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Weyl’s Relation on a Doubly Connected Space
and the Aharonov-Bohm Effect

HrSWEEr ZEpFFEEr BRI 5% (Masao Hirokawa)

1 Introduction.

There are cases in which quantum particles move in a multiply connected space. A
remarkable example is the Aharonov-Bohm effect[1], where an experiment is set up to keep
electrons from penetrating into a region of non-vanishing magnetic field (e.g. Ref. [2, 3,
4]). However, in quantum mechanics, the momentum is represented by the generator of a
translation operator, so that it takes a special consideration when the underlying space has
“holes” inaccessible to the particles. ’

More precisely. in the standard quantum mechanics in RY, the momentum and position
operators are defined to be self-adjoint operators, p; and ¢;, acting on a Hilbert space H
and satisfying Heisenberg’s canonical commutation relations (CCR):

{ [vi-4j1) = —ihdy;

1
[IJJ’])J"] =0= [q_]*q]'] s j’jI: 17273N1 N € N ( )

on a dense subspace in H. )
It is well-known that the Weyl's CCR for strongly continuous one-parameter groups,

{eisp_, }—co<s<:x'v {eitfb }_,:o<{,<003

e etk = exp [—isthé;y] e'Prkerts, 9
6‘“"“ e‘isqk — eisqk eith , eilpj E,ispk — eispkeith ( )

(s.t € R; j,k =1,---.N) determines {p;,q,;} uniquely up to unitary equivalence. The irre-
ducible representation of p;.q; are unitary equivalent to the Schrédinger representation by
von Neumann’s uniqueness theorem (see Theorem VIII.14 in Ref.[5]). Thus, these p;,q; sat-
isfy Heisenberg’s CCR. Conversely, those self-adjoint operators p;, ¢; satisfying Heisenberg’s
CCR lead to Weyl’s. In this sense, the two CCR’s are equivalent.

The equivalence of the two CCR’s, Heisenberg’s and Weyl’s, presents a problem when
the underlying space RV is replaced by a multiply connected one, RV \ holes. While Weyl’s
CCR implies Heisenberg’s (see Corollary of Theorem VIII.14 in Ref.[5]), the converse is not
necessarily true. Nelson gave a mathematical example in non-Euclidean space to show it is
not true (see Corollary and Nelson’s example on p.275 in Ref.[5]). More realistic examples
were given by Reeh[6] and Arai[7] for the case of the Aharonov-Bohm effect with a string of
magnetic field of zero radius. They considered a particle moving on a plane with holes of the
0-radius, R = 0. Though it must be remarked that what they called momenta were actually
the mass-times-velocity operators, p; — qA;, which is called the mv-momentum (kinetic
momentum) by Feynman (see Ref.[8, (21.14)]) where j = z,y,i.e. N =2, p; = p1,py = p2;
and q is a charge, these operators do satisfy Heisenberg’s CCR but do not Weyl’s unless
the magnetic flux going through the interior of every rectangular closed curves in R?, has a
value of an integer multiple of 27h¢/q.



In this paper, we deal with a underlying space with a disc-shaped hole of a finite radius
R.Qr=R2\ Dg, Dp = {(x.y)|2* +y? < R?} (R > 0). We shall extend Reeh’s and Arai’s
result with R = 0 to the case of R > 0. Our method is to reduce the disc by a conformal
mapping to a line segment, and invoke Arai’s argument using the fact that the segment has
Lebesgue measure zero as dose Arai’s point hole. '

In 2, we shall show that there are uncountably many different self-adgomt extensions of

h o h o
—— and Hem with suitable boundary conditions on dDg. However, in 3 it turns out that
y

i Oz

h o .
none of the self-adjoint extensions of —l— and —— satisfy Weyl’s CCR.

i 0z i 0y

In 4, therefore, we define momentum operators as generators of shifts along the stream
lines of an incompressible vortex-free flow passing by the disc Dgr. The position operators are
defined in the standard way as multiplication by stream-line coordinates. Such a construction
using stream lines was once made by Tomonaga[9] to extract a collective mode of motion of
a many-particle system.

To establish that the canonical pairs so defined have unique self-adjoint extensions sat-
isfying Weyl’s CCR, we use a conformal (Joukowski) transformation to reduce the disc Dg
to line segment [—2R,2R)] and follow Arai’s argument using the fact that the holes have
Lebesgue measure zero. Of course, the canonical pairs satisfy Heisenberg’s CCR also.

In 5, we shall introduce magnetic flux to show that Weyl’s CCR for the mv-momentum
with respect to the new coordinates is destroyed by the Aharonov-Bohm phase, while Heisen-
berg’s remains valid. The canonical pairs are the same as those in 4, and both CCR’s, Weyl’s
and Heisenberg’s, are valid. We shall watch how the Joukowski transformation maps poles
of the gauge potential. Then, the point we wish to make here is that the Aharonov-Bohm
effect shows itself in the algebra of operators besides the well-known change in the interfer-
ence pattern. As a conclusion of our assertion in this paper, we shall show in 5 that the
Aharonov-Bohm effect appears in Weyl’s CCR for just coordinates by the Joukowski trans-
formation, not (z,y)-coordinates, which is caused by inequivalence between Weyl’s CCR and
Heisenberg’s.

Naturally, the results in 4 and 5 and be extended to the case where the underlying space
is Riemann surface conformally equivalent to R?\ [-2R,2R)].

2 Realistic Case: Hole of Finite Size.

We deal with the case of Qg def R2 \ DR, where Dp def {(z,y)|2? + y? < R?}, for the
fixed radius R > 0. We denote R?\ {(0,0)} by Qo. Weset m=h=c=1.

