Scaling limit of a model of quantum electrodynamics with N-nonrelativistic particles

Fumio HIROSHIMA (Hokkaido University)

1 INTRODUCTION

The main problem presented in this paper is to consider a scaling limit of a model in quantum electrodynamics which describes an interaction of N-nonrelativistic charged particles and a quantized radiation field in the Coulomb gauge with the dipole approximation. The model we consider is called "the Pauli-Fierz model". Authors in [5,6] have studied a scaling limit of the Pauli-Fierz model with one-nonrelativistic charged particle. We may well extend the scaling limit of one-particle system to N-particles system.

The Pauli-Fierz Hamiltonians $H_{\vec{\rho}}$ with N-nonrelativistic charged particles in the Coulomb gauge with the dipole approximation are defined as operators acting in the Hilbert space $L^2(\mathbb{R}^d) \otimes ... \otimes L^2(\mathbb{R}^d) \otimes \mathcal{F}(\mathcal{W}) \cong L^2(\mathbb{R}^{dN}) \otimes \mathcal{F}(\mathcal{W})$ by

$$H_{\vec{\rho}} = \frac{1}{2m} \sum_{j=1}^{N} \sum_{\mu=1}^{d} \left(-i\hbar D_{\mu}^{j} \otimes I - eI \otimes A_{\mu}(\rho_{j}) \right)^{2} + I \otimes H_{b},$$

where D^j_{μ} is the differential operator with respect to the j-th variable in the μ -th direction, $A_{\mu}(\rho_j)$ the quantized radiation field in the μ -th direction with an ultraviolet cut-off function ρ_j in the Coulomb gauge, H_b the free Hamiltonian in $\mathcal{F}(W)$, and m, e, \hbar the mass of the particles, the charge of the particles, the Planck constant divided 2π , respectively.

Note that A_{μ} is depend on the speed of light c. We introduce the following scaling.

$$c(\kappa) = c\kappa, e(\kappa) = e\kappa^{-\frac{1}{2}}, m(\kappa) = m\kappa^{-2}.$$
 (1. 1)

Then the scaled Hamiltonian $H_{\vec{\rho}}(\kappa)$ amounts to

$$-\frac{\hbar^2\kappa^2}{2m}\Delta\otimes I + \kappa I\otimes H_b + \frac{1}{2m}\sum_{i=1}^N\sum_{\mu=1}^d\left(\kappa 2e\hbar iD^j_\mu\otimes A_\mu(\rho_j) + e^2I\otimes A^2_\mu(\rho_j)\right).$$

Defining a pseudo differential operator $E^{REN}(D,\kappa)$ in $L^2(\mathbb{R}^{dN})$ with a symbol $E^{REN}(p,\kappa)$ such that $E^{REN}(p,\kappa) \to \infty$ as $\kappa \to \infty$, we define a Hamiltonian $H_{\vec{\rho}}^{REN}(\kappa)$ by

$$-E^{REN}(D,\kappa)\otimes I + \kappa I \otimes H_b + \frac{1}{2m} \sum_{j=1}^N \sum_{\mu=1}^d \left(\kappa 2e\hbar i D^j_\mu \otimes A_\mu(\rho_j) + e^2 I \otimes A^2_\mu(\rho_j) \right).$$

Consequently, we shall show the following for some $\vec{\rho} = (\rho_1, ..., \rho_N)$ and scalar potentials V with some conditions (Theorem 3.7):

$$s - \lim_{\kappa \to \infty} (H_{\vec{\rho}}^{REN}(\kappa) + V \otimes I - z)^{-1} = \mathcal{U}(\infty) \left\{ (E^{\infty}(D) + V_{eff} - z)^{-1} \otimes P_0 \right\} \mathcal{U}^{-1}(\infty),$$

where $E^{\infty}(D)$ is a pseudo differential operator in $L^2(\mathbb{R}^{dN})$, V_{eff} a multiplication operator, which is called "effective potential", and P_0 a projection on $\mathcal{F}(\mathcal{W})$. Despite the fact that in the case of one-particle system the effective potential V_{eff} is the Gaussian transformation of a given scalar potential V, we shall show that in N-particles system, it is not necessary to be the Gaussian transformation. Actually it is determined by a matrix $\widetilde{\Delta}^{\infty} = (\widetilde{\Delta}_{ij}^{\infty})_{1 \leq ij \leq N}$ which is defined by the ultraviolet cut-off functions ρ_j ;

$$\widetilde{\Delta}_{ij}^{\infty} = \frac{1}{2} \frac{d-1}{d} \left(\frac{\hbar}{mc} \right) \frac{e^2}{\hbar c} \int_{\mathbb{R}^d} dk \frac{\widehat{\rho}_i(k)\widehat{\rho}_j(k)}{\omega(k)^3}.$$

2 THE PAULI-FIERZ MODEL

To begin with, let us introduce some preliminary notations. Let \mathcal{H} be a Hilbert space over \mathbb{C} . We denote the inner product and the associated norm by $\langle *, \cdot \rangle_{\mathcal{H}}$ and $||\cdot||_{\mathcal{H}}$ respectively. The inner product is linear in \cdot and antilinear in *. The domain of an operator A in \mathcal{H} is denoted by D(A). A notation \hat{f} (resp. \check{f}) denotes the Fourier transformation (resp.the inverse Fourier transformation) of f and \bar{f} the complex conjugate of f. Let

$$\mathcal{W} \equiv \underbrace{L^2(\mathbb{R}^d) \oplus \ldots \oplus L^2(\mathbb{R}^d)}_{d-1}.$$

We define the Boson Fock space over W by

$$\mathcal{F}(\mathcal{W}) \equiv igoplus_{n=0}^{\infty} \otimes_s^n \mathcal{W} \equiv igoplus \mathcal{F}_n(\mathcal{W}),$$

where $\otimes_s^0 \mathcal{W} \equiv \mathbb{C}$ and $\otimes_s^n \mathcal{W}$ $(n \geq 1)$ denotes the n-fold symmetric tensor product. Put

$$\mathcal{F}^{\infty}(\mathcal{W}) \equiv \bigcup_{N=0}^{\infty} \bigoplus_{n=0}^{N} \mathcal{F}_{n}(\mathcal{W}) \bigoplus_{n \geq N+1} \{0\}.$$

