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Abstract

At low temperatures, quasi-one-dimensional conductors exhibit the charge den-
sity wave (CDW). In this paper, it is found that the CDW in the one-dimensional
loop, which is the commensurate CDW, yields a quantization of the Aharonov-Bohm
magnetic flux threading through the loop.

Text

The quasi-one-dimensional conductor exhibits, at the critical temperature $T_{c}(>$

$0)$ , the charge density wave (CDW) transition $[1][2][3]$ . Below $T_{c}$ , the conductor is in
the superconducting phase resulting from the CDW electronic state [4]. The CDW
transition is accompanied with the Peierls structual transition, a lattice distortion
with a period equal to $\pi/k_{F}[5]$ . As is well-known, the interaction between elec-
trons and phonons is responsible for this transition. In this paper, we propose the
quantization of the Aharonov-Bohm magnetic flux (A-B flux) threading through a
qusi-one-dimensional loop where the conduction electrons (and lattice ions) are in
the CDW state.

Let us consider a one-dimansional loop which winds round an infinitely long,
closely wound solenoid. The magnetic field developed by an external current source
is $\mathrm{B}=B\mathrm{e}_{z}$ in the solenoid, running along the polar axis. If the winding of the
solenoid can be viewed as a current sheet, the magnetic field vanishes on the outside.
Thus we have an A-B vector potential

$\mathrm{A}(r, \theta)=(0, \frac{\Phi}{2\pi r}\mathrm{e}_{\theta})$ (1)

in $r>a$ where $a$ is a radius of the solenoid. The magnetic flux $\Phi$ given in (1) is
$\Phi=\int_{S}\mathrm{B}d_{\mathrm{S}}-=\oint \mathrm{A}d1$ where $\int_{S}\cdots d\mathrm{s}$ and $\oint\cdots d1$ are respectively the surface and the
line integrals bounded by the loop considered, and $\mathrm{e}_{\theta}$ is an unit vector in the direction
of the azimuthal angle $\theta$ . We notice that our vector potential yields $\mathrm{B}=\nabla\cross \mathrm{A}=0$

in $r\geq a$ . The Hamiltonian of a free electron orbiting around the A-B flux is

$H_{f\cdot e}=. \frac{1}{2m}[-i\hslash\nabla-e\mathrm{A}]2$ . (2)
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The wave function $\Psi(\mathrm{r}, t)$ satisfying the Schrodinger equation $i\hslash\partial\Psi/\partial t=H_{f\cdot \mathrm{e}}\Psi$ is
factorized as (here the time-dynamical vector potential is adopted for convenience)

$\Psi(\mathrm{r},t)=\exp[ie\int_{\mathrm{r}_{0}}^{\mathrm{r}_{\mathrm{A}}}(\mathrm{r}’,t)d\mathrm{r}’/\hslash]\psi(\mathrm{r}, t)$ . (3)

The factorized phase factor is called the Dirac phase, and the pseudo-wave function
$\psi(\mathrm{r}, t)$ satisfies the pseudo- Schrodinger equation

$i \hslash\frac{\partial}{\partial i}\psi(\mathrm{r},t)=[-\frac{h^{2}}{2m}\nabla^{2}-e\int_{\mathrm{r}_{0}}^{\mathrm{r}_{\mathrm{E}}}(\mathrm{r}’,t)d\mathrm{r}]’\psi(\mathrm{r},t)$ , (4)

where $\mathrm{E}$ is the electric field, $\mathrm{E}=-\partial \mathrm{A}/\partial t$ . On combining (4) with Faraday’s law
$\oint \mathrm{E}d\mathrm{r}=-\partial\Phi(t)/\partial t$ , we find the multi-valued circular condition [6]:

$\psi(r, \theta+2\pi, t)=\exp[-2\pi i\alpha(t)]\psi(r, \theta,t)$, (5)

where $a(t)$ is a scaled magnetic flux, $\alpha(t)=e\Phi(t)/h$ . $1$ As seen from (5), $\alpha(t)$ can
be restricted $\mathrm{t}\mathrm{o}-1/2\leq\alpha(t)\leq 1/2$ without losing generality. Furthermore $\alpha(t)>0$

can be imposed on $\alpha(t)$ , because the sign of $\alpha(t)$ simply reflects the direction of the
magnetic flux $\Phi$ running along $z$-axis. Thus $0\leq\alpha(t)\leq 1/2$ will be assumed in the
following. For the time-static $\alpha,$

