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The Functorial Construction
of the Sheaf of Small 2-microfunctions
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1 Introduction

The theory of second microlocalization along regular involutive submanifolds was be-
gun by M. Kashiwara and J. M. Bony. M. Kashiwara has constructed the sheaf
C% of 2-microfunctions microlocalizing the sheaf Ox of germs of holomorphic func-
tions two times. (Refer to Kashiwara-Laurent [3].) Since this sheaf is too large to
decompose second microlocal singularities of microfunctions, Kataoka—Tose [7] and
Kataoka—Okada-Tose [6] introduced a new sheaf what is called the sheaf of small
2-microfunctions. Schapira-Takeuchi [9] also constructed functorially the same sheaf
defining a bimicrolocalization functor. Here we will also give another functorial con-
struction, that is the idea of K. Kataoka, for the purpose of studying microfunction

solutions for some degenerate elliptic operators.

We give this construction of the sheaf C% of small 2-microfunctions in a simple

way in chapter 2.

In chapter 3 we give a support theorem, that is, when a regular involutive sub-

manifold V' is defined by
V= {(;L-; V—1€ -dx) € \/—_172*R"; ==& = O} ; (1.1)
we study a simple sufficient condition on which solution complexes in C% vanish locally
in the derived category.
vAs application we obtain results of solvability in the sheaf Ca; of microfunctions

for linear differential operators of the form

P(z,D,) =D} + D3, +---+Dj

Lp—1

+22¥D? + (lower) (1.2)
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Though these operators P(x, D) are not partially elliptic along V' on {z, = 0},

we will prove that the operators P induce isomorphisms

P:C: = (C (1.3)

As a general rule, furthermore, the same isomorphisms hold for linear differential

operators defined by
P(z,D,) = Q(z,Dy) + 22D + (lower), (1.4)

where ' = (z1,...,2,-1), k € N, and Q is a second order differential operator

satisfying the property
Reo(Q)(z; &) >0 (Vz e R*, V¢ e R\ {0}). (1.5)

See chapter 4.
2 The sheaf C?
2.1 2-microlocal analysis

Let M be an open subset of R™ with coordinates z = (z1,...,1,) and X a complex
neighborhood of M in C™ with coordinates z = (z1,...,2,). Let (z,() be the asso-
ciated coordinates on T*X and z = z + /=1y, {( = £ +/=1n. Then (z;/—1¢ - d)
denotes a point of T3, X (~ /—1T*M) with £ € R™. Let V be the following regular
involutive submanifold of flgjng(: Ty X\ M):

Vel@vIed) e TiXig == 6=0)  (1sd<n). (@1)

We put

v= (2", 1= (,...,2q), "= (Zgs1,-.. ), (2.2)

etc. We set, moreover,

N = {ze€ X;Im2" =0}, (2.3)

Vo= TyvX. (2.4)
This space V is called a partial complexification of V. Tt is equipped with the sheaf

Ci = pn(Ox)[n — d| (2.5)



of microfunctions with holomorphic parameters 2, where uy denotes the functor of
Sato’s microlocalization along N. Refer to Kashiwara-Schapira [4]. M. Kashiwara

constructed the sheaf C% of 2-microfunctions along V' on T‘*,-f' from Ci: by

¢ = u(Cp)ld). (26)

We also define
A = Colv, (2.7)
B = RIV(Cp)ld] = Cily. (2.8)

We call B? the sheaf of 2-hyperfunctions along V. Note that these complexes Cy, C?

and B% are concentrated in degree 0.
There are fundamental exact sequences concerning C&. On V,
0— A2 — B2 — 7y, (c%/|qo“ ‘7) — 0, (2.9)
\'4

0 —Cylv — BY, (2.10)

where - is the restriction of the projection 7y : TpV — V to T"}v, and Cp(=

par(Ox)[n]) is the sheaf of Sato microfunctions on M.
Moreover there exists a canonical spectrum map
Spi By — Ch | (2.11)
on T(}f/. By using Sp} we define |
S8} (u) = supp (Sp} (u)) , o (212)
for u € B}. This subset SS}(u) is called the second singular spectrum of u along V.

Refer to Kashiwara—Laurent [3] for more details.