The annihilation operator a(f) and the creation operator $a^{\dagger}(f)$ $(f \in \mathcal{W})$ act on $\mathcal{F}^{\infty}(\mathcal{W})$ and leave it invariant with the canonical commutation relations (CCR): for $f, g \in \mathcal{W}$

$$[a(f), a^{\dagger}(g)] = \langle \bar{f}, g \rangle_{\mathcal{W}},$$
$$[a^{\sharp}(f), a^{\sharp}(g)] = 0,$$

where [A, B] = AB - BA, a^{\sharp} denotes either a or a^{\dagger} . Furthermore,

$$\left\langle a^{\dagger}(f)\Phi,\Psi\right\rangle_{\mathcal{F}(\mathcal{W})}=\left\langle \Phi,a(\bar{f})\Psi\right\rangle_{\mathcal{F}(\mathcal{W})},\quad\Phi,\Psi\in\mathcal{F}^{\infty}(\mathcal{W}).$$

We define polarization vectors $e^r(r=1,...,d-1)$ as measurable functions $e^r: \mathbb{R}^d \longrightarrow \mathbb{R}^d$ such that

$$e^r(k)e^s(k) = \delta_{rs}, \quad e^r(k)k = 0, \quad a.e.k \in \mathbb{R}^d.$$

The μ -th direction time-zero smeared radiation field in the Coulomb gauge with the dipole approximation is defined as operators acting in $\mathcal{F}(\mathcal{W})$ by

$$A_{\mu}(f) = \frac{1}{\sqrt{2}} \left\{ a^{\dagger} \left(\bigoplus_{r=1}^{d-1} \frac{\sqrt{\hbar} e_{\mu}^{r} \hat{f}}{\sqrt{c\omega}} \right) + a \left(\bigoplus_{r=1}^{d-1} \frac{\sqrt{\hbar} e_{\mu}^{r} \hat{f}}{\sqrt{c\omega}} \right) \right\}, \tag{2. 1}$$

where $\omega(k) = |k|$ and $\tilde{g}(k) = g(-k)$. Let $\Omega = (1,0,0,...) \in \mathcal{F}(\mathcal{W})$. For a nonnegative self-adjoint operator $h: \mathcal{W} \to \mathcal{W}$, we denote "the second quantization of h" by $d\Gamma(h)$. Put $\tilde{\omega} = \underbrace{\omega \oplus ... \oplus \omega}_{d-1}$. The free Hamiltonian H_b in $\mathcal{F}(\mathcal{W})$ is defined by

$$H_b \equiv \hbar c d\Gamma(\tilde{\omega}).$$

The Pauli-Fierz Hamiltonians with N-nonrelativistic charged particles interacting with the quantized radiation field with the dipole approximation in the Coulomb gauge read as follows:

$$H_{ec{
ho}} \equiv H_{
ho_1,...,
ho_N} \equiv rac{1}{2m} \sum_{j=1}^N \sum_{\mu=1}^d \left(-i\hbar D^j_{\mu} \otimes I - eI \otimes A_{\mu}(
ho_j)
ight)^2 + I \otimes H_b,$$

acting in

$$\underbrace{L^2(\mathbb{R}^d)\otimes ...\otimes L^2(\mathbb{R}^d)}_{N}\bigotimes \mathcal{F}(\mathcal{W})\cong L^2(\mathbb{R}^{dN})\otimes \mathcal{F}(\mathcal{W})\cong \int_{\mathbb{R}^{dN}}^{\oplus} \mathcal{F}(\mathcal{W})dx.$$

We introduce the scaling (1.1). For objects A containing of the parameters c, e, m, we denote the scaled object by $A(\kappa)$ throughout this paper. We define classes P and \tilde{P} of sets of functions as follows:

Definition 2.1 $\vec{\rho} = (\rho_1, ..., \rho_N)$ is in P if and only if

- (1) $\hat{\rho}_j, j = 1, ..., N$ are rotation invariant, $\hat{\rho}_j(k) = \hat{\rho}_j(|k|)$, and real-valued,
- (2) $\hat{\rho}_j/\omega, \hat{\rho}_j/\sqrt{\omega}, \hat{\rho}_j, \sqrt{\omega}\hat{\rho}_j \in L^2(\mathbb{R}^d)$.

Moreover $\vec{\rho}$ is in \tilde{P} if and only if in addition to (1) and (2) above

- (3) $\hat{\rho}_j/\omega\sqrt{\omega} \in L^2(\mathbb{R}^d)$ and there exist $0 < \alpha < 1$ and $1 \le \epsilon$ such that $\hat{\rho}_i(\sqrt{\cdot})\hat{\rho}_j(\sqrt{\cdot})(\sqrt{\cdot})^{d-2} \in Lip(\alpha) \cap L^{\epsilon}([0,\infty))$, where $Lip(\alpha)$ is the set of the Lipschitz continuous functions on $[0,\infty)$ with the degree α ,
- (4) $\sup_{k} |\hat{\rho}_{j}(k)\omega^{\frac{d}{2}-\frac{3}{2}}(k)| < \infty, \sup_{k} |\hat{\rho}_{j}(k)\omega^{\frac{d}{2}-\frac{1}{2}}(k)| < \infty, j = 1, ..., N.$

Put

$$H_0 = -\frac{1}{2m}\hbar^2 \Delta \otimes I + I \otimes H_b,$$

where Δ is the Laplacian in \mathbb{R}^{dN} . It is well known that H_0 is a nonnegative self-adjoint operator on $D(H_0) = D\left(-\frac{1}{2m}\hbar^2\Delta\otimes I\right) \cap D(I\otimes H_b)$.

Proposition 2.2 ([3,4]) For $\vec{\rho} \in P$ and $\kappa > 0$, the operator $H_{\vec{\rho}}(\kappa)$ is self-adjoint on $D(H_0)$ and essentially self-adjoint on any core of H_0 and nonnegative.