$\psi(\mathrm{r}, t)$ and the energy spectrum of the free electron
confined in a loop of a radius $r$ are respectively given from (4) and (5) as

$\psi(\theta,t)=\frac{1}{\sqrt 2\pi r}\exp[\frac{-i\epsilon_{n,\alpha}t}{\hslash}]\exp[i(n-\alpha)\theta]$ (6)

$\mathrm{a}$.nd
$\epsilon_{n,\alpha}=\frac{h^{2}}{2m}k_{n,\alpha}^{2}$ (7)

with
$k_{n,\alpha}= \frac{n-\alpha}{r}$ . (8)

Here $n$ is an integer, $n=0,$ $\pm 1,$ $\pm 2,$ $\pm 3,\ldots.$ . Let us note that $\psi(\theta, t)$ given in (6)
satisfies the circular condition (5).

The Peierls structual transition in a $\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{s}\mathrm{i}-\mathrm{o}\mathrm{n}\mathrm{e}- \mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}_{0}\mathrm{n}\mathrm{a}1$ conductor [5] is linked
to the singular behavior in the time-static 1-D susceptibility $[7][8]$

$\chi_{1}^{0}(q)=\sum_{k}\frac{f(E_{k})-f(Ek+q)}{E_{k+q}-E_{k}}$ , (9)

where $f(E_{k})$ is the Fermi distribution function, $f(E)=[\exp\beta(E-\mu)+1]^{-1}$ . To
calculate $\chi_{1}^{0}(q)$ , we will neglect, for the sake of simplicity, the effects of the time-
static lattice potential, and so employ the energy spectrum (7) as $E_{k}$ . On replacing
the summation $\sum_{k}$ by an integral $(L/2 \pi)\int_{-k_{F}}k_{F}dk$ $(k\equiv n/r)$ , we have, at $T=0$ ,

$\chi_{1}^{0}(q)=\frac{Lm}{2\pi h^{2}}\frac{1}{q}[ln|.\frac{2(k_{F}-\frac{\alpha}{r})+q}{2(k_{F}-\frac{\alpha}{r})-q}|+ln|.\frac{2(k_{F}+\frac{\alpha}{r})+q}{2(k_{F}+\frac{\alpha}{r})-q}|]$. (10)

1An extra phase $-2\pi\alpha(t)$ of $\psi(r, \theta+2\pi, t)$ is cancelled out by another aquired phase $+2\pi\alpha(t)$ which
arises from the Dirac phase. Hence the wave function $\Psi(\mathrm{r}, t)$ is single-valued for an arbitrary value of $\alpha(t)$

[5].
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In the above expression, $k_{F}=n_{F}/r$ is the Fermi wave $\mathrm{V}\mathrm{e}\mathrm{C}\mathrm{t}_{0}\mathrm{r}$( $nF$ is an integer) defined
by the Fermi energy $\epsilon_{F}=h^{2}k_{F}^{2}/2m$ and $L$ is the circumference of the loop, $L=2\pi r$ .
We notice that the expression (10) is, as expected, symmetric with respect to a
reflection $\alpharightarrow-\alpha$ . At $q=Q_{\alpha}=2(n_{F}+\alpha)/r$ or $q=Q_{-\alpha}=2(n_{F}-\alpha)/r$ , our $\chi_{1}^{0}(q)$

becomes singular. This implies that the system undergoes the CDW transition if the
electron-phonon interactions are swiched on and the temperature is lowered. The
spatial wave lengh of the CDW is $\lambda_{\alpha}=2\pi/Q_{\alpha}$ or $\lambda_{-\alpha}=2\pi/Q_{-\alpha}$ . The wave lengh
$\lambda_{\alpha}(\lambda_{-\alpha})$ must satisfy the condition that the ratio $L/\lambda_{\alpha}=rQ_{\alpha}(L/\lambda_{-\alpha}=rQ_{-\alpha})$

is an integer. This is expected from the common assumption that the entire wave
functions composed of many conduction electrons are single-valued. 2 It is readily
seen from the single-valuedness assumed here that the permitted values of $\alpha$ are the
quantized ones, that is, $\alpha=0$ and $\alpha=1/2$ . The state with $Q_{0}(\alpha=0)$ is, as shown
below with use of the mean-field theory, more favorable energetically than the state
with $Q_{+1/2}$ and the state with $Q_{-1/2}(\alpha=1/2)$ . Therefore the state with $\alpha=0$ is
expected to be the ground state, and other two states with $\alpha=1/2$ are classified into
the excited states.