We consider a spinless charged particle with the charge ¢ # 0 moving in the plane
Qp under the influence of a magnetic field which goes through Dgr perpendicularly to the
plane and vanishes outside. Let A(z,y) = df (Az (z,y), Ay (2,y)) be a gauge potential of the
magnetic field. A; may be singular at points inside Dg, but we assume that

A; € C(Qr). j=a,y. (3)
- def o ) 19} i _ i ‘
B(r.y) = E Ayle,y) = 3 Az(z,y) = 0, (z,y) € Qr, (4)

where Q1 denote the closure of Qp.
In this section, we shall find that there are uncountably many self-adjoint extensions of
—id/0z and —id/0y on L?*(QpR) although —id/dx and —id/dy are essentially self-adjoint on
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L%(Qy) (see Refs.[6, 7]).
For y € [~ R, R], we define two functions w4 : [-R, R] = R by w; +(y) L /RTC y2.
Similarly, for & € [-R.R]. we define two functions woy : [-R,R] — R by wy4(z) A

+VR? — 22,

Then, we define y-section X, of R for every y € R by X, der( —o00,00) if R < |yl;
(=00, wr,-(y)) U (w1 4+(y),00)if |y| < R, and z-section Y, of R for every 2 € Rby Y, def (—00,00)
if R <|zf; (oo, wp_(2))U (wz+(l ) if |¢| < R.

We define two sets ACE_(2r) and ACtoc(QR) of functions on Qg by

ACE.(Qp) & { fe L¥QR)

for almost all y € R, f(-,y) is absolutely continuous

on arbitrary closed interval [c, ¢'] contained inside X, such that

of 9 }
- Q ;
5. € L (QRr) ¢ .
and AC}, (Qg) is defined similarly by replacing f-,y) by f(z,-).

Let f be in L*(Qg). Then we make a function f** € L%(R?) as [ (, y) f(x y) if
(z,y) € Qr; 0if (2,y) € RZ\QR = Dpg.

Remark 2.1: Let f; be in ACE (QR), and f2 be in AC} »c(2r). Then, we obtain
Dy fi = 9f1/0z, and D, fy = 0f2/0y, where D; (j = z,y) denotes derivative in the sense of
distribution with test functions in C§*(Qr) which denotes the set of all C*(QR)-functions
with compact support in Qg.

We define two operators p; (j = 2,y) by

def 1 1o .
Pz = —I-I)I (-_- _—> ? (5)

D(pz) def {f € ACL(Qpr)|for almost all |y| < R

lim f(z,y)=0=_lm f(z,9)},
y) z—wy,+(y)

T—wp, ~

and p, is defined similarly.
In general, we denote by D(1") the domain of operators T'.

Remark 2.2: Coo(R) C D(ps),  D(py).

The position operators ¢; (j = x,y) are realized as self-adjoint operators:

q; def 2; (the multiplication by z;),

def

D(g;) = {fe L (QR)I/ dzdylz; f(z,y)|* < oo}

where ; = 2 if j = 2: and 2; = y il j = y (see Example 5.11 and its remark 1 in (12] or
Proposition 1 and the proof of Proposition 3 in §VIIL.3 of [5]).

First of all, we note fundamental facts concerning functions in L?(X,), L?(Y;), and

ACIJUL(QR)



Lemma 2.1:

(a) If f € L*QR). then f € L X,) for almost all y € R, and f € LZ(Y ) for almost all
z € R.

(b) If f e ACE (Qr), then ng‘f(a:,y) = 0 for almost all y € R, and  lim )f(x,y)

r—wy, +(y

exists for almost all |y| < R.
(c)If f € ACL (Qp). then lixin f(x,y) =0 for almost all z € R, and lim f(z,y)
y—tx

y—wz, ()
exists for almost all 2| < R.

By Lemmas 2.1(b) and (c), from now on, we set

f(wr-(y)y) & lim (), flort(v),9) ¥ lim f(z,y),

Wy, - y Tr—u1 +(y

for f € ACE (QR), and similarly we use a notation f(z,w;_(z)) for f € AC], ().

There are many ways to extend p; (j = z,y) to self-adjoint operators. We shall show it
in the following theorem for comprehending all self-adjoint extensions of p; (j = z,y).

Theorem 2.2: p; is closed symmetric, but not essentially self-adjoint. Furthermore, p;
has uncountably many different self-adjoint extensions.

By Theorem 2.2 above, we knew that there are many self-adjoint extensions of p; (j =
2,y). In order to momentum operators generate shifts, we wish there were a pair of self-
adjoint extensions of p; (j = z.,y) satisfying Weyl’s CCR. As a matter of fact, we shall
realize that there no such pair in the self-adjoint extensions of p; (j = z,y). After here and
in the next section, we shall see it.

The following corollary follows immediately from Corollaly on p.141 in Ref.[11], which is
the first step for compreliending the domain of self-adjoint extensions of p; (j = z,y):

Corollary: There is a one-one correspondehce between self-adjoint extension of p; and
unitary operators from Ker <1)" - i) onto Ker (p}‘ + 1') Let U; : Ker (p; ) Ker (p’]“ + i’)
(j = =,y) be an arbitrary unitary operator, and Py, be the self-adjoint extension of p;
corresponding to U; (j = x,y). Then, ’

D(py, ) = {cpo + ¢+ + Ujps | wo € D(p;), o+ € Ker(p] — i)} ,
P, (o + v + Ujps) = pjvo + iy = iljoy.

