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Scaling limit of a model of quantum
electrodynamics with N-nonrelativistic particles

Fumio HIROSHIMA (Hokkaido University)

1 INTRODUCTION

The main problem presented in this paper is to consider a scaling limit of a model in quantum
electrodynamics which describes an interaction of N-nonrelativistic charged particles and a
quantized radiation field in the Coulomb gauge with the dipole approximation. The model
we consider is called “the Pauli-Fierz model”. Authors in [5,6] have studied a scaling limit
of the Pauli-Fierz model with one-nonrelativistic charged particle. We may well extend the
scaling limit of one-particle system to N-particles system.

The Pauli-Fierz Hamiltonians H; with N-nonrelativistic charged particles in the Coulomb

gauge with the dipole approximation are defined as operators acting in the Hilbert Space

LR ® ... ® L*(RY) @ F(W) = L2(R) @ F(W) by
N

1 d v i 2
Hp = 5-33. (—hDi@I—el® Au(py) +1® Hy,
J=1p=1
where DZ is the differential operator with respect to the j-th variable in the p-th direction,
Au(p;) the quantized radiation field in the u-th direction with an ultraviolet cut-off function
p; in the Coulomb gauge, H;, the free Hamiltonian in F(W), and m, e, % the mass of the

particles, the charge of the particles, the Planck constant divided 2x, respectively.

Note that A, is depend on the speed of light c. We introduce the following scaling.

c(k) = ck,e(k) = e&_%,m(n) = mk™2. (1. 1)
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Then the scaled Hamiltonian H *(/e) amounts to

R
“om

AQT+rIQH, + 2—— Z Z (KZeﬁzD’ ® Aulpi) + €1 ® Ax(p))) .

7=1 pu=1

Defining a pseudo differential operator EFFN (D, k) in L?*(R¥N) with a symbol ERFEN(p, k)

such that EREN(p, k) — 0o as k — 0o, we define a Hamiltonian H;**V (k) by

1 g
_EPN(D, k) 14 k1@ Hy + 303 (2¢hiDi ® Au(pg) + €1 ® AL(py))

2m ot |
Consequently, we shall show the following for some g = (py, ..., pn) and scalar potentials V'

with some conditions (Theorem 3.7):

s— lm (H/N (k) + V @ I — 2)™* = U(co) {(B*(D) + Vigs — 2)™ @ PoJ U™

“where E®(D) is a pseudo differential operator in L%(R*), V. a multiplication operator,
which is called “effective potential”, and P, a projection on F(W). Despite the fact that in
the case of one-particle system the effective potential V,;; is the Gaussian transformation of
a given scalar potential V, we shall show that in N-particles system, it is not necessary to
be the Gaussian transformation. Actually it is determined by a matrix A = (A%’))ISHS N

which is defined by the ultraviolet cut-off functions p;;

Reo o 1d—1 (?%) —:;c-/mddkA (k()l’;’ k)

2 THE PAULI-FIERZ MODEL

To begin with, let us introduce some preliminary notations. Let H be a Hilbert space over C.
We denote the inner product and the associated norm by < *,- >4 and || - || respectively.
The inner product is linear in - and antilinear in *. The domain of an operator A in H is
denoted by D(A). A notation f (resp.f) denotes the Fourier transformation (resp.the inverse

Fourier transformation) of f and f the complex conjugate of f. Let

W=LRYe..0LYR.

d-1
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We define the Boson Fock space over W by

FV) = Derw = B FEW),

n=0

where @W = C and ®7W (n > 1) denotes the n-fold symmetric tensor product. Put

~w) = U @FEW) @ {0}

N=0n=0 n>N+1

The annihilation operator a(f) and the creation operator a!(f) (f € W) act on F*(W) and

leave it invariant with the canonical commutation relations (CCR): for f,g € W
a(f)at(@) = (fro),,.
[a*(£),d'(g)] = o,

where [A, B] = AB — BA, a' denotes either a or a!. Furthermore,

()2, ¥), = (2.a(T), ., &¥eF=(W).