Let $\mathbf{F} = F \otimes I$, where F denotes the Fourier transform in $L^2(\mathbb{R}^{dN})$. It is clear that operators $\mathbf{F}H_{\vec{\rho}}\mathbf{F}^{-1}$ can be decomposable as follows:

$$\mathbf{F} H_{\vec{\rho}}(\kappa) \mathbf{F}^{-1} = \int_{\mathbb{R}^{dN}}^{\oplus} H_{\vec{\rho}}(p,\kappa) dp,$$

where

$$H_{\vec{\rho}}(p,\kappa) = \frac{1}{2m} \sum_{j=1}^{N} \sum_{\mu=1}^{d} \left(\kappa \hbar p_{\mu}^{j} - eA_{\mu}(\rho_{j}) \right)^{2} + \kappa H_{b}.$$

Proposition 2.3 ([3,4]) For $\vec{\rho} \in P$ and $\kappa > 0$, the operator $H_{\vec{\rho}}(p,\kappa)$ is self-adjoint on $D(H_b)$ and essentially self-adjoint on any core of H_b and nonnegative.

Set Hilbert spaces $M_d = \left\{ f \left| \int |f(k)|^2 \omega(k)^d dk < \infty \right\} \right\}$ and put $\mathcal{W}_{\alpha} = \underbrace{M_{\alpha} \oplus \ldots \oplus M_{\alpha}}_{d-1}$, $\alpha \in \mathbb{R}$. The following lemma is the key lemma to investigating the scaling limits.

Lemma 2.4 ([9]) Let $\vec{\rho} \in \tilde{P}$ and $\kappa > 0$ be sufficiently large. Then there exist a Hilbert Schmidt operator \mathbf{W}_{-} , a bounded operator \mathbf{W}_{+} , and $\mathbf{L}_{j} = (\mathbf{L}_{j}^{1},...,\mathbf{L}_{j}^{d}), \mathbf{L}_{j}^{\mu} \in \mathcal{W}, j = 1,...,N,$ $\mu = 1,...,d$ such that, if we put for $p^{j} \in \mathbb{R}^{d}, j = 1,...,N$

$$B(\mathbf{f}, p) = a^{\dagger}(\mathbf{W}_{-}\mathbf{f}) + a(\mathbf{W}_{+}\mathbf{f}) + \sum_{j=1}^{N} \left\langle \mathbf{L}_{j} p^{j}, \mathbf{f} \right\rangle_{\mathcal{W}},$$

$$B^{\dagger}(\mathbf{f}, p) = a^{\dagger}(\overline{\mathbf{W}}_{+}\mathbf{f}) + a(\overline{\mathbf{W}}_{-}\mathbf{f}) + \sum_{j=1}^{N} \left\langle \overline{\mathbf{L}}_{j} p^{j}, \mathbf{f} \right\rangle_{\mathcal{W}},$$

then

$$\begin{split} &[B(\mathbf{f}, p), B^{\dagger}(\mathbf{g}, p)] &= \langle \mathbf{f}, \mathbf{g} \rangle_{\mathcal{W}}, \\ &[B^{\sharp}(\mathbf{f}, p), B^{\sharp}(\mathbf{g}, p)] &= 0, \quad on \ \mathcal{F}^{\infty}(\mathcal{W}), \end{split}$$

and for $\Phi, \Psi \in \mathcal{F}^{\infty}(\mathcal{W})$,

$$\left\langle B^{\dagger}(\mathbf{f}, p)\Phi, \Psi \right\rangle_{\mathcal{F}(\mathcal{W})} = \left\langle \Phi, B(\bar{\mathbf{f}}, p)\Psi \right\rangle_{\mathcal{F}(\mathcal{W})},$$

moreover

$$[H_{\vec{\rho}}(p), B^{\sharp}(\mathbf{f}, p)] = \pm B^{\sharp}(\hbar c \widetilde{\omega} \mathbf{f}, p), \text{ on } \mathcal{F}^{\infty}(\mathcal{W}) \cap D(H_b^{\frac{3}{2}}),$$

where $f \in \mathcal{W}_0 \cap \mathcal{W}_2$ and + (resp.-) corresponds to B^{\dagger} (resp.B).

By virtue of Lemma 2.4, we see the following.

Corollary 2.5 Let $\vec{\rho} \in \widetilde{P}$ and κ be sufficiently large. Then for $\Phi \in D(H_b)$,

$$\exp\left(i\frac{t}{\hbar}H_{\vec{\rho}}(p)\right)B^{\sharp}(\mathbf{f},p)\exp\left(-i\frac{t}{\hbar}H_{\vec{\rho}}(p)\right)\Phi=B^{\sharp}(e^{ic\widetilde{\omega}t}\mathbf{f},p)\Phi$$

3 SCALING LIMITS

In this section, we construct a unitary operator which implements unitary equivalence of the Pauli-Fierz Hamiltonian and a decoupled Hamiltonian. Moreover we investigate a scaling limit of the Pauli-Fierz Hamiltonian. Unless otherwise stated in this section, we suppose that $\kappa > 0$ is sufficiently large. From Lemma 2.4 (1) it follows that there exist two unitary operators $U(\kappa)$ (p independent) and $S(p,\kappa)$ such that ([6,Section III])

$$U^{-1}(\kappa)S(p,\kappa)^{-1}B^{\sharp}(\mathbf{f},p,\kappa)S(p,\kappa)U(\kappa) = a^{\sharp}(\mathbf{f}), \quad \mathbf{f} \in \mathcal{W}.$$
(3. 1)

Concretely $S(p, \kappa)$ is given by

$$S(p,\kappa) = \exp\left(\sum_{i,j=1}^{N} \frac{e\hbar}{\kappa^2} p_{\mu}^{i} \left\{ a \left(\bigoplus_{r=1}^{d-1} \frac{e_{\mu}^{r} M_{ij}(\kappa) \hat{\rho}_{j}}{\sqrt{2\hbar c^3 \omega^3}} \right) - a^{\dagger} \left(\bigoplus_{r=1}^{d-1} \frac{e_{\mu}^{r} M_{ij}(\kappa) \hat{\rho}_{j}}{\sqrt{2\hbar c^3 \omega^3}} \right) \right\} \right),$$

where $(M_{ij}(\kappa))_{1 \leq ij \leq N}$ is a matrix such that

$$\lim_{\kappa \to \infty} \frac{M_{ij}(\kappa)}{\kappa^2} = \delta_{ij} \frac{1}{m}.$$