From the exact sequence (2.9) C is the sheaf which means second microlocal ana-
lyvtic singularities of elements of 3. This sheaf C{ is too large to study microfunction

solutions for some differential equations because of (2.10).

For this reason Kataoka~Tose [7] constructed the subsheaf C. of C‘Q'l'f**f' with the
o

comonoidal transform to get a exact sequence
0 — A} — Carly — T (CF) — 0. (2.13)

On the other hand Kataoka-Okada—Tose [6] constructed the same sheaf C% as the

image sheaf of morphisms

o—1 o—1 . .
Ty (C]\.[|\') —Ty- (B\Z) ——>C{2}r;~{, (214)



Schapira-Takeuchi [9] also constructed the same sheaf
Can = llfth(O/\')[n] (2.15)

with the functor of Schapira-Takeuchi’s bimicrolocalization.

2.2 The sheaf of small 2-microfunctions

Here we give another functorial construction in order to estimate the support of

solution complexes in its sheaf. This construction is the idea of K. Kataoka. First of

all we set
X = X x(R*\{0}), (2.16)
H = {(2,¢) € X;(Im7,&) < c[tm2"|}, (2.17)
G = {(z¢) e Ximz" =0} (2.18)

for ¢ > 0. We identify
{(z', 2" € /16" - di") € TEX Im 2 = 0} (2.19)
with T, =V through the correspondence
| (z,85V/=1E" - da") «— (z;v/=1€" - da”'; /=1€' - dz)). (2.20)
Definition 2.1 (small 2-microfunction) One sets

é‘Q/ = l_l_I_)an ((MGRFHC(p"‘O,\—))

. ~_) (2.21)

TV

>
»

on T"?f’, where p : X' — X. One calls C?, the sheaf of small 2-microfunctions along
V.

We can find from the next theorem that this sheaf CZ coincides with Cpy of
Schapira-Takeuchi. Therefore C‘2 is the sheaf which means second microlocal analytic

singularities of microfunctions, that is to say, we have

0 — Al — Cyly — Ty (C2) — 0. (2.22)

Theorem 2.2 Let ¢, = (105 /—1&) - da”; /1€ - da’) € 70"\*\~ Then we have

Ctsgo = lim H3(Ox )z, (2.23)
A



Here Z ranges through the family of closed subsets of X such that
Z=M+ V-1 + (I" x {0})) (2.24)

and I" ( resp. I") is closed conver cone with the vertez 0 in R" ( resp. R%) satisfying

the properties

r c {/,y") e R (y", &) <0} u{o}, (2.25)
I' ¢ {y eR%(y,&) <0pu{o} (2.26)

It suffices to prove the above theorem, since the same result holds as to the sheaf
Cun- (Refer to Schapira-Takeuchi [9).) In the same manner in Kataoka [5], we get

the following proposition.

Proposition 2.3 In the preceding situation of Definition 2.1, let p : X — X bea
projection and V' an open subset of X with convez fibers. Assume that there exists a
compact subset K of R*\ {0} such that V. C X x K. Then for any sheaf F' on X and

any q € Z
HY(V,p~'F) = Hi(p(V), F). (2.27)

Proof of Theorem 2.2. We assume that ¢o = (2o; V—1dz,; /—1dz;) for the sake of
simplicity. The stalk of (f‘?/ at ¢, is described as

é‘Q/,qo =~ llran (ugRFHC(p_IOX))

= lim HE, -(0,p0x). (2.28)

c,g,w(qo)ea

qo

Here 7 denotes the projection 7 : T, (‘i’f — G and Z ranges through the family of
closed subsets of X such that

Ed

Ca (Z)ﬂ(qo) C {'v € TeX; (v,¢) > O} U {0}, | (2.29)
and U through the family of open neighborhoods of 7(¢.) = (.,1,0,. .. ,0) in X.
Refer to Kashiwara—Schapira [4] for the notion of normal cones.

Note that there exists the following exact sequence,

0 — limH~" (T\ (Zn H.),p™'Ox) — limH%

7=l
ZnHenT (U,p7'0x) — 0, (230)
for j > 2.
One easily checks that the right—hand side of (2.28) is equal to that of (2.23) by

using Proposition 2.3. U



Remark 2.4 Assume d+ 1 = n. In this case, we find that

H’ ((;LGRFHC (P_"O/\-))

i) =0 G#n) (231)

from the theorem of Edge of the Wedge.