We define polarization vectors e”(r = 1,...,d — 1) as measurable functions ¢” : R? —» R?

such that
e'(k)e’(k) = 6,5, € (k)k=0, a.ekeR’

The p-th direction time-zero smeared radiation field in the Coulomb gauge with the dipole

approximation is defined as operators acting in F(W) by

Au(f) = % {a* (@‘;’;% \/j:—wf) +a (eaf;% %f) } : (2. 1)

where w(k) = |k| and §(k) = g(—k). Let @ = (1,0,0,..) € F(W). For a nonnegative

self-adjoint operator A : W — W, we denote “the second quantization of R”by dT'(h). Put

W=w® ... 0w The free Hamiltonian Hy, in F(W) is defined by
d—1

H, = hedl'(®).
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The Pauli-Fierz Hamiltonians with N-nonrelativistic charged particles interacting with the

quantized radiation field with the dipole approximation in the Coulomb gauge read as follows:

1 N d . )
Hy=Hyppy = 5= 33 (—ihDL@ 1 —cl @ Aulp))” +1® Hy,
7=1p=1
acting in
2 RN ®
LR ®...0 @) Q F(W ) @ F(W) = /Rde(W)d:c.
N

We introduce the scaling (1.1). For objects A containing of the parameters c,e,m, we
denote the scaled object by A(x) throughout this paper. We define classes P and P of sets

of functions as follows:

Definition 2.1 g = (p1,...,pn) 1s in P if and only of

(1) p;,5 =1,..., N are rotation invariant, p;(k) = [)J(lkl), and real-valued,
(2) pji/w, i/ V/w, pisVwips € L*(RY).

Moreover § is in P if and only if in addition to (1) and (2) above

(3) p;/wy/w € LA(R?) and there exist 0 < a < 1 and 1 < € such that pi(v/)p;(v/)(V")*? €
Lip(e) N L5([0,00)), where Lip(a) is the set of the Lipschitz continuous functions on

[0,00) with the degree a,

(4) supy |;(k)wi=#(k)| < o0, supy |; (kw3 (k)] < 00,§ =1,..., N..

Put
1, _
Ho—:"‘—h A®I+I®Hba
2m

where A is the Laplacian in RV, Tt is well known that Hg is a nonnegative self-adjoint

operator on D(Hg) = D (*ﬁth ® I) N D(I ® Hy).
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Propdsition 2.2 ([3,4]) For f€ P and k > 0, the operator Hz(k) is self-adjoint on D(H,)

and essentially self-adjoint on any core of Hy and nonnegative.

Let F = F ®I, where F' denotes the Fourier transform in L2(R%). Tt is clear that operators

FHzF~! can be decomposable as follows:

&
FHy(x)F" = /m  Hip, x)dp,

where

. . 2
Hs(p,k) = mzz_:(nhp’ p])) + kH,.

j=1lu
Proposition 2.3 ([3,4]) For j € P and & > 0, the operator Hz(p,x) is self-adjoint on

D(Hy) and essentially self-adjoint on any core of Hy and nonnegative.

Set Hilbert spaces My = {f ’f |f(k)|2w(k)dE < oo} and put W, = M, & ... ® M,, a € R.
N e

d-1
The following lemma is the key lemma to investigating the scaling limits.

Lemma 2.4 ([9]) Let 7€ P and k > 0 be sufficiently large. Then there exist a Hilbert
Schmidt operator W_, a bounded operator W, and L; = (L}, ...,L‘;),L;‘ eEW,5=1,..,N,
p=1,...,d such that, if we put forp’ €R%,j=1,..,N

N
B(f,p) = ' (W_f) + o(W4f) + 3 (L', f)

e
Bi(f,p) = a'(W,f) 4+ o(W_{) -I-Z:( L,p, >
then
[B(f,p),BT(g,p)] = (f,g)w,
[Bn(ﬁp)aBH(g’p)] = 0, on "FOO(W)>

and for ®, ¥ € F>(W),

(B(f,p)0,0) o) = (@, B(f, p)\Il>}_(W),
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moreover

| Hyfp), BY(E,p) | = £B(haf, p), on F=(W)N D(H]),
where £ € Wo N Wa and + (resp.-) corresponds to Bt (resp.B).
By virtue of Lemma 2.4, we see the following.

