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A REMARK ON THE ASYMPTOTIC PROPERTIES OF
EIGENVALUES OF ELLIPTIC OPERATORS ON T"

MITsURU SUGIMOTO (K4 F)*

1. Introduction

Let M be an n-dimensional compact Riemannian manifold with-
out boundary and P a partial differential operator on M of order m.
We assume that P is self-adjoint and elliptic, say the principal symbol
Pm(z,&) € C°(T*M \ 0) of P is strictly positive. The famous Weyl for-
mula says that the number N()) of eigenvalues of P which is not greater
than A\ behaves like

N = ex®/m 4 OAB-D/my. ¢ = (2m)~" / / dwde,
pm(2,6)<1

as A\ — +00. The order (n — 1)/m of the error term cannot be improved
if we take the sphere S™ as M. The spectrum of the standard Lapla-
cian —A on the sphere is well known and the case P = (—A)™/2 is the
counterexample. Refer to Hérmander [4] for these matters.

On the other hand, we can expect better result o(A("~1)/™) for the
error term if M and P satisfy extra conditions. For example, this is true if
the closed orbits of Hamilton flow H,,  generated by the principal symbol
form a set of measure 0 in 7* M\ 0 (Duistermaat-Guillemin [2]). If P is the
Laplace-Beltrami operator, then H,, is the geodesic flow, and the torus
M = T" = R"/Z" satisfies the condition above if n > 2 while M = S™
not. We remark T? = S1. Then our next question is what the exact order
of the error term is for each Riemannian manifold M which satisfies this
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global condition. In other word, our target is the best number d > 0 for
O(M(n—1)/m=dy t5 be true for the error term.

We can answer this question to some extent for M = T™ with n > 2
and P with constant coefficients, which imply the global condition above.
The general answer is d > dp, , = (Mm?n — m)~! (Theorem 1). We can
improve it if P has a kind of convexity (Theorem 2). In the special case
when P is homogeneous, that is, P has only principal part and no lower
terms, the answers can be translated into those for the problem to know
the asymptotic distribution of the number of lattice points inside the re-
gion RQ2 = {R;€ € Q} as R — +4o00. Here Q C R" is a compact set
which contains the origin. In fact, we can take R = (2m)~1AY™ and
Q = {£;pm(&) < 1}, where p,,(€) is the principal symbol of P = P(D),
since the number A is an eigenvalue of P if and only if the Diophantus
equation p,,(27¢) = A has a solution ¢ € Z™ (Lemma 1). Especially, in
the case when P is the standard Laplacian on the 2-dimensional torus T?,
this is known as Gauss’s circle problem, and better results than our answer
d > 1/6 have been shown from the number theoretical aspects (Remark
3). But we would like to emphasize here that we can treat more general
n and P and the order d,,,, = (m2n — m)~! can be determined only by
the dimension of the manifold and the order of the operator.

2. Main results

In the rest of this paper we always assume that n > 2 and P = P(D)
is an elliptic self-adjoint partial differential operators on T™ of order m
with constant coefficients. Then the symbol of P can be expressed as

P(€) = Pm(&) + Pm—1(&) + -+ - +po(§),

where p;(£) is a real polynomial of £ = (£1,&,,...,&,) of order j (j =
0,1,...m). We remark that m must be even and p,,(£) identically positive
or negative for ¢ # 0. We assume here the positivity, otherwise take —P
as P. Now, we set

Q={{eR%pn(f) <1}

We shall call its boundary 02 the cosphere of P, which is a real analytic
compact hypersurface in R", that is, submanifolds of codimension 1. Be-
fore stating our main results, we shall introduce indices for hypersurfaces
which were defined in Sugimoto [10] and [11] for another purpose.
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Definition 1. Let ¥ be a hypersurface in R™. Then, for a point p € ¥
and for a plane H (of dimension 2) which contains the normal line of ¥ at
p, we define the index v(X;p, H) to be the order of contact of the curve
YN H to the line TN H at p. Here T denotes the tangent hyperplane of
¥ at p. Furthermore, we define the indices v(X) and yo(X) by

v(X) = supsupy(Z;p, H), 70(X) = supinfy(Z;p, H).
p H p H

Remark 1. We have 2 < 7(2) < v(X) by definition. Equality Y(Z) =
v(X) holds when n = 2.

Hereafter & always denotes the cosphere of P, that is,
% ={{ eR";pm(¢) =1}

Then we have the following inequality:
Proposition 1 ([11;Proposition 2]). 2 < yo(E) < v(X) < m.

Remark 2. In the case m = 2, the case of Laplacian P = —A for instance,
we have 79(2) = 7(X) = 2. Even in the higher order case m > 3, this is
true when the Gaussian curvature of ¥ never vanishes.