Theorem 3.1 Suppose $\vec{\rho} \in \widetilde{P}$. Then putting $S(p,\kappa)U(\kappa) = \mathcal{U}(p,\kappa)$, we see that $\mathcal{U}(p,\kappa)$ maps $D(H_b)$ onto itself with

$$\mathcal{U}(p,\kappa)H_{\vec{\rho}}(p,\kappa)\mathcal{U}^{-1}(p,\kappa) = \kappa H_b + E(p,\kappa), \tag{3. 2}$$

where

$$E(p,\kappa) = \frac{\hbar^{2}}{2m} \sum_{i=1}^{N} \sum_{\mu=1}^{d} \left(\kappa p_{\mu}^{i} + \kappa \sum_{j=1}^{N} p_{\nu}^{j} \Delta_{\nu\mu}^{ji}(\kappa) \right)^{2} + \Box(\kappa),$$

$$\Delta_{\nu\mu}^{ji}(\kappa) = \frac{1}{\kappa^{3}} \frac{e^{2}}{2c^{2}} \sum_{k=1}^{N} \sum_{r,s=1}^{d-1} \left\langle \frac{e_{\nu}^{r} M_{ij}(\kappa) \hat{\rho}_{k}}{\sqrt{\omega^{3}}}, \left(I + \mathbf{W}_{-}(\kappa) \mathbf{W}_{+}^{-1}(\kappa) \right)^{(r,s)} \frac{e_{\mu}^{s} \hat{\rho}_{i}}{\sqrt{\omega}} \right\rangle_{L^{2}(\mathbb{R}^{d})},$$

$$\Box(\kappa) = \frac{e^{2} \hbar}{4mc} \sum_{i=1}^{N} \sum_{r,s=1}^{d-1} \left\langle \frac{e_{\mu}^{r} \hat{\rho}_{i}}{\sqrt{\omega}}, \left(I - \mathbf{W}_{-}(\kappa) \mathbf{W}_{+}^{-1}(\kappa) \right)^{(r,s)} \frac{e_{\mu}^{s} \hat{\rho}_{i}}{\sqrt{\omega}} \right\rangle_{L^{2}(\mathbb{R}^{d})}.$$

Proof: For simplicity, we omit the symbol κ . Put $\mathcal{U}(p)\Omega \equiv \Omega(p)$. From [6,Proposition 2.4, Lemma 5.9] it follows that $\Omega(p) \in D(H_b)$. Then $\Omega(p) \in D(B(\mathbf{f},p))$. By virtue of Corollary 2.5 and (3.1), we can see that for all $\mathbf{f} \in \mathcal{W}$

$$B(\mathbf{f}, p) \exp\left(i\frac{t}{\hbar}H_{\vec{p}}(p)\right)\Omega(p) = 0. \tag{3. 3}$$

The equation (3.3) implies that there exists a positive constant E(p) such that

$$\exp\left(i\frac{t}{\hbar}H_{\vec{\rho}}(p)\right)\Omega(p) = \exp\left(i\frac{t}{\hbar}E(p)\right)\Omega(p). \tag{3. 4}$$

Hence from Corollary 2.5, (3.1), (3.4) and the denseness of

$$\mathcal{L}\left\{B^{\dagger}(\mathbf{f}_1)....B^{\dagger}(\mathbf{f}_n)\Omega(p),\Omega(p)\middle|\mathbf{f}_j\in\mathcal{W},j=1,...,n,n\geq 1\right\},$$

one can get (3.2). The constant E(p) is explicitly given by

$$E(p) = \frac{\langle H_{\vec{p}}(p)\Omega(p), \Omega \rangle_{\mathcal{F}(W)}}{\langle \Omega(p), \Omega \rangle_{\mathcal{F}(W)}}.$$

It completes the proof.

The positive constant $E(p, \kappa)$ can be rewritten by:

$$E(p,\kappa) = \frac{\kappa^2 \hbar^2}{2m} p^2 + E^{REN}(p,\kappa) + \tilde{E}(p,\kappa),$$

where

$$\tilde{E}(p,\kappa) = \frac{\kappa^2 \hbar^2}{2m} \sum_{i,j=1}^{N} \sum_{\mu,\nu=1}^{d} p_{\mu}^{i} b_{\mu\nu}^{ij}(\kappa) p_{\nu}^{j}, \qquad (3.5)$$

$$\begin{array}{lcl} b^{ij}_{\mu\nu}(\kappa) & = & \displaystyle\sum_{k=1}^{N} \displaystyle\sum_{\alpha=1}^{d} \left(\frac{\Delta^{jk}_{\nu\alpha}(\kappa) + \overline{\Delta^{jk}_{\nu\alpha}}(\kappa)}{2} \right) \left(\frac{\Delta^{ik}_{\mu\alpha}(\kappa) + \overline{\Delta^{ik}_{\mu\alpha}}(\kappa)}{2} \right), \\ E^{REN}(p,\kappa) & = & E(p,\kappa) - \frac{\kappa^2\hbar^2}{2m} p^2 - \tilde{E}(p,\kappa). \end{array}$$

Note that since $(b^{ij}_{\mu\nu}(\kappa))_{1\leq i,j\leq N,1\leq \mu,\nu\leq d}$ is nonnegative and symmetric $dN\times dN$ matrix, we have $\tilde{E}(p,\kappa)\geq 0$ for any $p\in\mathbb{R}^{dN}$. We define

$$H_{\vec{\rho}}^{REN}(\kappa) = -E^{REN}(D,\kappa) \otimes I + \kappa I \otimes H_b$$

$$+ \frac{1}{2m} \sum_{j=1}^{N} \sum_{\mu=1}^{d} \left(-2\kappa e \hbar i D_{\mu}^{j} \otimes A_{\mu}(\rho_{j}) + e^{2} I \otimes A_{\mu}(\rho_{j})^{2} \right),$$

$$\widetilde{H}_{\vec{\rho}}(\kappa) = \widetilde{E}(D,\kappa) \otimes I + \kappa I \otimes H_{b},$$

where $E^{REN}(D,\kappa)$ and $\tilde{E}(D,\kappa)$ are pseudo differential operators on $L^2(\mathbb{R}^{dN})$ with symbols $E^{REN}(p,\kappa)$ and $\tilde{E}(p,\kappa)$ respectively.