Corollary 2.5 Let 5 € P and k be sufficiently large. Then for ® € D(Hy),
exp (i%ﬂa(p)) B(f,p) exp (—i%Ha(p)> ¢ = BY(c““f, p)@
3 SCALING LIMITS

In this section, we construct a unitary operator which implements unitary equivalence of the
Pauli-Fierz Hamiltonian and a decoupled Hamiltonian. Moreover we investigate a scaling
limit of the Pauli-Fierz Hamiltonian. Unless otherwise stated in this section, we suppose
that & > 0 is sufficiently large. From Lemma 2.4 (1) it follows that there exist two unitary

operators U(x) (p independent) and § (p, &) such that ([6,Section III)
U~Y(x)S(p, &) ' B! (£, p, x)S(p, k)U (k) = d'(f), feW. (3. 1)

Concretely S(p, k) is given by

N eh { ( e’ M;;(K)p; el M;;(k)p;
S(p, k) = > —pl e | @i ’)— T(eadzl——-—“ : J)} ;
(p, x) = exp (i,j:l w2lu)® = V2hAw? ¢ =l V2hAw?

where (M;;(£))1<ij<n is a matrix such that

im Mile) _ 5

1
K— 00 K2 J m :

Theorem 3.1 Suppose 7 € P. Then putting S(p,x)U(x) = U(p, &), we see that U(p, k)

maps D(H,) onto itself with

Z/I(p, K)Hﬁ(pa K’)u—l(p7 ’{) = kHy + E(p, K)? (3 2)
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where
hz N d . N 2
E(p,k) = KPL+EZP’UA1,L(K)) + 0(x),
z_1u=1 ]
ji N A2l Jer Myj( (r,s) € P
Al (k) = i I+ W_(k)W3Il(s)) ~ > ,
@ - FEEE (SR o))

=1 r,s=1

O(k) = 4ch Z < b (I—W_(K)Wil(,g))(”) if}_ii>L2(Rd).

Proof: For simplicity, we omit the symbol k. Put U(p)Q = Q(p). From [6,Proposition 2.4,
‘Lemma 5.9] it follows that Q(p) € D(H,). Then Q(p) € D(B(f,p)). By virtue of Corollary
2.5 and (3.1), we can see that for all f € W

B(£,p)exp (i3 Hp) ) 2p) = 0. 3. 3)
The equation (3.3) implies that there exists a positive constant E(p) such that
.t 1
exp (i2HAp) Op) = exp (s E(2)) o). (3. 4)
Hence from Corollary 2.5, (3.1), (3.4) and the denseness of
z{Bf(fl)....Bf(fn)Q(p),Q(p){fj EW,j=1,.,n,n>1},

one can get (3.2). The constant E(p) is explicitly given by

_ < Hzp)Up), 2 >rw)
E(p) = < Qp), 2 >x f)(w

It completes the proof. O

The positive constant E(p, k) can be rewritten by:

2h2
2m

E(p,x) = ——p’ + E**N (p, k) + E(p, ),

where

2h2 N d

2 2 pbl(R)pl, (3. 5)

1] 1 p,v=1
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N d ik ik )+ A (k
b e) = ZZ(A o) + 44 ()) (A““( )+ Dl )),

EfN(p,k) = E(p,x) = 5—p" = E(p:x).

Note that since (b7,(k))i<ij<N,1<up<d i nonnegative and symmetric dN x dN matrix, we

have E(p, k) > 0 for any p € R*N. We define

HFfEN (k) = —EFPN(D k)@ I+ kI Q@ Hy
] N4
-I-%ZZ (—Q/cethJ ®Q Au(p;) + 1 ® Au(p;) ),

=1 p=1

Hik) = ED,r)@I+kIQ®H,,

where EREN(D, k) and E(D, &) are pseudo differential operators on L2(R*) with symbols

EREN(p k) and E(p, k) respectively.

