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Abstract

It is shown that the time-evolution of a dissipative system can be interpreted as
a traverse of the system in a set of the unitarily inequivalent representation spaces.
It is also shown that there exists uncountable number of different descriptions of
the system of quantum differential equations, and that the physical meaning of
the different descriptions can be attributed to how much one renormalized the
line-width in an energy spectrum caused by uncommutative part of a random
force operator.
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1 Introduction

Recently we succeeded to construct a unified framework of the canonical operator for-
malism for quantum stochastic differential equations within Non-Equilibrium Thermo
Field Dynamics (NETFD) [1]-[9] for the first time to put all the formulations of stochas-
tic differential equations for quantum systems, i.e., the Langevin equation and the
stochastic Liouville equation [10] together with corresponding quantum master equa-
tion, into a unified method (see Fig. 1). It was possible only within the formalism of
NETFED. :

In this paper, we will show that the time evolution of a dissipative system can be
interpreted as a traverse of the system in a set of the unitarily inequivalent represen-
tation spaces. We believe that the set constitutes a measured space which corresponds
to the I phase-space of classical statistical mechanics. We will also show that there
exists uncountable number of different descriptions of the system of quantum differ-
ential equations, and that the physical meaning of the different descriptions can be
attributed to how much one renormalized the line-width in an energy spectrum caused
by uncommutative effects of a random force operator.

We will treat in this paper a non-stationary system of a stochastic semi-free particles.
The hat-Hamiltonian for the stochastic semi-free field is bi-linear in a, af, dF'(t), dF'(t)
and their tilde conjugates, and is invariant under the phase transformatlon a — ae®,
and dF(t) — dF(t) €®. Here, a, a' and their tilde conjugates are stochastic operators
of a relevant system satisfying the canonical commutation relation

[a, aT‘] = 1,‘ la, a'] =1, | (1)

whereas dF(t), dF'(t) and their conjugates are random force operators. The tilde and
non-tilde operators are related with each other by the relations

(lla" = (1]a, (2)
(JdF(t) = (JdF (1), 3)

where (1] and (| are respectively the thermal bra-vacuum of the relevant system and of
the random force.
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Figure 1: Structure of the Formalism. RA stands for the random average. VE stands for
the vacuum expectation. (I) and (S) indicate Ito and Stratonovich types, respectively.
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The tilde conjugation ~ is defined by:

(A1A2)N = 1‘111‘12; (4)

(c1A; + CzAg)N = CVL + 051212, (5)
(A)~ = A, (6)

(AT~ = AT, (7)

where ¢; and ¢, are c-numbers. Any operator A in NETFD is accompanied by its
partner (tilde) operator A.

2 Representation Space of Random Force Opera—
tors

2.1 Fock’s Space
We take the vectors:

Ly ta, - tu) = “\/%bT(tl)bT(tz) b (8)][0), ®)

as a set of bases for a Fock space. The argument ¢ represents time. The vacuum |0) is
defined by

| b()[0) = 0. (9)
The annihilation and creation operators b(t), b(t) satisfy the canonical commutation
relation:

[b(2), b'()] = 6t —1). (10)

The bases form an ortho-normal and complete set:

(ti, -y taltyy o tm) = nm ,Zé(tl—-t (e —tn), (11)
(P)

i(ﬁ/mdtf) ltla"':tn><tl,"',tn|:1- (12)

The Fock space I’ (H) over a Hilbert space H is the infinite Hilbert space direct sum
I'(H) = ©X, H®", where HE=0 — O and, for n > 1, H®" is the symmetric subspace
of the n-fold Hilbert space tensor product of H (the Wlener—lto expansion).

For |¢) € I'(H), we have

|¢’> = i (ﬁ /oo dtﬂ) Itl’ e >t">wﬂ(t17 T 7t'n)’ | | (13)
n=0 \z=170

where Yn(t1, -+ ,tn) = (t1,---,ta|¥0) € H®"_ This situation is similar to the one in
quantum field theory when expanding a state in a Fock space in terms of the state
vectors in the m-particle subspace. In that case, ¥y is the wave-function of n-particle
system in quantum mechanics.
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2.2 Quantum Brownian Motion

Introducing the operators

- /)tdt' b(t'),  B'(t) = /Otdt’ bt (t), (14)
for t > 0, we see that they satisfy
B(0)=0, [B(s), B'(®)] = min(s,t). (15)
This shows that B(t) and BT(t) are the operators representmg quantum Brownian
motion 11, 12].