We shall state our main theorems. In the following, N ()\) denotes
the number of eigenvalues of P which is not greater than A (counted with
respect to multiplicity), and |Q| the Lebesgue measure of ().

Theorem 1. We have the asymptotic distribution
(1) N(A) = (20) QA + O\ ~mea)
with a = 1/v9(X), hence with o = 1/m.

Remark 3. In the case when n = m = 2, Theorem 1 is an answer to
Gauss’s circle problem. In fact, A is an eigenvalue of —A if and only if
the Diophantus equation [27¢|2 = X has a solution { € Z™ (see Lemma
1 in Section 3). Hence we can know that the number of lattice points
inside the disk {£;|¢| < R} behaves like 7R? + O(R?/3) by Theorem 1.
This corresponds to classical results of Sierpinski [8]. There has been a
series of improvements to this result, replacing O(R?/3) by O(R*), where
k < 2/3. For example, Chen [1] proved k > 24/37. It has also been shown
that x = 1/2 is not possible (Landau [6]). The final result x > 1/2 is
conjectured but remained unsolved.
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Example 1. Suppose n >3, N € N. Let

P(E) = pan(€) = (€3 + -+ €2, — £2)2N 1 ¢4V,

Then y(3) = 4N, 70(X) = 2N, hence we have the asymptotic distribution
(1) with a = (2N)~1. For the proof of it, refer to [11;Example 1].

The cosphere ¥ in this example is not convex. But, Theorem 1 can
be improved if P has some convexity property. We set

Ye ={{ € R™;pm(§) + €1Pm—1(§) + €20m—2(8) + - - - + Empo(€) = 1},

where € = (€1,¢€3,... ,&m). We always assume that |¢| is sufficiently small
so that ¥, is a real analytic compact hypersurface.

Definition 2. The cosphere ¥ of P is called stably convex if there is
a > 0 such that 3, is convex for |¢| < a.

Remark 4. The stable convexity implies the convexity. If P is homoge-
neous, that is pp,_1(§) = -+ = po(€) = 0, the convexity is equivalent
to the stable convexity. If the Gaussian curvature of the cosphere never
vanishes, then it is stably convex. In fact, the curvature condition implies
the convexity (Kobayashi-Nomizu [5;Chap.7]) and this condition is stable
under the lower term perturbation. Accordingly the cosphere is always
stably convex if m = 2.

Theorem 2. If the cosphere of P is stably convez, we have the asymptotic
distribution (1) with o = (n — 1)/v(X), hence with a = (n — 1)/m.

Example 2. Suppose n >3, N € N. Let
p) =pan(€) =&Y + GV + -+ &2V

Then v(¥) = 70(X) = 2N, hence we have the asymptotic distribution (1)
with o = (n — 1)/2N.

Remark 5. In the case when the Gaussian curvature of the cospher ¥ never
vanishes, Theorem 2 was essentially proved by Hlawka [3].
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3. Proofs

We shall show Theorems 1 and 2 by proving the following sequence
of lemmata. We remark that the capital “C” (with some suffices) in
estimates always denotes a positive constant (depending on the suffices)
which may be different in each occasion.

We first notice that all f € L2(T™) has the Fourier series expan-
sion f(Z) = D pezn cre?™ < therefore Pf(z) = Y peczn cep(2mk)e2mike,
Hence we have ’

Lemma 1. The number X is an eigenvalue of P = P(D) if and only if
the Diophantus equation p(2m§) = A has a solution EeZ”.

Now, for € = (£1,€2, - .. ,Em), We shall denote by (2 the closed region
surrounded by Y., that is, '

Qe = {€ € R"; pm (&) + €1Pm-1(8) + €2Pm—2(§) + -+ + empo(§) < 1}
Especially we have
Qeny = {€ € R p(R(N)E) < A}
where
RO\ =Xm, ) =RN RN, RN)™™).

We may assume that ) is sufficiently large so that |e())| is sufficiently
small. Let x. be the characteristic function of Q.. From Lemma 1, we
easily obtain

Lemma 2. N()\) = Y ez Xe(n) (2TR(V) " 1k).

Let us fix a smooth positive function 1(z) which is supported in a
sufficiently small ball {z; |z| < a} and satisfies [¢(z) dz = 1. We define,
for R, > 0,

N(R,7)= Y [xe@rR™1) 77 p(r71)] (k).

kezm

By the argument of Friedrichs’ mollifier, we have easily
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Lemma 3. For >0, N, (R(A) —7,7) < N(X) < Ny (R(A) + 7, 7).