Theorem 3.2 Suppose j € P. Then HFPN(k) and E'(Ii) are essentially self-adjoint on

any core of Hy and bounded from below.

Remark 3.3 Write

2.2 d N 322 3
h k) + Z Z h2m ﬁ”(li)z + 0O(x). (3. 6)

p=11:=1 u=11i=1

E(p, &)

Then the first and second terms on the right hand side of (3.6) diverge as & o oo forp # 0,

but the rest terms not. Actually we see that

h252 4N ' 1 62 d—1 2 d N N .\ ﬁ ﬁk 2
I u(r)? = 5= \/J
lim 2 ;;pu(ﬂ) = (m&)( ) >0 ;hpg< w37ﬁ>L2(Rd) :

a=1k=1
E>(p).

Then, by (3.2), concerning an asymptotic behavior of Hz(k) as k — oo, we should subtract

the first and second terms in the right hand side of (3.6) from the original Hamiltonian

2

H;(k). However one can not say that f)"#(n) is real and nonnegative for any p € R, To
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guarantee the nonnegative self-adjointness of the Hamiltonian H,;REN(/-:) with the divergence

terms subtracted, we should define E(p, k) such as (8.5). In this sense, we may say that
the operator HF*"N (k) has an interpretation of the Hamiltonian Hy(k) with the infinite

self-energy of the nonrelativistic particles subtracted.

We define

Then we have the following theorem.

Theorem 3.4 ([6]) Suppose that f € P. Then

N eh . i1 ezf)j e P;
L _ eh _ 1t d—1 wry
o=l Uls) = exp (ZmD@’{ (@Tﬂ\/*—zwws) ) (@”K/:zhcaws)} ’

U(0).

We take scalar potentials V to be real-valued measurable functions on R¥V and put
Ce(V) =UT (&)(V @ DU(x), C(V)=U (c0)(V ® IU(o0).

We introduce conditions (V — 1) and (V — 2) as follows.

(V-1) For sufficiently large x > 0, D(E(D, £)) C D(V) and for A > 0, V(E(D,k)+A)1is
bounded with

Jim |[V(E(D, k) + N7 =0, (3. 7)
where the convergence is uniform in sufficiently large x > 0.
(V-2) For A> 0, V(E(D, k) + A\)~! is strongly continuous in & and

s— lim V(E(D,&) + ) = V(E*(D) + A)~".

R—00
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The condition (3.7) yields that, by the Kato-Rellich theorem and commutativity of U(k)
and (E(D, k) + \)™!, operators E(D, k) ® I + C.(V) are essentially self-adjoint on any core

~

of D(E(D,x)®I) and uniformly bounded from below in sufficiently large £ > 0. Moreover

since I @ Hp is nonnegative and commute with E(D, &) ® I, one can see that

HyV,k) = E(D,£) @ [ + C(V) + kI ® H,

~

is essentially self-adjoint on any core of D(E(D, &) ® I + I ® H,) and uniformly bounded

from below in sufficiently large x > 0. In particular, D(Hpo) is a core of Hx(V, ). Put
HEN(V,k) = HFFN (k) + V@ L

Theorem 3.5 Let 5 € P. Suppose that V satisfies (V—=1) and (V —2). Then, for suffi-
ciently large & > 0, the operator HFEN(V, k) is essentially self-adjoint on D(Hy) and bounded
from below uniformly in sufficiently large k > 0. Moreover the unitary operator U(k) maps

D(H,) onto itself and for z € C\ R or z < 0 with |z| sufficiently large,
REN -1 s -1, -1
(HFEN(V,5) = 2) " =U(s) (HAV,5) —2)" U (k). (3. 8)

Proof: Since U(x) maps D(I ® Hy) onto itself (see Theorem 3.1) and —A ® I commutes with
U(k) on D(—A ® I), U(x) maps D(Hp) onto itself. Put