The definition and the existence of the operators b( ) and bT(t) are guaranteed by
Hida and Obata [13, 14]. ‘

2.3 Ito’s Stochastic Product
When a stochastic integral 1(t):

I(t) = [)t dt {dBT(t’)F(t’) + G(t)dB(t') + H(t’)dt’} : (16)

with ¢t > 0 exists, it can be written in a differential form

dI(t) = dB' (O)F(8) + GW)dB(t) + H(t)dt,  1(0) =0. (17)
For :
dl;(t) = dBY(t) Fy(t) + G4(t)dB(t) + H;(t)dt, 1;(0) =0, (18)
(¢ = 1,2), we have the Ito stochastic product [15] '

d(]llg) - dBt (FII‘Z' + [1F2) + (GIIZ + Ing) dB(t) + (Hllg + ]1H2~+ Glﬂz) dt
= d]1]2+11d]2+d]1d12. ‘ (19)

Here we used S
dB(t)dB'(t) = dt, , (20)

which can be shown by the commutation relation [dB(t), dB'(t)] = dt. Note that the
commutation relation is a consequence of (15). In precise, the Ito formula (19) is pxoven
in the representation of the exponential vectors.

2.4 Thermal Space

Now, put the above materials in the Hilbert space into the thermal space within
NETFD. The approach seems somewhat related to the one by [16].

The operators representing the quantum Browman motion annihilate the vacuums
|0) and (0}: | ’

dB(t)[0) =0,  dB(t)|0) =0, (OldB*(t): : | (0|dB'(t) = 0. (21)



Let us introduce a set of new operators by the relation

dB(1)* = B(t)*dB(t)", | (22)
with the Bogoliubov transformation defined by

B ( )+ 1+ (2(0) )/ =) = e ) ) @)

‘where the one particle distribution function n(t) is specified by the Boltzmann equation

%n(t) — _ok(t)n(t) +iZ<(2). (24)

The function Z<(t) is given when the interaction hat-Hamiltonian is specified. We
introduced the thermal doublet: '

dB(t)*=' = dB(t), dB(t)*=* = dB'(1), *(t)ﬂ:? —dBY(t), dB()*"* = —dB(t),
(25)
and the similar doublet notations for dB(t)* and d[)’(t)” The new operators annihilate
the new vacuums (| and [):

dBt))) =0, dB@®))=0, (ldB'(t)=0,  (|dB'(t) =0. (26)

2.5 Unitary Inequivalence
The generator U inducing the Bogoliubov transformation (23) in the form

dB()F = U YdBE*0, - (27)

is given by

U = exp [— A "t (n(t) + 2—;21(7)%2) bt (t)BT(t)] exp [ A dtb(t)B( )] (28)

Then, we see formally that

) = U10)
_ L=(t)
= exp[ A dtl ( + o (t) >]
exp { / dt 2&(:)2:(241:) bT(t)bT(t)} 10). (29

Tt shows the unitary inequivalence of the vacuums |) and |0).

95



96

The vacuum |) and (| can be decomposed into an infinite direct product of unitarily
inequivalent vacuums:

) = U~0)
= trdt IZ<(t)
- EO exp [_5(0) [ dt' In (1 S )}
t+dt ’ /i2<(tl) NI,
exp [[ dt o ” b ()b (¢ )} |0)

) + 1 0<(
- ﬁ [t,t + dt), (30)
t=0
(| = (o0
ot t+4-dt ~
— [0l exp [ A dt’b(t’)b(t')]
t=0
=[]t + di. (31)
t=0
We see that
(¢, t+ dtt,t +dt) = 1, (32)
(', ¢ + dt|t,t + dt) = exp [—6(0) [W dt” In (1 - li(ff,)))} : (33)

for ¢ # t'. The last equation (33) indicates the unitary inequivalence between the Fock’s
spaces labeled t,t + dt and ', + dt.

