will write down the von
Neumann equation
ap(t)/at+ [iH, p(t) ] = LIp(V)]. 2.4)

Here, H represents the entire Hamiltonian of the system. It suffices to think of
H as containing all the terms one can handle dynamically, such as kinetic
energy, and external fields which vary slowly in space and time. Hence, H =~
H. - H- ZAE;(x) ( Ei(t) ; external fields and ©=A2t; A—0). L[p(t)] describe
the effects which are attributed té collisions and interactions between the
system and its surroundings. The presice form of the latter is not irrelevant to

the present discussion.
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In principle, there must be an .extremcly large class of density matrixes

that fulfill the von Neumann equation and yield the expectation values E(t)
and o;(t). The question of which of these is correct one is answered by
maximizing an entropy. A generalized canonical density matrix pc(t) is the
density matrix which maximizes the statistical entropy

Slp(®)] =- Trp(t)inp(t) <S[pM], (ks=1) (2.5
subjected to the prescribed manifold of expectation values (2.2) and (2.3). As
is well-known, the method of Lagrange multipliers yields |

pc(t) = expl F(t) - BOH - 2Xi(DA; ] - (2:6)
where F(t) is the normalization factor defined by ,

expl - F(t) 1=Trexpl[ - BOH - ZX'i(DA; 1. 2.7)

and B(t) and X'(t) are the Lagrange multipliers. The constraints

Trp®H = (1), (28
TrpHA; = oi(t) (i=12,...,1) v (2.9)
are employed to express these multipliers
B(t) = BLE®), ou(®), .., or(®) ], | (2.10)
X'i(t) = X[ E(t), ay (D), ..., ag(t) ]. -(2.11)

By making use of (2.6) in (2.5), we obtain the expression
S[p()] = - F(t) + BOE® +XX'i() (D). (2.12)
It is noted that, if H and all A; are not explicitl time-dependent, the
change in the normalization factor on changing the multipliers is obtaiﬁed

from (2.7);itis

SF(t) = E(1)d(1) + Tai(t)dX'i(1). , - (2.13)
Hence, from (2.12) and (2.13) we obtain the so-called Gibbs relation:
3 Slpt)] = BMHBE(D) +ZX"i(Ddoki(1). (2.14)

Thus, (2.13) is seen to be a form of the integrability condition for the entropy
differential (2.14). that is, the maximum entropy differential (2.14) is an exact
form with respect to the observation level chosen and (2.13) is a Gibbs-Duhem

equation.
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Let us note that, by taking the derivative with respect to time of both
sides of (2.9), we obtain
doi(t)/dt = 3 A;[tldX(ty/dt, (ij=0,1,....,f). (2.15)
where X'o(t) = B(t),Ag=H and

Aylt] =Tr J. dx{pc()}!*(A; - o) {pLO} A - i(®). (2.16)

Here we have used (2.13), in which we replaced the symbol 8 by d/dt. The
coefficients Ajj[t] are the (equal time) correlation of fluctuations; A; - a(t).
Equations (2.15), in principle, are used to obtain the Lagrange multipliers,
X'i(t), as functions of E(t) and oy(t).
From eq.(2.14) we obtain the expression for the entropy production

SI pe(H] = BOE(®) +EXi(Dos (0. 2.17)
The overdot signifies differentiation in time. This result is used to define the
dissipative fluxes o;(t) and the corresponding forces X'i(t). That is, the
Lagrange multipliers have the meaning of the thermodynamic forces with
respect to the observation level considered. In this paper we consider the case
in which we have

X'i() = X5; + Xj(t). - (2.18)
Here, X5; characterize a stationary state of the system in question.