Remark 2.3: We can show easily that {pj,q;}j=sy satisfies Heisenberg’s CCR on
C&*(QR). In order to investigate Weyl’s, we need to show the behavior of exp [itp;], which
will be investigated in the following section. k

For getting description of domains of self-adjoint extensions Py, (j = z,y) appropriate
for the boundary conditions on dDg, we get exactly adjoint operators of p; as the following
proposition. Its proof follows from Example in VIIL.2 in Ref.[5] with introducing an arbitrary
function j2 € C§°(R) for applying the example in Ref.[5] to our case:

Proposition 2.3:

(a) pr = —i0/d2 with D(p}) = ACT (QR).

(b) py = —id/dy with D(p}) = ACY (QR).
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We will prepare some lemmas for a while in order to investigate boundary conditions on
ODpg for functions in ]_)(puJ ) (= z,y).
We define W SE(QR), the vector space of weak solutions for D, f = +f, by

WSE(Qr) = {f € LX(QR)| Do f = £f}.

It is evident that
Lemma 2.4: If ¢ € Ker(p} £ 1), then € WSE(Qg).

Since §2g is open, for every (v,y) € g, there exists 6z, > 0 such that Ball ((z,y) y0z,y) C
Qp, where Ball((z,y),d,,) denotes the open ball with center (z,y) and radius é,,. And
Ball ((z,y),6:,4/2) C Ball((x,y),6zy). There exists an open perfect square J,. , with center
(2,y) such that J,,C Ball ((z,y) ,6z,4/2), where J;, denotes the closure of Jzy - So, we
have mg Qg and Qg = U Jry- We denote by J the set {J,,|(z,y) € Qr}.

(2.y)€QR

Let pex (¢ > 0) be the Iriedrichs mollifier. And we set ¢, = p. * ¢ for p € WSE(Qg).
To be exact, let ™' be a function which is defined by ¢ on Qg, and 0 on R?\ Q5. And we
define @, by (z,y) / /‘» pelz — 2’y - ¥ )™ (', ¢ )da'dy .

The following fact can Bclx ‘i)rovod easily.

Lemma 2.5:

(a) o — @ asc | 0in L2(QR).

(b) v € C™(QR).
(c) For every J = J; x J; € J and o% € WSE(Qg), there exists g,. € C*°(Jz) such that
o (2, y) = exp[t2]g,, (y) for (x,y) € J. Here g,. may be the zero-valued function or not.

Let {en}, ey be a complete orthonormal basis of L2((~R, R)). We define functions f
(n € N) on Qg by .ff(:u,y)d:er ﬁe*l'x'xi(a;)e\’R2'y26n(y), where x_ (m)déf 1ifly < R
Ty : Yy

and wy 4+(y) < @; 0 otherwise, and \'X_(:c') def ) if |yl < R and =z < wy,_(y); 0 otherwise.

y —
Similarly, we define functions g* (n € N) on Qg by
gE(m,y) E V2T, (1) e, (2), where X (1) € 1if J2] < R and wpi(2) < 35 0

otherwise, and \'Yx_ (y) def | ir |#] < R and y < wy _(z); 0 otherwise.
Then we get the following proposition:
Lemma 2.6:
(a)
(a-1) {fF} e is a complete orthonormal basis of Ker(p,, F1).
(a-2) For every © € D(p,_ ),

Plw14+(Y),y) = 7y, (045 9)p(wr,-(9), ), (6)

where

oo

< fhor >12ap emly)
m=1

Yo leeiy) = = :
Y < fi Uy >p2(05 n(y)

n=1




(a-3) For every fi,g4 € Ker(p,, — 1),

e . oo .
ST < fhar > < LS+ >pan= > < frn Uzt >12(0p) < fomo Usft >12(05) -
m=1 m=1

(a-4) For every v € D(p, ),

R 2 R 9
[ aslotwnswilt = [ dule(un-(v), )
-R R
(b)

(b-1) {g¥},en is a complete orthonormal basis of Ker(py,, F i).
(b-2) For every ¢ € D(py, ),

P, w24 (2)) = 7y, (P45 2)0(T, w2, (2)),

where

Z I P+ >12(05) €m(T)

Sy lpaia) =
<Y, 1/594' >L2(QR) en(:’:)

i M‘A |‘

(b-3) For every [4.,9+ € I\'er(puy — 1),

oo oo
Z < s 9+ >12(0p) < g f+ >12 = Z < gm> Uyg+ >12(r) < 9m> Uy S+ >12(05) -

m=1 m=1

(b-4) For every ¢ € D(puy ),

iR . R -
/R delo(v wy g (2))? = /Rdavla,o(a:,wg,_(x))P.

Remark 2.4: We here note that T, (j = z,y) is depend on ¢4, which is different
from the l-dimensional case (see L \ampie 1 in X.1 in Ref.[11]. Then, why does Py, keep
symmetry? The reason is as follows: For instance,
let f= fo+ f++Usfs, 9= g0+ g+ + Uzg4+ € D(p,, ). Then we have by Proposition 2.3(a)
and Lemma 2.6(a)

< 9spu, f >12@r) = < Pu S >1205)

1 (R —_— \
= _—./ dy (Yo, (00 0, i)™ — 1) g (01 (W), 9) 4 (w4 (9),9)
t J_R

2({ & —— ~&
7(2 < frns Ungt > 1204 Z < [ Usfs >12(p) Omn

m=1 n=1

- Z < [ 94 >2an Z < fr >r2ag) 5mn)

m=]1

m=1
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Now that we have Proposition 2.3 and Lemmas 2.4-2.6, we can characterize the domains
of p,_ and Py, with the suitable boundary conditions on dDpg, respectively:
Theorem 2.7:

(a) Py, = == with

1 0x

R
/_R dy| f(w1 £(y),9)|* < o0,

and there exists fus € Ker(p} — 1) such that

D(p,.) = {f € ACE(Qp)

flwr+(y),y) = fos(w1,4(¥),9)s
flo14(y),9) = v, (fois; ) f(w1,-(y), 9)

for almost all —R < y < R}.