On the other hand, direct application of Poisson’s summation for-
mula to N (R, 7) yields

Lemma 4. N.(R,7) = (27)""|Qc|R" + Y kez(27) " R"%: (Rk)Y (27 7k).
k#0

In order to use Lemma 4 with ¢ = £()\), we shall estimate the dif-
ference between [2.(»)| and |Q]. By using Heaviside function Y (t), we
express them in the form of oscillatory integrals as

Q| = / Xe(n (€) d€
— / Y (1-2"1p(ROE)) de
_ in / / (tA-Pm(©=rr €)Y (1) dpde,

where

A(6) = RO) ™ Pm-1(8) + RQA) 2pm—2(&) + -+ - + R(X) "™ po(£).

Similarly we have

Q) = % / / £t (-Pm(O)Y (1) dtde.
Then, by Taylor’s formula,

lQE(/\)I - |Q|

_1 / / £it(1=pm(©))
27

X (-—im(g) + (itra(€))? / 1(1 — )eit0m(8) d9> Y (t) dtd¢
_ / 51— P (E))ra(€) dé
1 |
+[a-o) { 865 - 6x©) 42(0)7 df} ,
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where 6(t) is a formal expression of Dirac’s delta functlon The first term
of the line above is O (R(\)~ ?) since

[o0-pm@r@ i = [ reas |
=R(})? / (pm——2(£) + RA) 'pm—s(§) + -+ R(,\)—(m—z)po(g)) ds.
z

Here we have used the fact that m is even, hence [ pm—1(§)d% = 0.
Similarly, the second term is O (R()\)—z) as well since the integrand with
respect to 6 is essentially an integral of derivatives of rx(£)? over the
hypersurface ¥g.(x). Thus we have obtained

Lemma 5. Q.| =1[Q|+ 0 (R(A)‘z)

In view of Lemma 4, an estimate for the Fourier transform of the
characteristic function X, (f ) is needed for that for the error term. In fact
the following is true:

Lemma 6. Let o g n/2. Suppose

) X=(€)] < CA+ )=+,
where C' is independent of € and small ¢. Then we have (1).

~ To prove Lemma 6, we first note that ¢ is rapidly decreasing. | With
this fact and the estimate (2), the summation part of the equa,hty in
Lemma 4 is estimated as

> (2m) "RMXa(Rk)p(2nTE)
k€Z,k#0

<CR"™ ) (1+|Rk|)‘(1+°‘)(1+lrk|)‘N
keZ,k#£0

SCR”/ (1 + |REN -+ (1 + [rel) N de
[€]>1 B :

<CR" / [Rg|~(+) g 4 CR / Rg|~ O+ |rg| =N de
1<|gIL1/7 - J1/7<L|€| R

<C(R/m)"~ O+,
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where N > n— (14 a) and C is independent of £, R, and 7. Here we have
used n > 14 a. Applying this estimate and Lemma 5 together to Lemma.
4, we have

Ne()\) (R()\) + T, 7')
=(2m)~" (121 +0 (RY™)) (RO) £ )" + 0 (R £ 7)/r)"¢+))
=(2m)""QIR(N)"™ + O (TR(,\)n—l + (R(A)/T)n—(ua)) +0 (RO)™2)
=(27)""|QRA)™ + O (RN 17 7%7)

if we take 7 = R()\)~*/("~%), Here we have used the binomial expansion
(RE£T)"=R"+0 (TR’”“I) and n—1—a/(n—a) >n—2. Then we have
(1) by Lemma 3 and have completed the proof of Lemma 6.

Thus all we have to show is the estimate (2). Let I' be a conic
neighborhood of z = (0,...,0,1) and ¢(z) a smooth function which is
positve, homogeneous of order 0 for large |£|, and is supported in I'. It
suffices to show the same estimate for x.¢(¢) instead of X;(£) and we may
take I' sufficiently small in need. We shall express

Z:t-: NI'= {(ya he(y))7y — (y17y27' o 7y'n.—1) € U}7

where U C R™! is a neighborhood of the origin and h.(y) € C¥(U). We
remark that h. is real analytic with respect to € as well. Then we have,
by the change of variables z = (ty, the(y)) and integration by parts,

B0 = / e~ (z) dz

Q

1
:/ /e—itwnlﬁl(y-n+h5(y))ge(t,y) dtdy
o JuU

__ / o—iwnlél(wnthe () _ 9e(1,Y)
wnlél Ju y-n+he(y) |

i 1{/ ot (09:/0t)(t, )
_ e~ wwntlé|(y-nthe(y)) ZJe Y d }dt
wnl£|/o U y-n+he(y) Y

where ge(,y) = ©(ty, the(y))t"Hhe (y) — y - he(y)], w = €/1€] = (W', wn),
w' = (w1,ws,... ,wp_1), and n = w’/w,. We remark that g.(t,y) vanishes
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identically for small t. We may assume here that w,, is away from 0 since
integration by parts argument yields the better estimate than we need in
the direction w = (w’,0). By all of this, the estimate (2) is reduced to
that for the oscillatory integral of the type

L(t;n) = /U eMymthe-Wg(y)dy; g€ C3°(U).
That is, we have |
Lemma 7. Suppose, for some N,
(3) | [ (t;m)| < Colt| ™%,

where Cg = C Y 10 <n 10%9/0y*||Le(w) and C' > 0 is independent of t,
n, and small €. Then we have the estimate (2), hence the asymptotic
distribution (1).

