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Abstract

Contractions of the density matrix in a magnetic field, are per-
formed with no approximation in two steps: the off-diagonal part of
the density matrix is eliminated first and then the even part with
respect to time reversal. In consequence the maximum va,ria,tio_na.l
principle in connection with the entropy production is derive:d for the
odd part of diagonal elements of the density matrix, which means the

contraction of the density matrix brings about irreversibility.



1 Introduction

Since one of the present authors (H.N.) formulated a quantum variational
principle for the von Neumann equation[l], in contrast to the classical one
for the conventional Boltzmann-Bloch equation 2], we have paid attention to
the fact that the information contraction in the variational principle brings
about irreversibility [1, 3, 4, 5. In a previous paper[l, 3, 5], we have derived
the maximum variational principle in the absencé of va, magnetic field, by
contracting the density matrix with no approximation.

In this paper, we generalize the investigation to the case of presence of
a magnetic field. In Sec.2, the stationarity variational principle is presented
for the von Neumann equation. We first perform a contraction in Sec.3 to
eliminate the off-diagonal part of the density matrix, in the scheme of Stinch-
combe’s non-orthogonal representation [6], where we can perform the similar
contraction as in the absence of a magnetic field. Then we get a variational
principle for the diagonal part, which still remains to be a stationarity prob-
lem. In Sec.4, we secondly perform another contraction to eliminate the
even part with respect to time reversal. We then attain to a maximum prin-
ciple for the odd part of diagonal elements of the density mafrix. We finally

summarize the results in Sec.5.
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2 General formulation

The Hamiltonian of the system in a magnetic field H is expressed as

Hi = Y (KIAK ) af g, (2.1)
kk’

in terms of the creation operator a{( and annihilation operator ay, respec-

tively, of the conduction electron with wave number k, where
h=ho+V, (2.2)

is composed of the kinetic energy

1
'ho = Emvz, (23)
due to the velocity
1 e
v=—(p-3A), (2.4)

and scattering potential V' by impurities. The vector potential is gauged as
A =(0,Hz,0). (2.5)

The density matrix p is expressed as

p(0) = pot [ dApeexp(MHi)B(8) xp(~A Huv), (2.6)

where
Pe = A’exp[ﬂ(Htot_:uN)]’ (27)
o(t) = 3 (klg(t)|k)ala. (2.8)

kk’
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' The von Neumann equation in an external electric field E(t) is

0) _
—5 H8(t) = ev - E(), (29

where the superoperator [ acting on the state operator ¢ is defined as

I = %[h, 4l, | (2.10)

which is divided into two parts as

b = 3lhodl, (212
Slp= %(v, 4l (2.13)

We consider situations in duality according to the time boundary condi-

tions:

CE(t)=Eexp(st) (t<0), ¢(t)=¢Pexp(st), (2.14)
E(t) = Eexp(—st) (t>0),  ¢(t) = ¢ exp(—st), (2.15)
similarly to the situations of incoming and outgoing waves in scattering the-

ory (7], where E is a constant electric field and s is a infinitesimal. The von

Neumann equations (2.9) is rewritten

(s + D¢t

il

o

<
=

(2.16)

(~s+0)¢") = ev-E, (2.17)
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for ¢(*) and ¢(), respectively. Using the Fermi ‘distribution_:function

1
exp(Bh — Bu) + 1

we define the inner product between ¢ and 1 as

f=

(2.18)

(6.9) = () = [ drlgfesp OB exp(-AR)(1 = )l (219)

The average electric current for the present is obtained as -
J = (ev, ¢y = —(ev, ¢\). (2.20)
Now, making a variational functional -
W (¢, 40) = (6, (s + )¢D) + () — ¢ ev - E),  (221)

stationary as to ¢(*) and '¢("‘), we get the von Neumann équ’a,ti'ons '(2i16) and

(2.17), where the stationary value gives the average current (2.20).
3 Elimination of off-diagonal parts

The velocity v is off-diagonal in the scHeme of diagonalizing th-e uﬁperturbed
Hamiltonian kg, in coﬁtradistinctidn to the case of no magnetic field. There-
fore, this scheme is inadequate to carrying out the contraction and we instead
adopt a non-orthogonal representation proposed by Stinchcombe[6], where
the velocity is diagonal and the contraction can be performed in the same
way as in the case of no magnetic field. The k,k’ element of_\any operator ¢

is defined as

{klolk'} = /dl‘ldrz exp(—ieXi2y12) (klry)(ra|lra) (r2[K)  (3.1)
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where the triangular brackets denote the usual orthogonal representation and

eH
€ = —h:, (32)
1
X2 = :2'(131 + z,), Y12 = Y1 — Ya- (3.3)

Let us decompose ¢(*) into the diagonal part ¢§i) and the off-diagonal

part qS‘(,f) in Stinchcombe’s representation as

gt = gl 4 gt (3.4)

¢ = ¢4 gl (3.5)

We introduce the projection superoperator P which projects any operator
onto the diagonal operator and the complementary @ = 1 — P. Applying Q

to both sides of the von Neumann equation (2.16), we get
Q(s + )¢ = 0. (3.6)
By substituting (3.4) for ¢(*) into (3.6), we obtain
doi’ = ~[Q(s + QI Q6LP4Y. (3.7
Substituting (3.7) into (3.4), we can write