1 ¢
(b) pUy = "I"OE); \Vilell

D(p,,) = {f € ACY (Qp)

[ delfe o s < oo
lzj<R
and there exists fpis € Ker(py, — ) such that

f(l'- w2,+($)) = fpls(:vvwz,-i-(x))a
f(:l}, ’102_+(517)) = 7Uy(fpls; .Z)f(.’L‘, 'wz,_.(l'))

for almost all —R < 2 < R}.

Now that we obtain exactly the boundary conditions on dDpg depending on the domain
of Pu, (7 = 2.y). we can comprehend the behavior of exp {itpur] and exp [it;}uy], which

implies that no pair. exp [ilpt,w] and exp [-i.tpuy], satisfies Weyl’s CCR.. It will be shown in
the next section.

3 Behavior of exp [itp,] and exp [itp,].

In this section, we investigate behavior of exp [itp,] and exp [itp,]. Here arises difficulties.
In fact, we shall find it turns out in this section that any pair of self-adjoint extensions of
—1d/0z and —id/dy on L*(Qr) does not satisfy Weyl’s CCR. This is not a case with L%(Qp),

7

which was studied by Reeh[6] and Arai[7].

Let \ , (2,y) ) r lyl < R and wy 4(y) < a; 0 otherwise, and XB_(m,y) def 1 it ly] <R

R
and x < wy —(y): 0 otherwise. Tor f € ACE (Qp) with / dy| f(w1,+(y),y)|* < 00, we can
-R
give explicit construction of f,is and fons by
def  _» , , :
fpls(‘)"vy) = € Jf(wl,-f-(y,)vy)ewl'+(y)XB+(zay)7
f v
.fmns(«"-f/) = 6“1./"(‘1171.-(?4)71!)@1 1'_(y)xg— (lay)
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Fheu we have // dady| fois(x, y)| / dy| f(w1 4+ (v),y)|> < 00, So, fois € L*(Qr).
It is clear that fus € [\(‘1(1)‘ — 1) by Proposition 2.3. Similarly, fmns € Ker(p} + 7). In the

same way, we define for [ € AC}], (QR) with / dy| f(z,we 1(2))|* < o,
‘ i |z|<R

def — w z
fpls(:lfsy) = € yf(l'v'w?,-{-(m))e 2.+( )XA"’(:I: y)

e¥ flz,wa _(z))e>=x  _(2,9),

la;

fnms(wa lj)

where x (2, y) el if [x] < R and wy,4(2) < y; 0 otherwise, and x,_(z, y) ol if lz] < R
and y < wq _(2); 0 otherwise.

Remember Lemma 2.6 (a-4) and (b-4). Then, for f € D(pUJ) (j = z,y), we define fy by

del
./‘U("va) = f( fplb €, y fmns(L y)

Then, it is clear that fo € D(p;) (J = v, y).

We will clarify the meaning of the functions f, and mns, which gives an important
decomposition.

Lemma 3.1:
(a) Fix Uy. Then. U, fiis = funs for every f € D(p,_), and

J=Jot Jow+ Unfos € D(pa) + Rer(pf, — @) + Ker(pz + 1)

is a unique decomposition.

(b) Fix U,. Then, U, fpis = fams for every f € D(}pUy ), and
f=Jo+ fos + Uyfprs € D(py) + Ker(p; — i) + Ker(p, +7)

is a. unique decomposition.

Fix U; (j = x,y) and t € R. Since p,,_ is self-adjoint, there exists a dense set .A(pi,j‘) of
analytic vectors of p,. - (see C'orollaryl on p203 in Ref.[11]).

We can give behaviors of exp [itpl,)] (j = @,y) as the following proposition, which tell

us that any pair of exp [‘111,1),4]] (j = x,y) destroy Weyl’s CCR:
Proposition 3.2:
(a) For any f € A(p,, ).

(a-1) if (z,y) satisfies one of the following conditions at least, (i) |y] > R; (ii)
ly] < R with x,x +t < wy _(y); or (iii) |y| < R with w; +(y) < 2,z + ¢, then

(70 ) (29) = flz + 1),

(a-2) if £ > 0 and |y| < R. then

: = n 1 /d”
( ipy, f) wy Z pls) y 1__( lt7{ w1+(y +t y)“ 0) y

where ¢(™ denotes 9"g/d2™,



(a-3)ift >0, |y < R, & < wy—(y) and wy _(y) < = + t, then

(¢ e

n!

n 1 7d" ,
Z 7U:r Pl\)’ y = (;ﬁ;{—'('r +t + 2w1,+(y):y)[t:—x—w],+(y)) (t +2+ w1y+(y))n’

(a-4) if t < 0 and |y| < R, then

(’p"’f> (w1,4(y Z’Yu plavy <d“,{

() + 69 0) ,

(a-5) if 1 <0, [yl £ R, w1 4(y) < 2 and & + t < wy 4(y), then

(e‘lll)UI f) £, 1

n dnf ‘ n
Z 7”x é]s), n' ((Hn (-'L' + t + zwl,—(y)’ y)(t:—a:—wl,_(y)) (t + T + wlv"(y)) M

(b) For any f € /—l(pl,.y )

(b-1) if (2.y) satisfies one of the following conditions at least, (i) |z| > R; (ii)
lz] < R with y,y + 1 < w, _(2): or (iii) |2| < R with we +(2) < y,y +t, then

(" f) (xoy) = flayy + 1),

(b-2) if t > 0 and |x] < R, then

3 T 1 n
(6‘ try, f) (2, wq _ Z 7Uy l;)’ -1 ( - —(z,wo +(z) + t)[t_()) )
n=0
where ¢(") denotes 9"¢/0y",
(b-3)if 1> 0, |x] < R,y < wy_(z)and wy_(z) < y+1, then

('m)Lyf) (2.9)

n!