S5 @) = {f € L’(@™)|f € CF (™)}
At first , by Theorem 3.1, we see that for ® € S°(R*V)QD(H,),
HFEN (1, 0)® = U(e)FAV, 6~ (). 5. 9)

By a limiting argument we can extend (3.9) to ® € D(H,). Since D(Hy) is a core of Hz(V, k)
and U(k) maps D(Hp) onto itself, the right hand side of (3.9) is essentially self-adjoint on
D(Hy). So is the left hand side of (3.9). (3.8) can be easily shown. o
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We want to consider a scaling limit of H;**N(V, ) as £ — co. Let V satisfy (V — 1).

Then since D(C(V))) O D(—A)@D(H,), one can define, for & € F(W) and ¥ € D(Hy), a
symmetric operator Eg y(C(V)) with D(Ee(C(V)) = D(—A) by

(fa E@,‘P(C(V))g>L2(mdN) = <f® @,C(V)(g ® \I})>}., f € LZ(RdN)’g € D(_A)

In particular, we call Eqo(C(V)) = Eq(C(V)) “the partial expectation of C(V) with respect
to 7.

Theorem 3.6 Let j € P. Suppose that V satisfies the conditions (V—-1) and (V —2).

Then for z € C\R or z < 0 with |2| sufficiently large,

s — lim (HFEN(V, k) — 2)™! = U(o0) {(E°°(D) +Eq(C(V))=2)"'® Po}u—l(oo),

K— 0O

(3. 10)
where Py is the projection from F(W) to the one dimensional subspace {af|a € C}.
Proof: By (V — 1) and (V — 2), we see that

(V-1)’ For sufficiently large & > 0, D(E(D, )) € D(Cx(V)) and for A > 0,
C.(V)(E(D, &)+ A)~! is bounded with

lim [|CL(V)(E(D, &) + )7 =0,

where the convergence is uniform in sufficiently large « > 0.

(V-2)’ For A > 0, Co(V)(E(D, &) + A)~! is strongly continuous in & and

K—00

s — lim Cu(V)(E(D, k) + )™t = C(V)(E®(D) + \)™.

From (V — 1), (V — 2)’ and iterating the second resolvent formula with respect to the pair

——

(Hx(k), H3(V, k), it follows that

s—lim (Hy(V,r)—2)" = (B*(D)@ I+ (I8 P)C(V)(I® Py) — )" 1 & Py,

KR—00
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Since
(I ® Po)C(V)(I ® Py) = Eq(C(V)),

we see that

K—00

s— lim (HV,r) —2)" = (B*(D) + Ea(C(V)) = 2)™ @ P
Thus by Theorems 3.4 and 3.5, we get (3.10). 0

We want to see Eq(C(V)) more explicitly. For 7€ P, let A® = (Aio;)]_sz"jsd, where

xeo 1d=1(h\"¢ pi(k)p;(k)
AT =374 (F{c') o o0 ok

Let I xq denote d x d-identity matrix. Since A® = A® ® L;yq is a nonnegative symmetric

matrix, there exist unitary matrices T so that

/\lIdxd
Al ’ '
TA®T! = 2 , (3. 11)
)\NIdxd
where A\; > ;... > Ay > 0.
Theorem 3.7 Suppose Ay > Aa... > Ag > 0, Agy1 = ... = Ay = 0 and fiz a unitary bpefator

T in (3.11). Let z = (zy,...,zN), z; €ERY, j =1,..., N and V satisfy
; j ,

i Y, [(Te); — g,/
/ dyy . dyr|V]o T (y1, .., ¥k, (T2) k41, -, (Tz)n) exp | - < 00
RAK : 210K

(3. 12)

Moreover we suppose that the left hand side of (3.12) is locally bounded. Then the partial

exzpectation Eq(C(V)) is given by a multiplication operator Vy;;

Visla) = (2m1...AK)-%/I;dKdyl...dyKvoT—l(yl,...,yK,(Tx)KH,...,(Tx)N)