The much simplified theory for the CDW is the mean-field treatment described
by the Hamiltonian $[3][4]$

$H_{CD}^{\pm\alpha_{W}}$ $=$
$|n| \leq Q\sum_{r\pm\alpha}\epsilon k\prime a_{k},ak’+\sum_{\leq}\dagger\triangle^{*}0n\leq rQ\pm\alpha\pm\alpha a_{k-\pm},ak’\dagger Q\alpha$

$+$
$\pm\sum_{-rQq\leq n\leq}\triangle 0\pm\alpha a_{kQ\pm\alpha}^{\dagger},a_{k^{l}}+$ ’ $( \alpha=. 0, \frac{1}{2})$ (11)

where $a_{k}^{\uparrow}$ , and $a_{k’}$ are respectively creation and annihilation operators of electrons, and
$k_{n,\alpha}$ given by (8) are abbreviated by $k’$ . The pairing energy $\triangle_{\pm\alpha}$ will be determined by
the so-called gap equation $(\mathrm{s}\mathrm{e}\mathrm{e}(18))$ . The sum on integers $n$ is not over the Brillouin
zone $|n|\leq n_{G}$ but over $|n|\leq rQ_{\pm\alpha}\simeq 2n_{F}$ because the electrons with momenta
$k\simeq k_{F}$ are concerned with the transition. Here it should be kept in mind that the
numbers of the occupied states, $rQ_{\pm\alpha}+1=2n_{F}\pm 2\alpha+1(\alpha=1/2)$ , considered in (11)
differ from the actual number of the occupied states $2n_{F}+1$ given from $|n|\leq n_{F}$ .
That is to say, the empty state $n=-(n_{F}+\alpha)$ is superfluously occupied by two extra
electrons in the case of $H_{CDW}^{+\alpha}$ , while the two electrons at $n=n_{F}+\alpha$ have been
illegally excluded from $H_{CD}^{-\alpha_{W}}(‘ \mathrm{t}\mathrm{w}\mathrm{o}$ electrons’ is due to the two spin states at a given
$n)$ . Therefore the special notice will be taken when the energy for $H_{CD}^{+\alpha_{W}}$ or $H_{CD}^{-\alpha_{W}}$

is calculated (see (15) and (17)).
With the aids of $\tilde{k}\equiv k’-Q_{\pm}\alpha/2$ and $\tilde{k}\equiv k’+Q_{\pm\alpha}/2$ respectively introduced for

$0\leq n\leq rQ\pm\alpha$ and $\mathrm{f}_{\mathrm{o}\mathrm{r}-r}Q_{\pm}\alpha\leq n\leq 0,$ $H_{CDW}^{\pm}\alpha$ can be converted into

$H_{CDW}^{\pm\alpha}$ $=$
$\sum_{|\overline{n}|\leq rQ\pm a/2}(a^{\dagger}, a\frac{\dagger}{k}\tilde{k}+Q\pm_{C}/2-Q\pm\alpha/2)$

$\cross$ ( $\overline{k}+Q\triangle_{\pm\alpha}^{*}\pm\alpha/2$ $\epsilon_{\overline{k}-Q/2}\triangle\pm\alpha\pm\alpha$ )
2For a free particle moving in the A-B potential the wave function, as given in the former footnote, is

proved to be single-valued. Contrary to this, the single-valuedness of the wave functions for many-body
systems has not been proved as yet, so that it is regarded as an assumption.
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where the integers $\tilde{n}$ are defined by

$\tilde{k}\equiv\frac{\tilde{n}-\alpha}{r}$ (13)

for both $Q\pm\alpha$ . The integers $\tilde{n}$ are in accordance with the integers $n$ in (8). Diagonal-
izing the above $2\cross 2$ matrix, we have the eigenvalues

$E_{\pm}^{\pm\alpha}( \tilde{k})=.\frac{\hslash^{2}}{2m}\{\tilde{k}^{2}+(\frac{Q_{\pm\alpha}}{2})^{2}\}\pm\{(\frac{h^{2}}{2m}\tilde{k}Q_{\pm}\alpha)^{2}+|\Delta\pm\alpha|^{2}\}^{\frac{1}{2}}$. (14)

The energy for $Q_{+\alpha}(\alpha=0,1/2)$ is, at $T=0$ , given by

$E_{CD}^{+\alpha_{W}}=2| \overline{n}|\leq n\sum_{+F\alpha}E-(+\alpha\tilde{k})-4\alpha E_{-}+\alpha(-\frac{\alpha}{r})$
. (15)