= " L farf
Z 1(:1\’- - ((H,l(»'« Y+t + 2we () [1=—y- 1U2+(1:)> (t+y+woi(2))",

(b-4)if t < 0 and 2| < R, then

itp,, n 1 /d"
(E tpllyf) L UJZ+ Z‘)’U ]()137 ( f(l wz_(:L +t)[-i U) )

= n' dtm
(b-5)ift <0, |o] < R way(v)<yand y+1< wy 4+(2), then
(e-”p"y /') (t.y)

" ([’Il
= YUk (Tt 4 20 @)y @) (vt @

n=0

248



249

Since A(])L,.]) (j = «,y) is dense in L*(Qpg), for arbitrary f € L*(QR) we can ap-
proximate elements in A(]JL_,J) to [ in the sense of the almost everywhere convergence on

Qr. So, Proposition 3.2 means that exp [itpul_} f (f € L*Qg)) jumps at the boundary
of the hole Dg in a moment. When this f goes across the hole Dpg, the equality be-
tween (exp [ispz]exp [ilp,] f)(2,y) and (exp [itpy]exp [isps] f) (2,y), which would normally
be valid, must be destroyed. Roughly speaking, for instance, let —2R < z,y < —R, s = R,
and t = 3R. Defining et def ispu, f, since |y| > R,

(6700 F) (2,9) = FO(a 4+ 1y) = (79 f) (= + 1,9)
holds by Proposition 3.2 (a-1). Since R < x + t,
(o f) o+ hy) = f@+ Ly + )
holds by Proposition 3.2 (b-1). Thus. we have
(e ) (,9) = f(z + Ly + )
for almost all (z,y) € (=2R,—R) x (=2R,-R).
Now, defining _1'5'.“ Al itry, [, since |z| > R,
| (r:-isp“y (}'f""") (r.y) = (}'£‘f~"(n:, y+s)= (eit”Uz f) (z,y + 3)
holds by Proposition 3.2 (b-1). Since —R < y+ 5 < 0,and z < 'wl‘,_(y) <wi+(y) <z +t
for all |y| < R,
(e 1) g 2

- (n) 1
= Y iyt 5

!
n=0 s

d" [

X <Tﬂ;—(:r 142wy 4(y+$)y+ 5)[t=—$—w1'+(y+s)) (t+z+ w1,+(y + s))n

by Proposition 3.2 (a-3). Thus. we have
(C‘is')‘-’y e'tPus ./-) (x.y)

-~ ) |
= Zaf[-'_r(.fl(,]’l;;l/‘jf"“)—l'_'

n=0 "
dn f

8 (_{I_IF(J: i+ 2w 4 (y+s)y+ 'S)[t=—x—WI,+(y+3)> (t+ 2+ w4y + )"

for almost all (z,y) € (-2R.—R) x (-=2R,—R).
Therefore, we realize that
((}itplv’,.‘ (\isPUy f) (l"y.) # (eispl_,y E'itpyr f) (.’E,y)

for almost all (2.y) € (=2R.—R)x (=2R,—R). So, Weyl’s CCR is destroyed but remember
that Heisenberg's holds for Do, (see Remark 2.3).
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Remember the case of Qg = R?\ {(0,0)}. In Reeh’s and Arai’s case, they essentially used
the hole. the origin. has the 0-Lebesgue measure.

Since Weyl’s C'C'R is destroyed in our case, the momentum operators defined by us-
ing —i0/0z and —id/0dy as (5) can not give any representation which is equivalent to the
Schrédinger one even if we consider any boundary condition on 8Dg. Thus, we redefine
the momentum and the position operators such that they are equivalent to the Schrédinger
representation, and are useful for discussing inequivalence[6, 7] in our case.

4 The Definition of the Momentum and Position Operators Using Stream-

lines.

In order that the momentum operators generate shift in a space Qg having a hole of the
shape of a disc of radius R, we introduce streamlines.

We take a coordinate given by a velocity potential & def ¢(z,y) and a flow function
1 def Y(x,y). Then we first define ¢(r,y) and z/'( x,y) by the Joukowski transformation ((2):
For z 4 4 +iy, weset ((z )dor 2+ R%/z and g = £+n) So ¢(x,y) and ¢(z,y) are determined

as
def R? def R?
gzqﬁ(a:,g/)::l:(lﬁ-m), n= 'Ly)'_' (1*:B2+y2 .

By ¢=! and ¥~', we denote functions satisfying 2 = ¢~1(£,m) and y = YH(E, ).

By the Joukowski transformation ((z). we get two conformal mappings Jin; : IntDpg =1
Rip and Jou : Qp ~— R3,. where R2; < R2\ {(£,0)] — 2R < € < 2R}, and IntDp %
{(z,y)]| 2% + y? < R?}.