Theorem 3.2 Suppose $\vec{\rho} \in \tilde{P}$. Then $H_{\vec{\rho}}^{REN}(\kappa)$ and $\widetilde{H}_{\vec{\rho}}(\kappa)$ are essentially self-adjoint on any core of H_0 and bounded from below.

Remark 3.3 Write

$$E(p,\kappa) = \frac{\hbar^2 \kappa^2}{2m} p^2 + \sum_{\mu=1}^d \sum_{i=1}^N \frac{\hbar^2 \kappa^2}{m} p_{\mu}^i \tilde{p}_{\mu}^i(\kappa) + \sum_{\mu=1}^d \sum_{i=1}^N \frac{\hbar^2 \kappa^2}{2m} \tilde{p}_{\mu}^i(\kappa)^2 + \Box(\kappa). \tag{3.6}$$

Then the first and second terms on the right hand side of (3.6) diverge as $\kappa \to \infty$ for $p \neq 0$, but the rest terms not. Actually we see that

$$\lim_{\kappa \to \infty} \frac{\hbar^2 \kappa^2}{2m} \sum_{\mu=1}^d \sum_{i=1}^N \widetilde{p}^i_{\mu}(\kappa)^2 = \frac{1}{2m} \left(\frac{e^2}{2mc^2} \right) \left(\frac{d-1}{d} \right)^2 \sum_{\alpha=1}^d \sum_{k=1}^N \left(\sum_{j=1}^N \hbar p^j_{\alpha} \left\langle \frac{\hat{\rho}_j}{\sqrt{\omega^3}}, \frac{\hat{\rho}_k}{\sqrt{\omega}} \right\rangle_{L^2(\mathbb{R}^d)} \right)^2,$$

$$\equiv E^{\infty}(p).$$

Then, by (3.2), concerning an asymptotic behavior of $H_{\vec{\rho}}(\kappa)$ as $\kappa \to \infty$, we should subtract the first and second terms in the right hand side of (3.6) from the original Hamiltonian $H_{\vec{\rho}}(\kappa)$. However one can not say that $\widetilde{p}^i_{\mu}(\kappa)^2$ is real and nonnegative for any $p \in \mathbb{R}^{dN}$. To

guarantee the nonnegative self-adjointness of the Hamiltonian $H_{\vec{\rho}}^{REN}(\kappa)$ with the divergence terms subtracted, we should define $\tilde{E}(p,\kappa)$ such as (3.5). In this sense, we may say that the operator $H_{\vec{\rho}}^{REN}(\kappa)$ has an interpretation of the Hamiltonian $H_{\vec{\rho}}(\kappa)$ with the infinite self-energy of the nonrelativistic particles subtracted.

We define

$$\mathcal{U}(\kappa) = \mathbf{F}^{-1} \left(\int_{\mathbb{R}^{dN}}^{\oplus} \mathcal{U}(\kappa, p) dp \right) \mathbf{F}.$$

Then we have the following theorem.

Theorem 3.4 ([6]) Suppose that $\vec{\rho} \in \tilde{P}$. Then

$$s - \lim_{\kappa \to \infty} \mathcal{U}(\kappa) = \exp\left(\sum_{j=1}^{N} \frac{e\hbar}{m} D_{\mu}^{j} \otimes \left\{ a \left(\bigoplus_{r=1}^{d-1} \frac{e_{\mu}^{r} \hat{\rho}_{j}}{\sqrt{2\hbar c^{3} \omega^{3}}} \right) - a^{\dagger} \left(\bigoplus_{r=1}^{d-1} \frac{e_{\mu}^{r} \hat{\rho}_{j}}{\sqrt{2\hbar c^{3} \omega^{3}}} \right) \right\} \right),$$

$$\equiv \mathcal{U}(\infty).$$

We take scalar potentials V to be real-valued measurable functions on \mathbb{R}^{dN} and put

$$C_{\kappa}(V) = \mathcal{U}^{-1}(\kappa)(V \otimes I)\mathcal{U}(\kappa), \quad C(V) = \mathcal{U}^{-1}(\infty)(V \otimes I)\mathcal{U}(\infty).$$

We introduce conditions (V-1) and (V-2) as follows.

(V-1) For sufficiently large $\kappa > 0$, $D(\tilde{E}(D, \kappa)) \subset D(V)$ and for $\lambda > 0$, $V(\tilde{E}(D, \kappa) + \lambda)^{-1}$ is bounded with

$$\lim_{\lambda \to \infty} ||V(\tilde{E}(D, \kappa) + \lambda)^{-1}|| = 0, \tag{3.7}$$

where the convergence is uniform in sufficiently large $\kappa > 0$.

(V-2) For $\lambda > 0$, $V(\tilde{E}(D,\kappa) + \lambda)^{-1}$ is strongly continuous in κ and

$$s - \lim_{\kappa \to \infty} V(\tilde{E}(D, \kappa) + \lambda)^{-1} = V(E^{\infty}(D) + \lambda)^{-1}.$$

The condition (3.7) yields that, by the Kato-Rellich theorem and commutativity of $\mathcal{U}(\kappa)$ and $(\tilde{E}(D,\kappa)+\lambda)^{-1}$, operators $\tilde{E}(D,\kappa)\otimes I+C_{\kappa}(V)$ are essentially self-adjoint on any core of $D(\tilde{E}(D,\kappa)\otimes I)$ and uniformly bounded from below in sufficiently large $\kappa>0$. Moreover since $I\otimes H_b$ is nonnegative and commute with $\tilde{E}(D,\kappa)\otimes I$, one can see that

$$\widetilde{H}_{\vec{o}}(V,\kappa) \equiv \widetilde{E}(D,\kappa) \otimes I + C_{\kappa}(V) + \kappa I \otimes H_b$$

is essentially self-adjoint on any core of $D(\widetilde{E}(D,\kappa)\otimes I + \kappa I\otimes H_b)$ and uniformly bounded from below in sufficiently large $\kappa > 0$. In particular, $D(H_0)$ is a core of $\widetilde{H_{\vec{\rho}}}(V,\kappa)$. Put

$$H^{REN}_{\vec{\rho}}(V,\kappa) \equiv H^{REN}_{\vec{\rho}}(\kappa) + V \otimes I.$$