3 A vanishing theorem of solution complexes in
the sheaf C?

3.1 Microlocal study of sheaves

In this section, we recall some notation on microlocal study of sheaves. (Refer to
Kashiwara—Schapira [4].) Let X be a real manifold and A a unitary ring. We denote
by D(X) the derived category of the abelian category of sheaves of A-modules on
X and D*(X) denotes the full subcategory of D(X) consisting of complexes with
cohomology bounded from below. Let F' € Ob(D*(X)). Then SS(F) denotes the
micro-support of F'. We quote some important formulae on the micro-support under

several operations on sheaves.

Let Z be a locally closed subset of X, and G € Ob(D*(X)). Then

SS(RI';(G)) C SS(G)FSS(Z,)". (3.1)

Here SS(Z)* is the image of SS(Z ;) by the antipodal map a : T*X — T*X, (x;§) —
(z; =€), and Zy is the zero sheaf on X \ Z and the constant sheaf with the stalk Z
on Z.

Now we describe the set of the right-hand side of (3.1) with a system of local
coordinates. For two conic subsets A, B of T*X , the subset A+ B is defined. Let
(z0;&) € T*X, & # 0. Then (z.;&,) does not belong to A¥B if and only if there
exists a positive number § such that

T
{(”L + cy; - +y") € T*X; (x;z%) € B,

2 — o]+ |27+ [yl + [y — & <6, O<e< 5} NA=0. (3.2)

Next let ¥ and X be manifolds, and assume that f : ¥ — X is smooth. For
F € Ob(D*(X)) onc has

SS(f7'F) = p(@™'(SS(F))), (3.3)



where p, w are the natural maps associated to f, from Y x T*X to T*Y and T*X
X

respectively:
T*X <Y xT*X 25 T*Y. (3.4)
X .

Moreover, let Z be a closed subset of Y. Then:

SS(Z,) C N*(2). (3.5)

Here N*(Z) is the conormal cone to Z.

3.2 A vanishing theorem of solution complexes in the sheaf
Ct

In this, and all forthcoming sections unless otherwise specified, we assume that d+1 =

n, that is to say, a regular involutive submanifold V' is defined by §; = -+ = &1 = 0.

In order to study microfunction solutions for linear differential equations, we shall
send them to the sheaf C2 through the morphism (2.22) and reduce the results to that
in the sheaf Cp;. Here using the construction of the sheaf C{‘, that we have given in
chapter 2, we have an estimate of the support of solution complexes in é%, We prove

this theorem by means of the micro-support.

We denote by Dy the sheaf of rings of finite-order holomorphic differential opera-
tors on X. Let M be an arbitrary coherent Dy-module, and we denote by char(M)

the characteristic variety of M.

Theorem 3.1 Let g, = (%o; £/ —1dx,; /-1, - dx') € O‘*,V. Then
RHomp, (M,CE),, =0, (3.6)
if there exists a positive number § such that

{(z (€ +V=lenf) - d £ (& + V1) -dz,) € T X;
|z — 2o + |0 — 1l <6, |Imz,|+|¢] < 55} N char(M) =0 (3.7)

for any ¢ with 0 < e < 4.
Remark 3.2 In the situation of Theorem 3.1, one gets not only (3.6) but also
Go & Supp (R'Hompx (MCf)) (3.8)

if the same condition (3.7) holds.



Proof of Theorem 3.1. We may assume that ¢, = (z0;v/—1dz,; V=11, - da') € vV

by a coordinate transformation. Using Remark 2.4, one has:

E:I:be (M.,CA‘Q,)qO = 111_51 H’'RHomyp, (M, (/LGRF H, (p"‘(’)‘\»)) 2. [n])
¢ ) v g

o

= UmH*"uGRTy, (p~' F),,

= 15_{9 HHHRF%m (07" F) wont)s (3.9)

[

similarly as we did in Proof of Theorem 2.2. Here we set F' = RHomp, (M, Ox) and
Z= {(z,f’) € X;yn < O}.

Hence the j-th cohomology group (3.9) on M vanishes at ¢, for all j € Z provided

that there exists a positive number ¢y > 1 such that
RFZan(p—lF)(moma) ~0 (3.10)
for any ¢ > ¢y. Therefore it suffices to study a sufficient condition in order that we

have (3.10).