¢ = a,6(", (3.8)

(s + gt = (I + m)glh, (3.9)
where we have defined

a, =1-[Q(s + 1)Q]Q6IP, , (3.10)
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T=sP— %P&lQ (1Q(s + QI - 1Q(=s + Q1) QsIP, (311)

= PP — - P8IQ (1Q(s + DQI™ + [@(—s + D) QSIP. (3.12)

Clianging the sign of s in (3.7), (3.8) and (3.9), we get

47 = —[Q(—s +DQIQePEY,  (3.13)
¢) = a_,ey”, | (3.14)
(=s + Do) = (=1 + m)e?, ‘ (3.15)

respectively. Substituting (3.8), (3.9) and (3.14), we can rewrite (2.21) as
W (0 a_0f") |
= (acsd(, (T4 ) 8(") + (0,8{" — a_g{),ev - E).  (3.16)

By making stationary of (3.16), we get the master equations

(+m)g) = ev-E, (3.17)
(-i+m)g) = ev-E. (3.18)

We can show that these master equations have the form of the conventional

Boltzmann-Bloch equation.

4 Elimination of even part as to time rever-
sal

Let us define the time reversal of an operator a(H) depending on the mag-

netic field H as a(H). Here we mean the time reversal for inverting the
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magnetic field H as well as the time; by applying the time reversal to the

external system generating the magnetic field as well as the system. Thus,

(rlo(H)[r') = (rla(~H)]r), (4.1)

in the representation scheme of diagonalizing the spatial coordinate.

Applying the time reversal to the von Neumann equation (2.16), we get

(s = 1s1) §V(H) = —ev(H) - E. (4.2)

where the dependence of the superoperator ! on a magnetic field has been

exblicitly shoWn as ly. Comparin‘ 4.2) with (2.17) we can write
)
) (H) = ¢ (H), | (4.3)

whence we decompose ¢§+) and consequenﬂy ¢fi—) as

S (H) = $4(H) + ¢ o(H), (4.4)
607 (H) = —¢}(H) + ¢”4(H), (4.5)

into ¢} and ¢”; which denote the odd and even parts as to time reversal,

respectively. Omitting the argument H, we can rewrite (3.16)
W (as(¢q+ ¢7a), a—s(~ ¢ + 674)) = (as(=¢4 + &), (1 + ) (8} + ¢74))
+((as + (l__.s)(ﬁil + (as - q—s)(ﬁ’,,d, ev . E), , ‘ ) (46)
as a functional of diagonal parts ¢/ and ¢”4, which is made stationary by

(T+m) (¢4 + 870) + (<L + ) (~¢) + ¢"a) = 2ev - E,  (4.7)

([ +m) (¢h+ ¢"a) = (=] + ™) (= + ¢"a), (4.8)
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latter of which is solved as

#a=-["mgs | (4.9)

Substituting (4.9) into (3.8), (3.9), (3.14)and (3715), we obtain

o) = a,(1 - [I]"'m) ¢, » . (4.10)

¢ = —a (L4 [ )i | (4.11)

(s + Do) = (—s + D¢ = (I, — [l ) ¢ (4.12)

Inserting (4.9) and (4.12) in (46), we gét the maximumvprinciple

W (a,(1 — (17" m) g, —as(1+ [T R)dy)

= (=a_, (L4 [T ) g, (T = fll ) 45)

(@ + az) = (6 — a)70) gpev - B),  (413)
which should be maximized as a functional of ¢;. Maximizing (4.13) leads
to a master equ;tion | | |

= ﬁ[i]*m)@s; =ev-E, (4.14)
where the maximum is equal to

Winas = (as(1 = []7) g}, ev - E) = (a_s(1 + [[] ') ¢}, ev - E) = T - E.
| (4.15)

The present variational principle is formally quite similar to that derived

from the Boltzmann-Bloch equation by Bailyn [8], who derived the maximum
variational principle for the even part with respect to a magnetic field, which

corresponds to the odd part ¢.

87



5 Conclusion

Contracting the density matrix, we have converted the stationarity varia-

tional principle for the density matrix in a magnetic field, into the maximum

principle for the diagonal elements of the odd component of the density

matrix with respect to time reversal in the scheme of Stinchcombe’s repre-

sentation, with no perturbation. We can see the features of the variational

principles in the course of contractions in Table below.

Table. Variational principles in the whole course of contractions.

Character

(2.16) and (2.17)

which are equivalent
to the rectified
Boltzmann-Bloch
equations

stationarity stationarity maximum
Variables | ¢(+), (=) oyt 41 ¢,
Euler von Neumann master equations master equation
equations | equations (3.17) and (3.18) (4.14)

which is equivalent
to the rectified
Boltzmann-Bloch
equation

The maximum principle is formally the same as that for the conventional

Boltzmann-Bloch equation in a magnetic field and related to the entropy

production characteristic of irreversible process. In this sence, we could show

that the contractions of the density matrix bring about irreversibility also in

a magnetic field.
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