We note here the Cauchy-Riemann relations:

do L def , at—y? oy
()—I = (l('lv.‘/) =1- R (:132 + y2)2 - 8!/ (7)
o def 2 Ty o
— = bla,y) = 2R F—— = L
dy Ae.y) R (2% + y2)2 oz (8)

By the change of variables, we have

Qo [at —b* /0
(()/(')y) - <b“ a¥ ) ((’?/077>’
where a*(¢,17) ' <<r'(£ D676 and bE0) E g™ 6,y E )

Here we set ¢(a \/(I (r,4)? 4+ b(x,y)?. We define two operators, pe and p,, acting in
L*(QR) by

] fl(fl J J 1 oy def oo
pe = 1,'<”57— b()J) D(pe) = C§(QR),

. (I_f_fl J a\ 1 def oo
(b rag) T Dow) % i an)

We can define two sclf-adjoint operators, qg and q;f, by

S def 1

= (c'o:. D( f = {fE L¥*(Qp) ‘ // dady|p(z y)f(:L y)[2 < oo}

def

| de
q77 = m/’; D(q> ”{/ € L*(QR) '// dzdyly(z,y) f(z,y)|* < }



(see Example 5.11 and its remark 1 in [12] or Proposition 1 and the proof of Proposxtlon 3
in §VIIL3 of [5]).

251

For functions f of (z,y) € Qg, we define functions f* of (£,n7) € R3g by f“(&,7m) def

flo™ (& m), v (€ m)). So, fla,y) = [U(elx,y),v(x,y)).
We define a Hilbert space L?(R3g) by

LYR3R) o {f functions of (£,7) '// de n'{(é,”))| }

with an inner product < f,g >p2p )dﬁf // dédn f(fﬂ?f)g(gz, ) And we define a linear

operator U : L(Qg) — L(R2p) by (U f) (&, 17) def f*(€,m) for every f € L?(Qg). Then, it

is clear that U is a unitary operator, and

, . ! ot d 1 . . o T2 -
U]){L“’ 1= 7 '()—‘:-(—“-. D(l]}tl ]) = Cd (R%R),
1.0 o
Upy U™t = gt DUl = G (R3R),

1 2
UgeU™' = c6—.  D(Uql™") = {f e LX(R%p)

2 2
/ déds Iflculfg,é,y)l <OO}’

J o YR <)

L
Ug,U™' = c“v;(_T, D(Uq, U™} {f € L}(R%p)

Of course, we have
Lemma 4.1: The operators pg and p,, are symmetric.

Thus, since pg and p, are closable, we can denote by P, and P, the closures of pg and py,.
As we expect, we have

Lemma 4.2: {P;.q;}j=¢.n satisfies Heisenberg’s CCR on C&(QR).

Since the hole {(£,0)] — 2R < £ < 2R} intercepts the differential —i9/9¢ at only n = 0,

we can easily get the following proposition by investigating the deficiency index of —13/35

Proposition 4.3: P is self-adjoint.

From now on. we denote g by /')f’. In order to get self-adjoint extensions of p, and exact
descriptions of their domains, we will prepare some lemmas for a while.

In the same way as Theorem 2.2 and its corollary, we have the following lemma:

Lemma /,'./,;' Up,U~" has uncountably many different self-adjoint extensions in LY(R2p).

And let Uy : Ker ((U5,071) = i) € LARp) — Ker ((UB,U~1)" +i) C L(RZg) be an

arbitrary unitary operator, and Up,, U-1 be the self-adjoint extension of UﬁnU‘1 corre-
1 . . .

sponding to U/,,. Then.

DT, U = {0+ vs + Upps [0 € DWURU™), oy € Rer ((UB,U71) =4)},

Up, l”‘(»ﬁo + vt + Uapr) = UB U™ 0o + oy = iUy
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Let {€,},¢x be a complete orthonormal basis of L2((—2R ,2R)). We deﬁne functions h*
(n € N) on R2, by h¥(€,n) et V2eF1c (€, )y i:(77)en(§) where y +(77) oy if €] < 2R

and 0 < 7; 0 otherwnso
and x (77) F1if |€] < 2R and 5 < 0; 0 otherwise.

In the same way as Lemma 2.6, we have
Lemma 4.5: {hf}, .y is a complete orthonormal basis of Ker (UﬁU U-lx z)
n

C L} (R2). For every ¢ € D (UT)UnU“>,

lim o(§, 1) = 7y, (¢4;€)lim (€, 7). 9)
70 nT0
where
X
Z < hfer > 12(R3 ) Em(€)
'!U,,(‘P+; €)= m.=l .
Z < hy,Uypy >2(mz,,) €n(€)
n=1
And

o

Z < hm 9+ >/7('IR” ;) < hm f+ >12(]K'2 . )

m=1

~
= < by, (Uygy) >r2meg) < b (Unf3) > L2(R2p)
n=1

I}

holds for every f,,g4 € ]‘\'or((»’ﬁ(;n(_"l —1).

We denote by U’ the umtaxy operator U, satisfying Tu, (P+3y) = 1forall o, € Ker ((U]')',,U‘l)* - z)
and £ € (-=2R.2R). And let v, " be Puy = U-Y(Up Pu, zU Hu.