On the other hand, we define a real analytic function f, on X = X x (R?\ {0})
by
fe(2,€) = —c-yo = (¥, ). (3.11)
Assume that
(2o, 73 dfe (w0, 4)) & SS (RI3(p™*F)), (3.12)
and we find that (3.10) holds by the definition of the micro-support and the fact that
fe(@s,m5) = 0.

In this way we have been able to reduce the condition on the vanishing of the
cohomology groups to that on the micro-support (3.12). It suffices to estimate the
micro-support SS (RFZ([)“IF)).

Applying the estimates on the micro-support in section 3.1, we can casily obtain

the needed expression (3.7) by the formula:

SS(RHomp, (M, Ox)) = char(M). (3.13)

Remark 3.3 K. Takeuchi also got the same result as Theorem 3.1 at the same time.



4 Application

In this chapter, applying the support theorem in section 3.2 to the linear differential
operators in the introduction, we argue the structure of solutions. In particular, we

study its solvability in the sheaf of microfunctions.

In a general way, we take V and 1" as in section 2.1, and the following regular

involutive submanifold of Ig*X.
e = {(z;c cdz) € T*X; ¢ = o} . (4.1)

This space V'C is a complexification of V. We identify X with the diagonal set
Ay = {(z,w) € X x X;z=w} of X x X. Then there exist natural injections:

T*X ~Th (X x X) = T*(X x X), (4.2)
ve o vexve (4.3)

The space 77C denotes the union of bicharacteristic leaves of V€ x V€ which pass
through V'C, that is,

Ve = {(z,w;(-dz+0-dw) € Yo”*(X xX);Z' =w",{=6=0(+0"= 0}‘
(4.4)

We remark that 77 ¢ VC is a complexification of T5 V.

We denote by S‘Z/C the sheaf of rings of 2-microdifferential operators along Ve
and o,c(P) the principal symbol of a 2-microdifferential operator P. Let U be an
open subset of T7 ¢ VC. Then, for a 2-microdifferential operator P € Eac(U ), Pis
invertible on U if and only if o,c(P) # 0 on U.

We denote, moreover, by £y the sheaf of rings of microdifferential operators on
T*X. Let M be a coherent £y-module defined on a neighborhood of a point of V.
One says that M is partially elliptic along V if:

CRo(M)NT;T =0. (4.5)

Here the subset Chf.c(M) of T'c 77C is the microcharacteritic variety of M along
Ve

Let P(z, D.) be a microdifferential operator defined on a neighborhood of a point
of V and partially elliptic along V". Since this operator P induces an isomorphism
P :C% 5 C#, any microfunction (2-hyperfunction) solution for the equation Pu = 0

always belongs to A?.



Refer to Laurent [8] and Bony-Schapira [1] for more details.

From now on, we assume that d + 1 = n. We consider the following linear differ-

ential equation on M.
Pu = (Q(:I:, D) +a2kD? + (lower)) u=0. (4.6)
Here we assume that ord Q = 2, k € N and that

Reo(Q)(x;€) > 0 (4.7)

for any x € M and any &' € R"'\ {0}. Outside the Lagrangian manifold of Yg;{/,X:
L= {(m, vV—1€-dz) € f}t{)&r;l‘n =0,¢= O} , (4.8)

(4.6) is uniquely solvable in the sheaf Cj;, because the principal symbol of P never
vanishes there. One cannot apply the above theory to this operator P, since P is not

partially elliptic along V on {z, = 0}.

Hence we consider the equation (4.6) on the regular involutive submanifold V =
{¢' =0}

First, we will prove the following theorem by using the support theorem in sec-
tion 3.2.

Theorem 4.1 Let P be a differential operator of (4.6) on M and M = Dy /DxP.
Then :
RHomp, (M,C?) = 0. (4.9)

Proof. Let g, = (z0; £/~ 1dx,;/—17, - da') € 10}‘317. It suffices to show that
o(P)(2; (&' +V—1en) - dz' £ (& + V1) - dz,) # 0 (4.10)

where
|z — o]+ |0 =il <6, |Imz,|+|€]<eb, 0<e<é (4.11)

for a good small § > 0.