There is an important question whether it is possible to apply the
principle of maximum entropy [11] even if a system is away from an
equilibrium. Next, let us consider this. The generalized canonical density
matrix pe(t) is used to calculate the average values of operators other than {H ,
- Aj:i=1,.. f}. Itis sufficient for illustration to calculate the fluxes

Ji(Y) = do;(t)/dt=Trp ([ iH, A; ]. (i=1,...,f). (2.19)
Thisis our definition of the so-called dissipative fluxes as far as they are not
equal to zero; that is, they are the averages of the current operators, i H, A; ],

with respect to the nonequilibrium density matrix ps(t) in the sense of the



response theory. By definition, they should be equal to zero if pd(t)
approaches to an equilibrium density matrix. It is noted here that the definition
| (2.19) means an approximation in the sence of Fick and Sauermann[13]. The
constraints (2.9) and (2.19) are consistent, if and only if we have chosen the
variables A; to be consedved so that Trp(f)LA; equal zero.
By making use of the identity
Trpc (D[ iH, Aj ] =Tr[ pc(t) , iH JA; (220

and the approximation which assumes that Xi(t) are small;
pe(® = po®] 1 - fdx{po®}*[EX0A;, BOH Kpo®}* ], 2:21)

where we have put
po(t) = exp{ [F(D) - B(OH] - ZX5iA] }, (2.22)
it is easy to get, within the approximation employed, the linear
phenomenological laws:
Ji() = 3 B;;ltX;®), (ij=1.2,..f), (2.23)
where

Bijlt] = BOTrfdx{po(®)} 1 [ iH , A; Kpo®)}* [Ai  H], (2.24)

are the transport coefficients in our case. Here, to derive the formulae (2.24)
we have used that fact that

Trpo([ Ai,Aj 1=0. (2.25)
That is, the all operators A; are macroscopically commutable.

These coefficients, which are not of the form of a time-correlation

function, satisfy the following reciprocity relation

B;ilt] = Byltl, (ij=1.2,...,f). : (2.26)
Equations (2.23), together with (2.24), are the phenomenological laws in our
case. Accordingly, we conclude that the chosen observation level is sufficient

‘in view of the flux operators of the system. This clearly shows that the
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procedure of the principle of maximum entropy is applicable to nonequilibrium

systems if the constraints (2.8) and (2.9) are properly specified. This is the

outline of the principle of maximum entropy. We will now return to our main
subject.

3. The generalized entropy

In an approach to irreversible thermodynamics, it is thought that a
general theory can be constructed, if the notion that the entropy is amaximum
at thermal equilibrium is relaxed so that nonconserved variables are included
among the constraints for the principle of maximum entropy. In the previous
section we have denoted the set of conserved observables by { A;;i=1.2, ...,
f }. Then the set of the dissipative current operators, denoted by

B =[iH,A|], 3.1)

is a subset of the set of nonconserved observables. Let us denote the set of

those other than the observables corresponding to the dissipative fluxes

associated with the conserved observables by { by ; k> 1 }. It should be noted

here that by definition we have TrL[p()]A; = 0 whereas TrL[p(t)]by = 0.

The method employed in the previous section can be extended to the
case in which the constraints on the nonequilibrium density matrix assignment
are given by (2.1 -3), and

Trp(H)B; = a;(t), | (3.2
Trp(H)by = Gk(t), (k=1). 3.3)

Here, the precise density matrix p(t) enjoys the von Neumann equation of the
form (2.4). Equations (3.2) and (2.3) are consistent because it is true that,
by definition, TrL[p(t)]JA; = 0. As before, maximization of the statistical
entropy S[p(t)] subject to those constraints, together with (2.1), (2.2) and

(2.3), yields the generalized canonical form -

pc(t) = exp[ F(t) - BOH -ZX(DA; - Y ()B; - Zy'k(Hbi 1, (3.4)
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where F'(t) denotes the normalization factor so that Trp(t) =1. B(t), X'i(t), Y'i(D)
and y'i(t), respectively, are the Lagrange multipliers which are functions of the
expectation values H, ay(t), ai(t) and Gx(t). Then, by employing the density
matrix we obtain the expression for the generalized entropy

Seit(t) = S[pe(D)]

= - F(t) + BMOE() + ZXi(Dou(t) + XY i(®ai(t) + Zyk(DG(t), (3.5)

which is a function of all the expectation values of the observables chosen.