Theorem 3.5 Let $\vec{\rho} \in \tilde{P}$. Suppose that V satisfies (V - 1) and (V - 2). Then, for sufficiently large $\kappa > 0$, the operator $H^{REN}_{\vec{\rho}}(V,\kappa)$ is essentially self-adjoint on $D(H_0)$ and bounded from below uniformly in sufficiently large $\kappa > 0$. Moreover the unitary operator $\mathcal{U}(\kappa)$ maps $D(H_0)$ onto itself and for $z \in \mathbb{C} \setminus \mathbb{R}$ or z < 0 with |z| sufficiently large,

$$\left(H_{\vec{\rho}}^{REN}(V,\kappa) - z\right)^{-1} = \mathcal{U}(\kappa)\left(\widetilde{H_{\vec{\rho}}}(V,\kappa) - z\right)^{-1}\mathcal{U}^{-1}(\kappa). \tag{3.8}$$

Proof: Since $\mathcal{U}(\kappa)$ maps $D(I \otimes H_b)$ onto itself (see Theorem 3.1) and $-\Delta \otimes I$ commutes with $\mathcal{U}(\kappa)$ on $D(-\Delta \otimes I)$, $\mathcal{U}(\kappa)$ maps $D(H_0)$ onto itself. Put

$$S_0^{\infty}(\mathbb{R}^{dN}) = \left\{ f \in L^2(\mathbb{R}^{dN}) | \hat{f} \in C_0^{\infty}(\mathbb{R}^{dN}) \right\}.$$

At first , by Theorem 3.1, we see that for $\Phi \in S_0^{\infty}(\mathbb{R}^{dN}) \widehat{\otimes} D(H_b)$,

$$H_{\vec{\rho}}^{REN}(V,\kappa)\Phi = \mathcal{U}(\kappa)\widetilde{H_{\vec{\rho}}}(V,\kappa)\mathcal{U}^{-1}(\kappa)\Phi.$$
(3. 9)

By a limiting argument we can extend (3.9) to $\Phi \in D(H_0)$. Since $D(H_0)$ is a core of $\widetilde{H_{\vec{\rho}}}(V, \kappa)$ and $\mathcal{U}(\kappa)$ maps $D(H_0)$ onto itself, the right hand side of (3.9) is essentially self-adjoint on $D(H_0)$. So is the left hand side of (3.9). (3.8) can be easily shown.

We want to consider a scaling limit of $H_{\vec{\rho}}^{REN}(V,\kappa)$ as $\kappa \to \infty$. Let V satisfy (V-1). Then since $D(C(V)) \supset D(-\Delta) \widehat{\otimes} D(H_b)$, one can define, for $\Phi \in \mathcal{F}(W)$ and $\Psi \in D(H_b)$, a symmetric operator $E_{\Phi,\Psi}(C(V))$ with $D(E_{\Phi,\Psi}(C(V))) = D(-\Delta)$ by

$$\langle f, E_{\Phi, \Psi}(C(V))g \rangle_{L^2(\mathbb{R}^{dN})} = \langle f \otimes \Phi, C(V)(g \otimes \Psi) \rangle_{\mathcal{F}}, \quad f \in L^2(\mathbb{R}^{dN}), g \in D(-\Delta).$$

In particular, we call $E_{\Omega,\Omega}(C(V)) \equiv E_{\Omega}(C(V))$ "the partial expectation of C(V) with respect to Ω ".

Theorem 3.6 Let $\vec{\rho} \in \widetilde{P}$. Suppose that V satisfies the conditions $(\mathbf{V} - \mathbf{1})$ and $(\mathbf{V} - \mathbf{2})$. Then for $z \in \mathbb{C} \setminus \mathbb{R}$ or z < 0 with |z| sufficiently large,

$$s - \lim_{\kappa \to \infty} (H_{\vec{\rho}}^{REN}(V, \kappa) - z)^{-1} = \mathcal{U}(\infty) \left\{ (E^{\infty}(D) + E_{\Omega}(C(V)) - z)^{-1} \otimes P_0 \right\} \mathcal{U}^{-1}(\infty),$$

$$(3. 10)$$

where P_0 is the projection from $\mathcal{F}(\mathcal{W})$ to the one dimensional subspace $\{\alpha\Omega | \alpha \in \mathbb{C}\}$.

Proof: By (V - 1) and (V - 2), we see that

(V-1)' For sufficiently large $\kappa > 0$, $D(\tilde{E}(D, \kappa)) \subset D(C_{\kappa}(V))$ and for $\lambda > 0$, $C_{\kappa}(V)(\tilde{E}(D, \kappa) + \lambda)^{-1}$ is bounded with

$$\lim_{\lambda \to \infty} ||C_k(V)(\widetilde{E}(D, \kappa) + \lambda)^{-1}|| = 0,$$

where the convergence is uniform in sufficiently large $\kappa > 0$.

(V-2)' For $\lambda > 0$, $C_{\kappa}(V)(\widetilde{E}(D,\kappa) + \lambda)^{-1}$ is strongly continuous in κ and

$$s - \lim_{\kappa \to \infty} C_k(V) (\widetilde{E}(D, \kappa) + \lambda)^{-1} = C(V) (E^{\infty}(D) + \lambda)^{-1}.$$

From $(\mathbf{V} - \mathbf{1})'$, $(\mathbf{V} - \mathbf{2})'$ and iterating the second resolvent formula with respect to the pair $(\widetilde{H}_{\vec{\rho}}(\kappa), \widetilde{H}_{\vec{\rho}}(V, \kappa))$, it follows that

$$s - \lim_{\kappa \to \infty} \left(\widetilde{H_{\rho}}(V, \kappa) - z \right)^{-1} = \left(E^{\infty}(D) \otimes I + (I \otimes P_0) C(V) (I \otimes P_0) - z \right)^{-1} I \otimes P_0.$$

Since

$$(I \otimes P_0)C(V)(I \otimes P_0) = E_{\Omega}(C(V)),$$

we see that

$$s - \lim_{\kappa \to \infty} \left(\widetilde{H}_{\vec{\rho}}(V, \kappa) - z \right)^{-1} = \left(E^{\infty}(D) + E_{\Omega}(C(V)) - z \right)^{-1} \otimes P_{0}.$$

Thus by Theorems 3.4 and 3.5, we get (3.10).