In order to obtain (3), we shall use the following scaling principle for
oscillatory integrals:

Lemma 8. Let f(t) € C®°(R) be real-valued and let ((t) € C(R).
Suppose, forv > 2 and p > 0, B

@) >p on supp(.

Then we have

[ dt\ < C (el + 1¢Nz) 0,

where the constant C' > 0 depends only on v and L.

For the proof of this lemma, consult Stein [9, Chapter VIII, 1.2]. By
an appropriate change of coordinates and taking U sufficiently small in
need, we may assume |(0"he/0yY)(y)| = u > 0 for y € U and small ¢,
where v = 79(X). Hence, from Lemma 8, we obtain

<cl )

leel<1

0%g =1/ (D)

l / TR 5(y) dyy
AT
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for all y' = (y2,... ,Yn—1), therefore

L. (t;m)| < / ‘ / etynthe (W) g(y) dy, | dy’

< Cg|t|—1/‘vo(2).

We have thus proved the following lemma which implies Theorem 1 by
Lemma 7 and Proposition 1.

Lemma 9. The estimate (3) is true for a = 1/v(2).

On the other hand, when ¥ is stably convex, the map h. : U —
—hL(U) ¢ R™ ! is homeomorphism because of the compactness and the
real analyticity of ¥.. Then we can define 2. = z.(n) by the relation 1 +
h.(z.) = 0, otherwise I. has better estimate than we need by integration
by parts argument again. We set

I.(t;2) = /U EEWA () dy;  B(y;2) = he(y) — he(2) — K.(2) - (y — 2).

Hereafter we shall estimate I, instead of I, since |1, (¢; | = |I(¢; z.)|. For
this purpose, we rewrite it with the polar coordinates as

o
I(t;2) = Ge(l;z,w) dw;  G:(t;2,w) = / etFe(pizw) B (p; 2, w) dp,
Sn—2 0

where
Fe(p; 2,w) = he(pw +2) — he(2) — phi(2) -w, B(p; 2,w) = g(pw + 2)p™ 2.

For the sake of simplicity, we shall often abbreviate parameters z and w.
We split the function G.(t) into the following two parts:

G:(t) = /0 eF=)Bi(p,t)dp:  Bilp,t) = B(p)T (Itlﬂ_lﬂp),

Gﬁ(t):/ B0, 0)dp;  Balp,t) = Blo)(1 - W) (117 p),
0 O
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where the function ¥(p) € C*°(R) equals to 1 for large p and vanishes
near the origin. The estimate for the part G2(t) is easy. In fact, we have

G2(t)| < / 1Ba(p, )| dp,
0

(o o] o 1
<c, [ 12 a-w (147 ) 1dp
0
< Cylt] .
On the other hand, integration by parts yields
m .
G = [ O L) Bilo,t) do
0 , , :
for] =0,1,2,---. Here

_ 19
wF{(p) Op

and L* is the transpose of L. By induction, we can easily have

: N (s1)  1(sq)
N 1\ Fg . 'Fe 4 Br
(L) = (t) Zcq e e

where the summation » is a finite sum of r, q, 51, - , 84 > 0 which satisfy
7+81+ -+ 8g = I +q. The derivatives of F; have the following estimate:

Lemma 10. Suppose % is stable conver. Then there exist constants
C,C,,a > 0 such that the estimates " |

IF!(p)] > Cp"®-1,
IF&(p)| < Cup™™"|FL(p)|
hold for 0 < p, |2|, |e] < a, we S"2 andv=0,1,2---.
If we use Lemma 10 and the estimate

0" b
opr

(o) t)] < o,



132

we have, for a large number / and a constant b > 0

C o |plen) s grg
Gol< @Y [ | )G 00| do

Cy [ _a-
S'ﬁl%/b . 2 l'y(Z)dp

|t|”7(2

< Clt|~ 5,

We have thus proved

Lemma 11. If ¥ is stably convez, then the estimate (8) is true for a =

(n = 1)/7(%).

From Lemma 7, Lemma 11, and Proposition 1, we obtain Theorem 2

if we can prove Lemma 10. Since the proof of it is carried out essentially
by the same argument as used in Randol [7] and Sugimoto [10], we shall
omit it. (See [10;Lemma 2].)

10.

11.
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