Now it is easy to verify that

SF(t) = E()3B(t) +Zoy(H3Xi(t) + Zai(DdYi(t) + ZGi(Ddyk(t), (3.6)
and , , ; ‘

3Seir(t) = BISE(Y) + ZXi()d0y(t) + ZYi(D)da(t) + Zy'k(DOGk(). (3.7)
Here, mutatis mutandis we have used the conventions (2.18).

It is clear that, at present, (3.7) plays a role similar to the Gibbs relation
in equilibrium in nonequilibrium thennodynamics. Therefore, (3.7) gives the

entropy production if we replace the symbol 8 by d/dt;itis
Seir(t) = BOE() +XXi(Dai(t) + XY i(i(t) + Zy'k(DGK(®), (3.8)

which is essentially identical to the well-known formula given by Machlup
and Onsager [ 15] for the generalized entropy. The differential form (3.7) is of
the form of an extended Gibbs relation in the literature [1-4] in EIT. Equation
(3.7) is presumed to be an exact differential in EIT and it has Bcen the starting
point of many theories. o

The generalized canonical density matrix (3.3) yields, by definition, the
correct expectation values of H, {ai(t)}, {ai(t)} and {Gk(t)}. The expectation
values of other observables are easily evaluated. For instance, we have

d2q(t)/dt2 = Trdp(t)/dtB;
= Y C;i[tIXj(1) + TDy[AY;(1) + Zdiltlyx®), (B9

where
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Cijlt] = Trfdx{p()} *A{pOF B;,  (3.10)
Djj[t] = Trfdx{pc)}* Bi{p)}B;  (3.11)

dift] =Trfdx{pcO}* bi{p®}* Bi.  (3.12)
Here, we have used the convention Ap=H and Xy(t)=B(t). It is worth to note
here that the coefficients D;j[t] enjoy the reciprocity relation;

Dijlt] = Diltl, (ij=1.2,....f). (3.13)
However, the coefficients Cjj[t] have such a reciprocity only in an
approximate sense in which we use the Gibbsian density matrix in place of the

generalized canonical density matrix in (3.10). The equations of motion of

Gy(t) are calculated as
dG(t)/dt = ZTi[t]Xi(t) + ZUki[t]Yi(D) + ZVi[tly;(v. (3.14)
Here, the coefficients, Tk;(t), Ui;(t), and Vij(t) are given by

Tiilt] = Tr fdx{pc()} *Ai{pc(t) }*bx, 3.15)
Usilt] = Tr Jdx{p(0} -*Bi{pc(t)}*bx, 3.16)

Vi[t] = Tr fdx{p((D1}1*bj{pc(t) }bx (= Viklt] ). (3.17)
On the other hand, we obtain from (3.6)

F'(t) = EMB® +Zai(®Xi(t) + Zoi()Yi(t) + TG(yx(t). (3.18)
Equations (3.9) and (3. 14), together with (3.18), constitute the set of
differential equations, first order in time, for all the Lagrange multipliers
involved.

The extended observation level chosen is sufficient in view of the
observables, [ iH,B; ], when

Trp(H)[ iH,B; ] =Trp()[ iH, B; ], 3.19)
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hold to a good approximation. In consequence, all we can say here is that,
under the mild conditions (3.19), the application of the principle of maximum
entropy recovers some useful results. By making use of the approximation
similar to (2.21) for pc(t) into (3.19), one obtains at once
ai(t) = TE;[tIXj(t) + TF;;[LY;(0) + Zeijltly;©, (3.20)
i=0,1,...,1).