We have actually

Reo(P)(z; (€ +V-1e) - d2' % (& + V1) - dz,)
= Rea(Q)(z (¢ + V=len) - d2) + Re (5(6 + V=1)")
= €2RGU(Q) (Z (g + \/"_177I) ) dz,) + (&, 2~ 1)(a 72LA + O(Jn)) —26,0(yn)
< 0 (4.12)

(
(2

10



for a good small § > 0 because of the inequality
Re 0(Q)(z0; vV —17, - dz') < 0. (4.13)

This completes the proof. O

In this case, using Theorem 4.1 and the fundamental exact sequence (2.22), we

get the next isomorphism.
RHOTTLDX (M, .A%) -2—5 RHOTILDX (M, CM|"). (4.14)

This shows that the structure of P in Cjs|v has been reduced to that in Az,

Second, we will show the results of solvability in the sheaf of microfunctions.

Theorem 4.2 Let P be a differential operator of the form

P=D? +D2 +---+D2  +2XFD} + (lower) (4.15)

Tn-1

on M with k € N. Then P : Cy; — Ca is surjective, that is, for any f € Ca,e=, the

following equation
Pu=f, u€Cuny (4.16)

is solvable at any point z* € Ty, X.

Proof. Tn the situation of Theorem 4.1, we set @ = D2 + D2 +---+ D _ . We may

assume that z* € L = V N {z, = 0}. It suffices to prove the next lemma.

Lemma 4.3 Let z* be any point of L. Then for any f € A} ,;-, there exists u € A%
such that Pu = f.

Proof of lemma 4.3. Recall first that A} = Cglv and that Cy is the subsheaf of Cy,
that is to say, f(2,y')(€ Cny ) belongs to Cis,e- if and only if f satisfies the system

of Cauchy-Riemann equations

of 1[0f of ‘ -
95 = 2 (0% + vV 13%) 0. 1<j<n—-1) (4.17)

Let’s consider the following equations:

P(zlv T, Dy, Dm,l)'u' = f »
du_y, 1<j<n-1) (418)
OZj

11
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We have to show the existence of u € Cy,,+ which satisfies (4.18). One notes that P

1s of the form:

n—1 n—1
P=Y ij +a2D: + % (2, 22) Dy, 4 an (2, 2) Dy, + b(2', 21) (4.19)

i=1 =1

where a; (1 < j < n—1) and b are the restriction of holomorphic functions on X to
N.

We define a differential operator Py on N by
n—1 n '
Po=-D; +3 Df,j + 22 D2+ ai(2, 22) Dy, + b(2, 1) (4.20)
7=2 j=1

Then the equations (4.18) are equivalent to where one replace P with Py owing to the

properties of the solution .

Because P, is micro-hyperbolic in y;-direction at z*, we find easily that on a

neighborhood of z* € L there exists a unique microfunction solution of the following

Pou = f,
{ X du 0. (4.21)

Uly, =0 = Em

Refer to Kashiwara-Kawai [2] for the notion of the micro-hyperbolicity.

Cauchy problem:

y1=0

. 0
Let u the solution of equations (4.21). We have Po(a—?j) = 0 for all j with 1 <

Zj
. _ 0 )
7 <mn —1, since the operators P, and 57 are commutative.
Zj
Therefore we get:
ou 0  Ou
— = —(=— =0, (1<j<n-1 4.22
0z =0 Qy, 0%;" lm=0 (lsjs ) (4.22)
and hence we have Er 0 for all y with 1 < 7 < mn —1 from the uniqueness of the
Zj
solution for the Cauchy problem:
{ P()’U = 0,
du (4.23)
1 . = — =0. :
U]y, =0 By, ly=0

This completes the proof of Theorem 4.2. O

Remark 4.4 In the situation of Theorem 4.2, we can claim further that

KCI’(A% —I')—> .A%) o~ KCI‘(CMI\/ —F—>Cy\1|\r) (424)



by the isomorphism (4.14). This fact is also familiar by means of an estimate of the

support of solution complexes in the sheaf CL.

By this assertion and Theorem 4.2, we can get the following exact sequence.

0— A%'P — Culv ;?')CAvII\" — 0. (4.25)

5 P .
Here we set A2 = Ker(A} — A3).
P
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