2.6 Random Force Operators

In the following, we will use the representation space constructed on the vacuums (|
and |). Then, we have, for example,

(|dB' (£)dB(2)[) = (n(t) + fl(t)'dz_(tt)> dt,

(|[dB(t)dB!(t)]) = (n(t) +1+ —/{1—‘1”“)) dt, (34)

which was derived by inspecting (|dB(t)dB(t)|) with the help of the thermal state
conditions (26).
For a practical convenience, we introduce the random force operators by

dF () = \/2k(t) dB(t),  dF'(t) = \/2(t) dB'(2). (35)



Then, we have <dF(t)> = <dﬁ'(t)> = <dFT(t)> = <dF‘T(t)> =0, and

<dF’f(t)dF(s)> = (2n(t)n(t) + did(ig) §(t — s)dtds,
(dF@)dF (s)) = (25(@ (n(t) + 1) + dfg)) 5(t — s)dtds, (36)

and zero for other combinations (see (34)). Here we introduced an abbreviation ()=

(-

The thermal state condition (26) reads

1 bdn(t) 1 dn(t)

(1 + n(t) + M‘Jt_) dF(t)ll) — (n(t) + W'f) dFt(t))), (37)

and (3).

3 Stochastic Semi-Free System
3.1 Model |

A non-stationary stochastic semi-free system (a stochastic model of a damped harmonic
oscillator) is specified by the stochastic Liouville equation of Stratonovich type:

d|0g(t)) = —iHudt 0 |04(t)), (38)
with the stochastic hat-Hamiltonian

Hyydt = Hgydt + illgp,dt + dM, (39)
= Hs,tdt + [Oﬂ (z’da + [Hsytdt, O.']) - t.C.] R (40)

where the operator IAYR,t representing a relaxation effect, the martingale dM, and the
flow operators da, da are specified, respectively, by

Mgy = —k(t) (agra + t.c.) , (41)
dM, =i (agdW(t) + t.c.) , (42)
da = i[Hs,dt, o] — k(t)adt + dW(t), : (43)

and its tilde conjugate.
We introduced a set of canonical stochastic operators

o=pa+val, of=d -3, (44)
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with p + v = 1, which satisfy the commutation relation
(@, a¥] = 1. (45)

The random force operators dW(t), dW (t) are of the quantum stochastic Wiener
process satisfying

<dW(t)> = <dW(t)> = (), (46)

(dW (£)dW (s)) = (dW (t)dW (s)) = 0, )
<dW(t)dW(s)> = <dW(s)dW(t)> | |

= (2m(t) (n(t) + v) + 9%%2> 8(t — s)dtds, (48)

where the random force operator dW (t) is defined by
dW(t) = pdF (t) + vdF'(t), (49)

with g + v = 1. The original random force operators dF(t) and dF(t) are of the
non-stationary Gaussian white process derived in the previous section.
Within the stochastic convergence, these correlations reduce to!

dW(t) = dW(t) = 0, ~ (51)
dW (t)dW (s) = dW (t)dW (s) = , ~ (52) -
dW (t)dW (s) = dW (s)dW (t) |

= (2 k(t) (n(t) + v) + d%gt)) o(t — s)dtds
= (¢X(t) 4 2vk(t)) 8(t — s)dtds. (53)

We introduced the symbol o in order to 1ndlcate the Stratonovich stochastic multipli-
cation [17].

The quantum stochastic Liouville equation (38) preserves the characteristics of the
stochastic Liouville equation [10] of classical systems, i.e., the stochastic distribution
function satisfies the conservation of probability within the phase space of a relevant
system. This means in NETFD that

(0s(1)) = 1, (54)

leading to A
(1|Hpqdt = 0. (55)

Here the thermal bra-vacuum (1] is of the relevant system.

'For equal time t = s, (53) reads

dW (8)dW (t) = dW (£)dW () = (i5<(t) + 2vk(t)) dt. (50)



3.2 Quantum Langevin Equations
For the dynamical quantity A(t) of the relevant system, the quantum Langevin equation
of the Stratonovich type is given by the stochastic Heisenberg equation as [4]
dA(t) = i[H(t)dt ¢ A(2)] - _ (56)
= i[Hs(t), At)]dt
+(t) {la*(B)alt), A®)]+ @ a0, A(t)]} dt
—{la*(t), A®)] o dW (1) + [a*(t), A(D)]odW(D)}. (57)