The summation spans over the whole states $|n|\leq n_{F}+\alpha$ , because after the tran-
sition all electrons considered in (11) condense in the states lying under the opened
gap $2|\triangle+\alpha|$ . The energy $E_{-}^{+\alpha}(-\alpha/r)$ is the one of the quasi-particle at $\tilde{n}=0$ or
equivalently at $n=-(n_{F}+\alpha)$ . The reason why this term is subtracted is, as was
mentioned below (11), that the empty state $n=-(n_{F}+\alpha)$ is superfluously counted as
the occupied state in the Hamiltonian $H_{CD}^{+\alpha_{W}}$ . A coefficient $4\alpha$ in front of $E_{-(-\alpha}^{+\alpha}/r$ )
implies that this term slould disappears in the case of $\alpha=0$ . Replacing $\sum_{|n|\leq n_{F}}+\alpha$

by $(L/2 \pi)\int_{-k}F/rdk+\alpha F-\alpha/r(\tilde{n}/r)=(L/2\pi)\int_{-k}k_{F}F-2\alpha/rd\tilde{k}$ , we obtain, to lowest order in the
small parameters $|\Delta_{+\alpha}|/\epsilon_{F}$ and $\alpha/n_{F}(rk_{F}=n_{F})$ ,

$E_{CDW}^{+\alpha}$ $=$ $2n_{F}[ \frac{2}{3}\epsilon_{F}-\frac{|\triangle+\alpha|^{2}}{4\epsilon_{F}}-\frac{|\triangle+\alpha|^{2}}{2\epsilon_{F}}\ln(\frac{4\epsilon_{F}}{|\Delta_{+\alpha}|})]$

$+$ $4 \alpha[\{(\frac{2\alpha}{n_{F}}\epsilon_{F})^{2}+|\triangle+\alpha|^{2}\}\frac{1}{2}-\frac{2\alpha}{n_{F}}\epsilon_{F}]$ . (16)

The last term added in (16) is $\simeq 4\alpha n_{F}|\triangle+\alpha|^{2}/\epsilon_{F}$ for $2\alpha/n_{F}\gg|\triangle+\alpha|/\epsilon_{F}$ , and $\simeq$

$4\alpha|\triangle+\alpha|$ for the inverse limit $2\alpha/n_{F}\ll|\triangle+\alpha.|/\epsilon_{F}$ . The eneygy for $Q_{-\alpha}(\alpha=0,1/2)$

is, at $T=0$ , given by

$E_{CDW} \alpha=2|\overline{n}\leq nF-\sum_{|\alpha}E_{-}-\alpha(\overline{k})+4\alpha E-\alpha(++\frac{\alpha}{r})$
. (17)

The result calculated is obtained in (16) with $|\triangle_{-\alpha}|$ in place of $|\Delta_{+\alpha}|$ .
The pairing energies $\triangle_{\pm\alpha}(\alpha=0,1/2)$ are determined by the gap equation $[3][4]$

which is given by

$1=2 \lambda\frac{\epsilon_{F}}{N_{L}}\sum_{\leq|\overline{n}|nF\pm\alpha}\frac{1}{E_{+}^{\pm\alpha}(\tilde{k})-E_{-}^{\pm\alpha}(\tilde{k})}$
(18)

at $T=0$ , where $N_{L}$ is a number of the lattice sites in the loop and $\lambda$ is the non-
dimensional coupling constant between electrons and phonons. If one may wish, we
can derive the gap equation (18) from the Hamiltonian including the phonon term.
An analogous approximated calculation leading to (16) now gives

$| \triangle\pm\alpha|=4\epsilon F\exp[-\frac{1}{\lambda\nu}(1\pm\frac{\alpha}{n_{F}})],$ $( \alpha=0, \frac{1}{2})$ (19)
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where $l\text{ノ}\equiv 4n_{\Gamma^{}}/N_{L}$ , and $\alpha/n_{F}\ll\lambda$ $(\ll 1)$ has been used. From the above for-
$\mathrm{n})\mathrm{u}\mathrm{l}\mathrm{a}s$, it follows that $\mathrm{t}1_{1}\mathrm{e}$ corrections for the pairing energies due to $\alpha$ , namely
$\simeq\pm\alpha\triangle 0/(n_{F}\lambda_{\mathcal{U}})$ , make negligibly small contributions to the respective energies
$F_{CD}^{\pm\alpha_{W}}\lrcorner$ . Thus we can replace $\Delta_{\pm\alpha}$ by $\triangle 0$ when the energies (15) and (17) are consid-
ered. Finally, we are led to the conclusion