We define a set H¢ for £ € R by
He = &f {n € R|there exists &, such that (£,7) € RzR}

Then we define a set AC) (R2.) of functions on R2Z. by

ACT (R3p) def {f € LAR3,) | for almost all € € R, f(€,-) is absolutely continuous

on arbitrary closed interval [c,¢'] contained inside H¢ such that

Q_f € L; (Rzl?)}

an

Now that we have Lemmas 4.5 and 4.6, we can describe exactly the domain of pS In the-
same way as Theorem 2.7, we can prove the following lemmas:



, 5 1,01 .
Lemma 4.6: l:’pf)lf’"'l = =c“z—— with

i Onc

D(_U]);?U"r) = {f € ACT, (R3R) /I€l<2R]c{‘(é,%))l2 < 00,

and llgln(} f(&,n) = 17%1 f(&m)

for alinost all £ € [—'ZR,‘ZR]}.

For the selected self-adjoint extension pg , the behavior of exp [itpﬂ is given by the
following lemma in the same way as Proposition 3.2 below, we have
Lemma 4.7: For f* € LYR3p),

*(6m)
c(&n+1)
5 1Inequivalence in the Aharonov-Bohm Effect between Heisenberg’s CCR
and Weyl’s

(e U =tr) (€m = (7507 1) (6m) = f(En+ D)
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For discussing the Aharonov-Bohm effect, we give a gauge potential A(z, ) def (Ag(z,9), Ay(2,y))

by
Ay oy Ao L CNVA (2 . :
flq_(l-!}) = c(n:,y)2 (("(a‘yy)Am(@ay)-*'b("l‘vy)Ay(aﬂy))s (10)
de 1 ,
Ay (e y) def ——— (=b(x,y) Az (2,y) + a(z,y) Ay (2,9)). (11)
clr,y)*

We denote (.42“({.7)). Ay(€.m)) by f\"‘(f.n).

Using da/0x = —db/dy and da/dy = db/dz by the Cauchy-Riemann relations (7) and
(8), we know that the magnetic field determined by the new vector potentials vanishes on
Qp:

Lemma 5.1: For (£,1) = (d(a,y), ¥(z,y)) € R3g ((z,y) € Qr),
1 DA, 94, 04y . O0A}
0= PETE ( o (Y - o (.1,,y)) = (&:n) - o (&m).

And, on C§*(R3R),

- A OQAY
Sri—1 u Sypr— qu]| _ : {4 —
[Up;( — gl oSt —q.,:1,,] = —iq ( a{” - ) -

Remark 5.1: We defined (A, 4,)) so that 1-form A,dz + A,dy is equal to A¢dE + Ajdn,
ie.. Agda + Aydy = AgdE + Ajdn.

Functions. A; (j = x.y) and AY (j = £,n), are real-valued measurable functions with
respect to measure spaces. (Qp. dedy) and (Rg,{,(lfdn/c"(ﬁ,n)Q) respectively. And besides,
Aj (7 = a,y) and A} (j = £.n) are [inite almost everywhere with respect to dazdy and
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dédn/c*(€,n)? respectively. So, we can define self-adjoint operators acting in L%(f2r) and
L?(R3R), respectively, as multiplication operators (see Example 5.11 and its remark 1 in [12]
or Proposition 1 and the proof of Proposition 3 in §VIIL.3 of [5]). We denote them by the
same symbols, i.e.,

(A; f) (2 )=4(1J)f
{fGL (Qr)

// (2,9)f(z, y)|2<oo}
(f’l.‘,-"f")(m e € ),

e Al , u , 2
o e oy ] || WGt )

Here we modify Q. We set Qi def Qr\{(2,0)| R <z}, and Qe def
Qr\ {(0,y)| R < y}. Furthermore, we modify R3p as (R? )m°d 4
mo (lf"f
RZo\ {(z,0)|2R < £}, and ( RﬁR) T RI\ {(0,9)]0 < 7}

Remark 5.2:  J,, (Q7°¢) = R%R)gmd and Joy: (Q;‘“‘) = (R%R):“.

Then, since (R2,):" and (R2,)™ are simply connected, and Lemma 5.1 holds, we
2R/ ¢ 2R/y pi)
can use Poincaré’s lemma. and there exist two functions A} € C§° ((R%R)?M) and A} €

& ((RlﬁR);md) such that A" = VA{ on (R%R)?"d, and A¥ = VA% on (R%R);Md.

The following lemmas, Lemmas 5.2 and 5.3, are technical ones for our purpose that we
show the Aharonov-Bohm effect in Weyl’s CCR caused by inequivalence between Weyl’s
CCR and Heisenberg’s.

Lemma 5.2

(a) Cg¥ (2 "d) and Cge (') are dense in L*(Qp).

(b) C§F ((R%R)de) and C’g"((RgR);M ) are dense in LZ(R2p).

Lemma 5..3: Cg(( :E)R)'é”"') is a core for Up?U~" in LY(R3pg).

Now, we consider A;(x.y) def (UTTAY)(z,y) = A¥(d(z,y),¥(z,y)) (§ =€&,n). Ttis clear
that A is measurable (actually A; € C””(Q;"“ )). So, by well-known fact, we can define the
following self-adjoint operators, A; (j =&, n):

(A ) (2,9) € Aj(, ) f(, 1),
D(A;) {fe L*(QR) //Q [A;(z,9)f(z,9)]* < 00}
“ R

(see Example 5.11 and its remark 1 in [12] or Proposition 1 and the proof of Proposition 3
in §VIIL3 of [5]).
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The following theorem means that the mv-momentum w.r.t. {-axis is realized as a self-
adjoint operator in the same way as Arai’s proof[7].

Theorem 5.4: I &, ]t' — qAg is essentially self adjoint on Cg°(25°¢).