Here, the transport coefficients are given by
E;jltl = pt)fdx{po®}-*[ H, A; Kpo®}*[iH, B; ], 3.21)
F;jltl = B@)fdx{po®}-x [H, B; Kpo®}*[ iH , Bi ], 3.22)

eilt] = BE) dx{po®} <[ H, bj Kpo®} [ iH . Bi ], (3.23)
with | ,

po®) = exp{ F(D) - BOH - TX5iA, - SY5B; - Tysiby }. 3.24)
Fij[t]s enjoy the following reciprocity relations;

Fijlt] = Fjltl. (G,j=0.1,....f). (3.25)
On the other hand, Ejj[t] have the following properties

E;jlt] =- Ejilt], (,j=0,1,... f), (3.25)
only when all the terms in the exponential are discarded except the first two
terms, F(t) and -B(t)H. Ej;(t) are antisymmetric only in the approximate sense.
This is a desired property, because close to an equilibrium the relaxation times
of the fluxes would be macroscopically long. Since X'i(t), Y'i(t) and y'i(t) are
the functions of all the expectation values aj(t), ai(t) and G;(t), (3.20) are
differential equations, second order in time, which are sought-for equations for
dissipative fluxes in EIT.

In the many theories the differential equations for fluxes are derived,

not from a time evolution but from the form of the extended entropy

production and the requirement of the second law of thermodynamics. The



resulting equations so obtained involve the two kinds of conception,
transport coefficient and relaxation time. In the present theory, we have
conclusively demonstrated how these fundamental quantities are calculated in
statistical mechanics. We believe that the present formalism in its generality
can be justified. The only important point is that the phenomenological laws,
second order in time, does not contradict the microscopic equations of
motion. The choice of the observables set in the principle of maximum entropy
has played a prominent role in our discussion.

In the present development, (3.19) is necessary to establish an
equivalence between the two entities, p(t) and p(t), with respect to the
chosen observation level. From the manner of definition p(t) possesses more
information about the dynamics of the system than is actually contained in the
generalized canonical density matrix pc(t). This corresponds to a coarse
graining of the density matrix which could contribute to an additional entropy
production other than is presented by (3.8).

In the classical theory the contraction of information of this kind is not
of importance for the formulating irreversible thermodynamics because it
might be microscopic in nature. Hence, we often identify the statistical
entropy S[p(t)] with the maximized entropy S[pc(t)]. This type of information
loss would be irrelevant only if the conserved variables are chosen as the
basic thermodynamic observables, since it is assumed that there is a clear
separation of dynamical behavior of the system into microscopically time and
macroscopically long time behavior. Such a hierarchical structure regarding
time in dynamics, albeit assumed as fulfilled very generally by macroscopic
systems, may be proved only very few cases. In the realm of EIT in which we
focus our attention not only to the conserved observables but also to the
nonconserved observables, thus, we cannot neglect its contribution to the
over all entropy production. We must notice the fact that the relaxation times

of any nonconserved variables cannot be shorter than the collision time, if it
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existed at all. Thus, the relaxation times of the higher fluxes, such as [iH , B;}
[iH,[iH, B;]], and etc. might be of the same order. Accordingly, in retrospect
the conditions are not independent of our setting of the observation level.
This information loss due to the coarse graining can be measured in terms of a
relative entropy which is defined by [ 14]

Slp(t) | p®I =Tr p()L In p(V) - Inp(H 120.  (3.26)
This is non-negative by Klein's inequality. Since p (t) and pc(t) are equivalent

in the sense mentioned above, it is readily verified that

SIp(®) | (] = S[pM)] - S[p®], (3.27)
or equivalently, ‘ :
SIp(H)]1=SIp (V)] - Slp®)|pLO]- (3.27)

Hence, taking the derivatives with respect to time of both sides of (3.27")
yields at once o
Oent(D) = dS[p(t))/dt
= ZXi(oi(t) + Yot + 2y;0G;j(1) - or(t), (3.28)
where ‘

oL(t) = dS[p (V|pL(D))/dt= 0. | (3.29)
Here it shoud be realized that
These results are in agreement with Eu's proposals [16]. The two quantities,
S[p(t)] and -S[p(t)lp;(t)],respectively, are corresponding to the compensation

and the B functions in Eu's theory [16].
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