Yicy (Tz); — g,
X exp (” P '
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In particular, in the case where A™ is non-degenerate, Vs is given by

2
.7(2) = (27 det A®)"3 2ol g,
Varse) = rder )71 [ vigens (12240 ) 4y

Proof: Suppose V € S(R?), which is the set of the rapidly decreasing infinitely continuously

differentiable functions on R*Y. Then the direct calculation shows that for f, g € LY(rN)

N

1 r tkz ) —-15¢ iy ookt i
(F, Ea(C(V))g) 1 gary = W/lxd do [ dkf(2)g(z)e T (K)ot Tom Diims SFHEL
Hence we have
(f, EQ(C(V))9>L2(]R¢N) = (f, V;ffg>L2(RdN) . (3. 13)

We next consider the case where V' is bounded. In this case we can approximate V by a

sequence {V,,}22,, V,, € S(RN), such that
IV = Valleo = 0 (n — o0),
where || - ||, denotes the sup norm. Then we have
Eq(C(Va)) — Eo(C(V)) (n — o),

strongly. Moreover (V,)cs5(z) — Veps(z) for all z € RN, Thus for f,g € L*(R?), (3.13)
follows for such V. Finally, let V satisfy (3.12). Define

_ ] V(@) V(@) <n,
Vo = { n V()| > n.

Hence for f € L*(R?N) and g € D(—A), we have

(f, EQ(C(V;L))Q)H(MN) - (/, EQ(C(V))9>L2(MN) (n — o0).

On the other hand, since the left hand side of (3.12) is locally bounded, we can see that for
f € C(R™N) and g € D(-A),

(fs (Vn)effg>1;2 RNy (f, Veff9>L2 R4N (n — o0),
(®9N) (RIN)

which completes the proof. |
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Remark 3.8 In Theorem 3.7, in the case where A® s non-degenerate, since the left hand

side of (3.12) is continuous in x € R¥Y, it is necessarily locally bounded.

We call V,;; “the effective potential with respect to V”. We give a typical example of scalar

potentials V and ultraviolet cut-off functions p.

Example 3.9 Let

. _ 2 2 NIAY)
Aee = g,1821 1(7‘> ¢ / k"
]Rd

me) he w(k)?
Then there exist positive constants §; and 8, such that for sufficiently large k£ > 0
8ilpl* < E(p, &) < &alp*. (3. 14)

Let d =3 and V be the Coulomb potential;

N . Bii :
V(esmen) = =3 i+ =7 @ 20,8;>0.

j=1 |z; i#] |z — 251’
Then V is the Kato class potential ([10], Theorem X.16). Namely for any € > 0, there exists
b> 0 such that D(V) D D(- A) and '

HV(I)”Lz(RsN) < 6” - A@‘|L2(R3N) + bH(I)||L2(]R3N)' (3 15)

Together with (3.14) and (8.15), one can see that V satisfies (V — 1), (V — 2) and for any

t>0

L VIme =+ dy < oo.

Then the scaling limit of the Pauli-Fierz Hamiltonian with the Coulomb potential exists and

has the effective potential given by

_2 el
Vare) = e [ Ve T dy,

R3N

s = ) ) (L e28)
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4 CONCLUDING REMARK

As is seen in Theorem 3.7, the effective potential Vs is characterized by the matrix-valued

functional A® = A%®(), which has the following mathematical meaning; putting
U)z; @ DU 0) —2; @] = Az, i=1,...,N,
we see that the partial expectation of Az;Az; with respect to (2 is as follows;
Eql(Az:Axy)] = AS(F)1.

In one-nonrelativistic particle case, the author in [5] show that the partial expectation
Eq[(Az)?] with respect to  may be interpreted as the mean square fluctuation in posi-
tion of one-nonrelativistic particle ([2]). In this sense, Af;’(ﬁ) may also be interpreted as
correlation of fluctuations in position of the :-th and the j-th nonrelativistic particles under

the action of quantized radiation fields.
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