The following theorem means that the mv-momentum w.r.t. n-axis is realized as a self-
adjoint operator with a small difference from Arai’s proof[7)].
Theorem 5.5: P, def b — qA, is essentially self adjoint on e‘qA"D(pS)

For &,7,s,t € R, we define two curves C‘i(f,n;s,t) in R? from (£,7) € R2, to
(€+s,m+1) by C-(Emis,t) = C (€ +05,7)]0<O<1}U{(E+5,m+61)[0< 0 <1}, and
C'+(&,7m;8,1) 4 { En+01)]0<0<1}U{(€+06s,m+1)|0<8 <1} Then we define a rect-
angle C(&,n;s,t) by C(&,m;5,1) def C_(&,m;8,t) — Cy(&,m58,t), which is the rectangular

closed curve: (§,7) — (£ +s,7) — (§+ 5 77+ )= (En+t)—(&n) '

In the same way as Arai’s, for every s,! € R, we define a function ®¥; on R3p by

defl

ov (€. L / ANE) - dF,
’ C(&m;s.t)

where € (£, For (€9.110) € A0 = (R\ {£28, £2R - s})x(R\ {0,~1}), i O(€,mi,1) G R

ie., C(&o,moss.t) N [=2R.2R] = ¢, then it is evident that / A¥(F) - dF is finite. For
C(€o,mois,t)
the other cases, namely C'(&o,0;s,t) N [=2R,2R] = {(&0, 70 + bot)}, {(o + s,m0 + ot)} or

{(£0,m0 + Bot). (€0 + s.nu + Bot)} for some 0 < by < 1, Ap(&o,n’) and Ap(éo + s, n') have
discontinuous points. (o, 1m0 + ot) and (&o + 5,10 + Oot) respectively. However A}(£o,7')
and AY(& + s.7') are integrable functions of n on 7' € [no,70 + ¢] by using (3), (7), (8),
(10), (11), and the fact that J,,(Qr) = R3z. So we know that / A“(?)'di‘ is

C(€0sm038,t)
also finite. Thus. the function ®%,(£.7) is defined on A;;. Then, ®%,(€,m) is a real-valued

measurable function with 1espect to the measure space (R2p,dédn/c*(€,1)?). And besides,
@Y (£, 1) is finite almost everywhere with respect to d€dn/c*(€,n)%. Here we note that the
poles, (£2R,0), of 1/c* are outside R3p. So, we can define a self-adjoint operator ®¥, as
multiplication operator on Lf(R%R). ie

D(os,) E {1 e LR, | 0%, f* € LARER)},
(@1./) (€ & @t e Em.

(see Example 5.11 and its remark 1 in [12] or Proposition 1 and the proof of Proposition 3
in §VIIL3 of [5]).

Remark 5.3: HC'(f.n:_s,t.)gR%R ((€,m) € Agy), then it is clear that JoutC’(é 78, t)CQR

Thus, U‘1<I>13",t(./' means the flux going through the interior of Jo_utC(f,n,s,t) because the
Stokes theorem holds. If ("(&,n:s. 1) N[-2R,2R] # ¢ ((€,71) € Asy), then, by the definition
of Asy. the points in ('(€.m:s.1) N [-2R.2R] are not poles of A%(€,n). So, in this case,
although JZ1C'(€,1;5,0) is not a loop in Qpg, if we have 4; € C(Dr\'S) (j = z,y) and

Dp\ S is connected where we denote by S the set of all singularities of A; (j = z,y) with’
S C Dg. then by adding a curve in Dg to J;LC(€,7;s,t), we can make a loop C in R2.
7
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So, U=1®},U can be extended an operator acting in L2(R?), and it means the flux going
through the interior (.

Defining @5,(9:, y) def ¢ (o(x,y), ¥(z,y)), in the sense of operator @ﬁt def U"lfbl"tU, we
obtain our desired theorem. By this theorem, we can show that the Aharonov-Bohm effect
appears in Weyl’s CCR for just exp [z’tpﬂ (7 = &,m), not exp [itpUJ] (7 = z,y), simultane-
ously inequivalence between Weyl’s CCR and Heisenberg’s. :

Theorem 5.8: For all s,t € R,

e15PeoitPn _ exp ["iqq)sA,t} eitPngisPe

As a conclusion of our assertion in this paper,
Theorem 5.7: The systen {Fj,(/f}_ . of self-adjoint operators fulfills Heisenberg’s
* J=8m

CCR on a certain dense domain in L?(2g), on the other hand {-P_j,qjs}

fulfills Weyl’s
7

CCR if and only if q)gt(.z:,y) is a function having a value of an integer multiple of 27/q for
every C'(x,y;s,t) in Qp.

Corollary: The system {pf,qf}
and Weyl’s.

of self-adjoint operators fulfills Heisenberg’s CCR

I=Em

6 Discussion for Riemann surfaces.

We extended Reeh’s and Arai’s results to the case where the “hole” has a finite radius.
We used a disc for the hole. but the disc is not essential for our argument. Our method
is valid over Riemann surfaces conformally equivalent to R2, with a conformal map which
plays a role of J,,;. Namely, for a Riemann surface R in R? which is conformally equivalent
to R, it is evident that there exists a biholomorphic function Jr such that J,(R) =R
so we can use J instead of the Joukowski transformation J,,;.

For some general holes, we realize that our method will be valid over Riemann surfaces
conformally equivalent to the space removed finite segments parallel to £-axis and finite
points from R?, which reminds us the following theorem: Let R be a non-compact Riemann
surface of planar character. Then, there exists a biholomorphic function J : R — J(R) and
ty € R such that f(wy) = x, and F'= (CU {00})\ J(R) is a bounded closed set in C and
each connected components of F is a segment parallel to the real azis or a point (see Theorem
7.3 in Ref.[13]).

2
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