We want to see $E_{\Omega}(C(V))$ more explicitly. For $\vec{\rho} \in \tilde{P}$, let $\tilde{\Delta}^{\infty} = (\tilde{\Delta}_{ij}^{\infty})_{1 \leq i,j \leq d}$, where

$$\widetilde{\Delta}_{ij}^{\infty} = \frac{1}{2} \frac{d-1}{d} \left(\frac{\hbar}{mc} \right)^2 \frac{e^2}{\hbar c} \int_{\mathbb{R}^d} dk \frac{\hat{\rho}_i(k)\hat{\rho}_j(k)}{\omega(k)^3}.$$

Let $\mathbf{I}_{d\times d}$ denote $d\times d$ -identity matrix. Since $\Delta^{\infty} \equiv \widetilde{\Delta}^{\infty} \otimes \mathbf{I}_{d\times d}$ is a nonnegative symmetric matrix, there exist unitary matrices \mathbf{T} so that

$$\mathbf{T}\Delta^{\infty}\mathbf{T}^{-1} = \begin{pmatrix} \lambda_{1}\mathbf{I}_{d\times d} & & & \\ & \lambda_{2}\mathbf{I}_{d\times d} & & \\ & & \ddots & \\ & & & \lambda_{N}\mathbf{I}_{d\times d} \end{pmatrix}, \tag{3. 11}$$

where $\lambda_1 \geq \lambda_2 ... \geq \lambda_N \geq 0$.

Theorem 3.7 Suppose $\lambda_1 \geq \lambda_2 ... \geq \lambda_K > 0$, $\lambda_{K+1} = ... = \lambda_N = 0$ and fix a unitary operator **T** in (3.11). Let $x = (x_1, ..., x_N)$, $x_j \in \mathbb{R}^d$, j = 1, ..., N and V satisfy

$$\int_{\mathbb{R}^{dK}} dy_1 ... dy_K |V| \circ \mathbf{T}^{-1} (y_1, ..., y_K, (\mathbf{T}x)_{K+1}, ..., (\mathbf{T}x)_N) \exp\left(-\frac{\sum_{j=1}^K |(\mathbf{T}x)_j - y_j|^2}{2\lambda_1 ... \lambda_K}\right) < \infty.$$
(3. 12)

Moreover we suppose that the left hand side of (3.12) is locally bounded. Then the partial expectation $E_{\Omega}(C(V))$ is given by a multiplication operator V_{eff} ;

$$V_{eff}(x) = (2\pi\lambda_1...\lambda_K)^{-\frac{d}{2}} \int_{\mathbb{R}^{dK}} dy_1...dy_K V \circ \mathbf{T}^{-1} (y_1, ..., y_K, (\mathbf{T}x)_{K+1}, ..., (\mathbf{T}x)_N) \times \exp\left(-\frac{\sum_{j=1}^K |(\mathbf{T}x)_j - y_j|^2}{2\lambda_1...\lambda_K}\right).$$

In particular, in the case where $\widetilde{\Delta}^{\infty}$ is non-degenerate, V_{eff} is given by

$$V_{eff}(x) = (2\pi \det \tilde{\Delta}^{\infty})^{-\frac{d}{2}} \int_{\mathbb{R}^{dN}} V(y) \exp\left(-\frac{|x-y|^2}{2 \det \tilde{\Delta}^{\infty}}\right) dy.$$

Proof: Suppose $V \in \mathcal{S}(\mathbb{R}^{dN})$, which is the set of the rapidly decreasing infinitely continuously differentiable functions on \mathbb{R}^{dN} . Then the direct calculation shows that for $f, g \in L^2(\mathbb{R}^{dN})$

$$\langle f, E_{\Omega}(C(V))g \rangle_{L^{2}(\mathbb{R}^{dN})} = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^{d}} dx \int_{\mathbb{R}^{d}} dk \bar{f}(x)g(x)e^{ikx} \hat{V}(k)e^{-\frac{1}{2}\sum_{\mu=1}^{d} \sum_{ij=1}^{N} \Delta_{ij}^{\infty} k_{\mu}^{i} k_{\mu}^{j}}.$$

Hence we have

$$\langle f, E_{\Omega}(C(V))g \rangle_{L^{2}(\mathbb{R}^{dN})} = \langle f, V_{eff}g \rangle_{L^{2}(\mathbb{R}^{dN})}. \tag{3. 13}$$

We next consider the case where V is bounded. In this case we can approximate V by a sequence $\{V_n\}_{n=1}^{\infty}$, $V_n \in \mathcal{S}(\mathbb{R}^{dN})$, such that

$$||V-V_n||_{\infty}\to 0 \ (n\to\infty),$$

where $||\cdot||_{\infty}$ denotes the sup norm. Then we have

$$E_{\Omega}(C(V_n)) \to E_{\Omega}(C(V)) \ (n \to \infty),$$

strongly. Moreover $(V_n)_{eff}(x) \to V_{eff}(x)$ for all $x \in \mathbb{R}^{dN}$. Thus for $f, g \in L^2(\mathbb{R}^{dN})$, (3.13) follows for such V. Finally, let V satisfy (3.12). Define

$$V_n = \begin{cases} V(x) & |V(x)| \le n, \\ n & |V(x)| > n. \end{cases}$$

Hence for $f \in L^2(\mathbb{R}^{dN})$ and $g \in D(-\Delta)$, we have

$$\langle f, E_{\Omega}(C(V_n))g \rangle_{L^2(\mathbb{R}^{dN})} \to \langle f, E_{\Omega}(C(V))g \rangle_{L^2(\mathbb{R}^{dN})} \ (n \to \infty).$$

On the other hand, since the left hand side of (3.12) is locally bounded, we can see that for $f \in C_0^{\infty}(\mathbb{R}^{dN})$ and $g \in D(-\Delta)$,

$$\langle f, (V_n)_{eff} g \rangle_{L^2(\mathbb{R}^{dN})} \to \langle f, V_{eff} g \rangle_{L^2(\mathbb{R}^{dN})} \ (n \to \infty),$$

which completes the proof.