3.3 Solving the Stochastic Liouville Equation

The quantum stochastic Liouville equation of the present system in the [to type ex-
pression is given by

d|0s(t)) = —iHzudt [0(2)), ()
with ) ) ) :
Hf’tdt == tht + let, (59)
where H, is giveri by ° : T R S A :
Hy = Hgy +illy. ‘ e - (60)
Here, IT; is defined by R h ‘ R | R
’ II; = Ip; + Ipy, (61)
with ‘ » .
. t
Ip, =2 <H(t) (n(t) +v) + %9) otat. (62)

The diffusive time-evolution opéra.tor ﬁD,t contains the information how much the
unitarily inequivalent Fock’s spaces for the random force operators overlaps with each
other in the time axis. '

Note that the orthogonality

(|dM;|04(t)) = 0. | | - (63)

3.4 Fokker-Planck Equation

Taking the random average of the stochastic Liouville equation (58), we obtain the
Fokker-Planck equation 4

9 "
5 100) = ~iflow), | (64)

with |0(2)) = (|0;(t)). It can be solved to give

0() = "= ORT0(0)). N
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The creation operators v* and 4% are defined through -

ot = ( (1) ”(t)l‘l“ v ) N, | (66)

with the thermal doublet:

7“:1 = M, 7#:2 = ;7'}5 7#:1 = '7$7 ’_7#:2 = "&ta (67)

and the similar definition for a#. These creation and annihilation operators annihilate
the vacuumns:

W0) =0, 7o) =0, (h*=0, (15 =0. (68)

The solution (65) of the Fokker-Planck equation shows that the dissipative time-
evolution of the relevant system can be interpreted as a condensation of y*4%-pairs into
the thermal vacuum.

4 Renormalization of the Uncommutative Part of
the Random Force Operators

We introduce here the generalized stochastic hat-Hamiltonian of the Stratonovich type
by
H;},dt = Hg,dt + i\ Ig,dt + dM, (69)
with i
g} = i {[a*aW (1) + t.c] — (1= ) |cdW? (1) + tel}, (70)
where ) is a real number satisfying 0 < A < 1.
In addition to the random force operators dW(t) and its tilde conjugate, we need

to introduce 5
dW*(t) = dF(t) — dF (t), (71)

and its tilde conjugate which annihilate the ket-vacuum (|:
(JdW*(t) =0,  (|dW*t) = 0. (72)
The additional random force operators satisfy

dWH(t) = dWH(t) = 0, dW*(t)dW‘(s) = dWH(t)dW(s) = 0, (73)
dW (t)dW*(s) = dW (t)dW*(s) = 2k(t)8(t — s)dt ds, (74)

within the stochastic convergence.
In the generalized description, the conservation of the probability is satisfied in the
form:

(110,() = 1, (75)



where (1| = (J(1]."
We can show that the stochastic hat-Hamiltonian of the Ito type reduces to

Hdt = Hydt + dM, . (76)

(c.f., (59)). Therefore the Fokker-Planck equation remains the same as (64).

When A = 1, the random force operators become commutative, leading to the
system given in the previous section. On the other hand, when A = 0, the general-
ized hat-Hamiltonian (69) becomes hermitian. This version is intimately related to
the approaches performed by mathematicians [11, 12, 16, 18] based on the stochastic
Schrodinger equation (see also [19, 20]). For the intermediate A, the relaxation rate
function in /\IAYRJ is partially renormalized, i.e., Ak(t), within the Stratonovich descrip-
tion. Within the Ito description, the relaxation rate function is fully renormalized in
the stochastic hat-Hamiltonian of the Ito type.

We can interpret that the translation to the Ito description is to orthogonalize the
martingale part to the thermal vacuum, and to renormalize the spectrum of the semi-
free particle to have an observable (physical) line-width.

5 Summary

We showed that the time evolution of a dissipative system can be interpreted as a
traverse of the system in a set of the unitarily inequivalent representation spaces. We
believe that the set constitutes a measured space which corresponds to the I' phase-
space of classical statistical mechanics. Now, we are trying to input a measure into the
space which may provide us with a new concept of entropy.

We also showed that there exists uncountable number of different descriptions of
the system of quantum differential equations, and that the physical meaning of the
different descriptions can be attributed to how much one renormalized the line-width
in an energy spectrum caused by uncommutative effects of a random force operator.
We are investigating the deeper meaning of the renormalization within the present new
context which was revealed only by the formalism of NETFD.
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