$\Gamma_{\lrcorner}^{0}r_{C}Dw$ $<$
$F_{CW}^{+\frac{1}{D2}}\lrcorner$

$=$
$E_{\overline{c}^{\frac{1}{D2}}w}$ (20)

under the approximated calculations.
We turn now to a description of the $\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{r}\mathrm{o}\ln C\urcorner \mathrm{g}\mathrm{n}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{c}$ response of the s.ystell]. The

flux $\Phi$ , which has been shown to be quantized, is $\mathrm{I}$) $\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{C}\mathrm{C}\backslash \mathrm{C}\mathrm{l}$ by an external $(.\iota\iota\Gamma 1^{\cdot}\mathrm{c}\mathrm{l}\mathrm{l}\mathrm{t}$

source of the solenoid and by an induced current on the loop. That is to say, an
induced vector potential $\mathrm{A}_{ind}(\mathrm{r})$ superimposed on the externally produced vector
potential $\mathrm{A}_{\mathrm{e}xt}(\mathrm{r})=\Phi_{ext}/2\pi r\cdot \mathrm{e}_{\theta}$ , leads to $\Phi$-quantization. The induced vector
potential is $\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{n}\mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{d}$ by Maxwell’s equation

$\nabla^{2}\mathrm{A}_{ind}(\mathrm{r})=-\mu_{0}\mathrm{j}_{in}d(\Gamma)$ (21)

where $\mathrm{j}_{ind}(\Gamma)$ is a induced current density on the loop. As is discussed above, our
vector potential A appearing in the HanliltoniaI\iota (2) is the total vector potential
$\mathrm{A}_{tot}(\mathrm{r})=\mathrm{A}_{e}t(x\mathrm{r})+\mathrm{A}_{ind}(\mathrm{r})$ . As to $\mathrm{A}_{tot}(\Gamma)$ , it was assumed for convenience’ sake that
$\mathrm{A}_{tot(\mathrm{r})}$ as well as $\mathrm{A}_{ext}(\mathrm{r})$ is idealized into the form (1). Let us note now that the
single-valuedness of the electron-ion wave function only pernlits $\mathrm{t}1_{1}\mathrm{e}$ commensurate
CDW [9] in the loop. Therefore there is a potential barrier of the commensurate
pinning force [10]. If this force is substantial, it would prevent the CDW from sliding
classically [11]. Here one may ask why $\mathrm{j}_{ind}(\Gamma)$ is possible ? The present author thinks
$\mathrm{t}1_{1}\mathrm{a}\mathrm{t}$ our $\mathrm{j}_{ind}(\mathrm{r})$ is due to the quantum tunneling [12] through the potential barrier.
To begin with, the one-dimensional loop considered is the mesoscopic one where the
phase coherence of the wave function is expected to go round the loop. Without such
a phase coherence, the Aharonov-Bohm flux can be entirely eliminated by the gauge
transformation, and so the problem studied in this paper fails to materialize. In this
sense, the problem is fundamentally quantum mechanical.

References
[1] A.W.Overhauser, Phys.Rev. 167691 (1968)
[2] F.J.Di Salvo, Jr and T.M.Rice, PHYSICS TODAY $/\mathrm{A}\mathrm{P}\mathrm{R}\mathrm{I}\mathrm{L}$ 32(1979)
[3] See,e.g.,EleCtroniC Properties of $Ino\uparrow goniC$ Quasi- One-Dimensional Compounds.

edited by P.Monceau (D.REIDEL PUBLISIIING COMPANY, 1985) for a re-
view.

[4] H.Frohlich, Proc.Roy.Soc.London,A 223, 296 (1954)
[5] R.E.Peierls, in Quantu rn Theory of Solids lt)8 (1955), Oxford Univ.Press, Ox-

ford, Engl and

[6] II.Kawamoto, Phys.Lett. A 190, 9 (1994) (Erratum Phvs.Lett. A 193, 499
(1994) $)$

[7] W.Kohn, Phys.Rev.Lett.2,393 (1959)

238



[8] A.M.Afanashev and Y.Kagan, Sov.Phys.JETP 16, 1030 (1963)

[9] W.L.McMillan, Phys.Rev.B 14, 1496 (1976)

[10] P.A.Lee, T.M.Rice and P.W.Anderson, Solid State Commun.14, 703 (1974)

[11] An overview of the dynamics of the CDW is given by G.Gruner in
Rev.Mod.Phys.60, 1129 (1988).

[12] J.Bardeen, Phys.Rev. B39, 3528 (1989)

239