Remark 3.8 In Theorem 3.7, in the case where $\widetilde{\Delta}^{\infty}$ is non-degenerate, since the left hand side of (3.12) is continuous in $x \in \mathbb{R}^{dN}$, it is necessarily locally bounded.

We call V_{eff} "the effective potential with respect to V". We give a typical example of scalar potentials V and ultraviolet cut-off functions $\vec{\rho}$.

Example 3.9 Let

$$\widetilde{\Delta}_{ij}^{\infty} = \delta_{ij} \frac{1}{2} \frac{d-1}{d} \left(\frac{\hbar}{mc} \right)^2 \frac{e^2}{\hbar c} \int_{\mathbb{R}^d} dk \frac{\hat{\rho}_i(k)^2}{\omega(k)^3}.$$

Then there exist positive constants δ_1 and δ_2 such that for sufficiently large $\kappa>0$

$$\delta_1 |p|^2 \le \tilde{E}(p, \kappa) \le \delta_2 |p|^2. \tag{3. 14}$$

Let d = 3 and V be the Coulomb potential;

$$V(x_1,...,x_N) = -\sum_{j=1}^N \frac{\alpha_j}{|x_j|} + \sum_{i \neq j} \frac{\beta_{ij}}{|x_i - x_j|}, \quad \alpha_j \ge 0, \beta_{ij} \ge 0.$$

Then V is the Kato class potential ([10], Theorem X.16). Namely for any $\epsilon > 0$, there exists $b \geq 0$ such that $D(V) \supset D(-\Delta)$ and

$$||V\Phi||_{L^{2}(\mathbb{R}^{3N})} \le \epsilon||-\Delta\Phi||_{L^{2}(\mathbb{R}^{3N})} + b||\Phi||_{L^{2}(\mathbb{R}^{3N})}.$$
(3. 15)

Together with (3.14) and (3.15), one can see that V satisfies $(\mathbf{V} - \mathbf{1})$, $(\mathbf{V} - \mathbf{2})$ and for any t > 0

$$\int_{\mathbb{R}^{3d}} |V|(y)e^{-t|x-y|^2} dy < \infty.$$

Then the scaling limit of the Pauli-Fierz Hamiltonian with the Coulomb potential exists and has the effective potential given by

$$\begin{split} V_{eff}(x) &= (2\pi\gamma)^{-\frac{3}{2}} \int_{\mathbb{R}^{3N}} V(y) e^{-\frac{|x-y|^2}{2\gamma}} dy, \\ \gamma &= \left\{ \frac{1}{3} \left(\frac{\hbar}{mc} \right)^2 \frac{e^2}{\hbar c} \right\}^N \Pi_{j=1}^N \left(\int_{\mathbb{R}^3} dk \frac{\hat{\rho}_j^2(k)}{\omega(k)^3} \right). \end{split}$$

4 CONCLUDING REMARK

As is seen in Theorem 3.7, the effective potential V_{eff} is characterized by the matrix-valued functional $\tilde{\Delta}^{\infty} = \tilde{\Delta}^{\infty}(\vec{\rho})$, which has the following mathematical meaning; putting

$$\mathcal{U}(\infty)(x_i \otimes I)\mathcal{U}^{-1}(\infty) - x_i \otimes I \equiv \Delta x_i, \quad i = 1, ..., N,$$

we see that the partial expectation of $\Delta x_i \Delta x_j$ with respect to Ω is as follows;

$$E_{\Omega}[(\Delta x_i \Delta x_j)] = \widetilde{\Delta}_{ij}^{\infty}(\vec{\rho})I.$$

In one-nonrelativistic particle case, the author in [5] show that the partial expectation $E_{\Omega}[(\Delta x)^2]$ with respect to Ω may be interpreted as the mean square fluctuation in position of one-nonrelativistic particle ([2]). In this sense, $\tilde{\Delta}_{ij}^{\infty}(\vec{\rho})$ may also be interpreted as correlation of fluctuations in position of the *i*-th and the *j*-th nonrelativistic particles under the action of quantized radiation fields.

5 REFERENCES

- [1]H.A.Bethe, The electromagnetic shift energy levels, Phys.Rev.72,(1947)339-342,
- [2] T.A.Welton, Some observable effects of the quantum mechanical fluctuations of the electromagnetic field, Phys.Rev.74(1948)1157-1167,
- [3] A.Arai, A note on scattering theory in non-relativistic quantum electrodynamics, J.Phys.A.Math.Gen.16,(1983)49-70,
- [4] A.Arai, Rigorous theory of spectra and radiation for a model in a quantum electrodynamics, J.Math.Phys.24(1983)1896-1910,
- [5] A.Arai, An asymptotic analysis and its applications to the nonrelativistic limit of the Pauli-Fierz and a spin-boson model, J.Math.Phys.31(1990)2653-2663,
- [6] F.Hiroshima, Scaling limit of a model in quantum electrodynamics, J..Math.Phys.34(1993) 4478-4578,

- [7] F.Hiroshima, Diamagnetic inequalities for a systems of nonrelativistic particles with a quantized radiation field. to appear Rev.Math.Phys.,
- [8] F.Hiroshima, Functional integral representation of a model in quantum electrodynamics, submitted to J.Funct.Anal.,
- [9] F.Hiroshima, A scaling limit of a model in quantum electrodynamics with many nonrelativistic particles, preprint,
- [10] M.Reed, B.Simon, Method of Modern Mathematical Physics II Fourier Analysis and Self-Adjoint operator, Academic Press(1975).