A Remark on Finiteness and Duality of D-Modules

MOTOO UCHIDA

Osaka University, Graduate School of Science, Department of Mathematics

(内田素夫(大阪大学大学院理学研究科)) 30 September 1996

The purpose of this paper is to prove a theorem on finite dimensionality of the cohomology groups of analytic differential complexes on compact real manifolds. This generalizes the classical finiteness theorem for elliptic differential complexes.

In this paper, a manifold is always assumed to be paracompact. For sheaves and functors, we follow the notations of [KS]. For a sheaf \mathcal{F} on a topological manifold X, $\Gamma(\mathcal{F})$ denotes the set of global sections of \mathcal{F} , and $\Gamma_{\rm c}(\mathcal{F})$ of global sections with compact support. R Γ and R $\Gamma_{\rm c}$ denote their right derived functors.

1. Main Result

Let X be a complex manifold, $n = \dim_{\mathbf{C}} X$. Let \mathcal{O} denote the sheaf of holomorphic functions on X, Ω^n the sheaf of holomorphic n-forms on X, and \mathcal{D} the sheaf of rings of differential operators on X (of finite order).

Let T^*X denote the cotangent bundle of X.

For a coherent right \mathcal{D} -module \mathcal{M} on X, $\operatorname{Ch}(\mathcal{M})$ denotes its characteristic variety; $\operatorname{Ch}(\mathcal{M})$ is a \mathbf{C}^{\times} -invariant closed analytic subset of T^*X and $\dim(\operatorname{Ch}(\mathcal{M})) \geq n$ (see [SKK]). Let $\operatorname{Mod}(\mathcal{D}^{\circ})$ be the abelian category of right \mathcal{D} -modules, $\operatorname{D}^{\operatorname{b}}(\mathcal{D}^{\circ})$ its derived category with bounded cohomology. Let $\operatorname{D}^{\operatorname{b}}_{\operatorname{g,coh}}(\mathcal{D}^{\circ})$ be the full triangulated subcategory of $\operatorname{D}^{\operatorname{b}}(\mathcal{D}^{\circ})$ consisting of bounded complexes with good coherent cohomology groups. [We say that a \mathcal{D} -module \mathcal{M} is good coherent if, for any relatively compact open subset U of X, there exists a finite filtration G of $\mathcal{M}|_U$ by \mathcal{D} -modules such that

[Sai, 1.15].] For an object \mathcal{M}^{\bullet} of $\mathrm{D}^{\mathrm{b}}_{\mathrm{g,coh}}(\mathcal{D}^{\circ})$, $\mathrm{Ch}(\mathcal{M}^{\bullet})$ denotes the union of $\mathrm{Ch}(H^{k}\mathcal{M}^{\bullet})$, $k \in \mathbf{Z}$.

Let $D^b(X)$ denote the derived category with bounded cohomology of the abelian category of \mathbf{C}_X -modules, $D^b_{\mathbf{R}-c}(X)$ the full triangulated subcategory of $D^b(X)$ consisting of \mathbf{R} -constructible objects [KS, Sect.8.4]. For an object F of $D^b(X)$, SS(F) denotes the micro-support of F [KS, Sect.5.1]. If F is \mathbf{R} -constructible, SS(F) is then an \mathbf{R}_+ -invariant closed subanalytic subset of T^*X . (But we do not need this fact in this paper.)

For an object $(\mathcal{M}^{\bullet}, F)$ of $D^{b}_{g,coh}(\mathcal{D}^{\circ}) \times D^{b}_{\mathbf{R}-c}(X)$, $\mathcal{M}^{\bullet} \otimes F$ denotes the tensor product over \mathbf{C} and is an object of $D^{b}(\mathcal{D}^{\circ})$.

Theorem 1. Let $(\mathcal{M}^{\bullet}, F)$ be an object of $D^{b}_{g,coh}(\mathcal{D}^{\circ}) \times D^{b}_{\mathbf{R}\text{-}c}(X)$. Assume that, for any irreducible component V of $Ch(\mathcal{M}^{\bullet})$, $V \cap SS(F)$ is contained in the zero section T_X^*X if $\dim V \neq n$. Suppose $Supp(\mathcal{M}^{\bullet}) \cap Supp(F)$ is compact. Then every cohomology group of $R\Gamma(\mathcal{M}^{\bullet} \otimes F \otimes_{\mathcal{D}}^{L} \mathcal{O})$ and $RHom_{\mathcal{D}}(X; \mathcal{M}^{\bullet} \otimes F, \Omega^{n})$ is finite dimensional and

$$(1.0) \quad \mathrm{RHom}_{\mathcal{D}}(X; \, \mathcal{M}^{\bullet} \otimes F, \, \Omega^{n})[n] \longrightarrow \mathrm{Hom}_{\mathbf{C}}(\mathrm{R}\Gamma(\mathcal{M}^{\bullet} \otimes F \otimes^{\mathbf{L}}_{\mathcal{D}} \mathcal{O}), \, \mathbf{C})$$

is an isomorphism in $D^{b}(\mathbf{C})$. Hence, for any $k \in \mathbf{Z}$,

$$\operatorname{Tor}_{k}^{\mathcal{D}}(\mathcal{M}^{\bullet}\otimes F,\mathcal{O})$$
 and $\operatorname{Ext}_{\mathcal{D}}^{k+n}(X;\mathcal{M}^{\bullet}\otimes F,\Omega^{n})$

are vector spaces of finite dimension and dual to each other.

Remark. We say that $(\mathcal{M}^{\bullet}, F)$ is an elliptic pair if $Ch(\mathcal{M}^{\bullet}) \cap SS(F) \subset T_X^*X$ [SS]. In that case, Theorem 1 is proved in [SS]. On the other hand, if \mathcal{M}^{\bullet} is holonomic, $(\mathcal{M}^{\bullet}, F)$ satisfies the hypothesis of Theorem 1 for any object F of $D_{\mathbf{R}\text{-c}}^{b}(X)$.

Let M be a real analytic manifold of dimension n, X a complex neighborhood of M. Let T_M^*X denote the conormal bundle of M. \mathcal{A}_M denotes the sheaf of real analytic functions on M, and \mathcal{B}_M of hyperfunctions; \mathcal{A}_M and \mathcal{B}_M are $\mathcal{D}|_M$ -modules. Let

$$\mathcal{B}_M^{(n)} = \mathcal{B}_M \otimes_{\mathcal{A}} (\Omega^n \otimes \operatorname{or}_{M/X}),$$

where $\operatorname{or}_{M/X}$ is the relative orientation sheaf of M in X; $\mathcal{B}_{M}^{(n)}$ is a right $\mathcal{D}|_{M}$ -module.

As an immediate corollary of Theorem 1, we have the following finiteness and duality theorem of analytic differential complexes on compact real manifolds.

Corollary 2. Let M be a compact real analytic manifold of dimension n. Let \mathcal{M}^{\bullet} be an object of $\mathrm{D}^{\mathrm{b}}_{\mathrm{g,coh}}(\mathcal{D}^{\circ})$. Assume that, for any irreducible component V of $\mathrm{Ch}(\mathcal{M}^{\bullet})$, $V \cap T_M^* X$ is contained in the zero section if $\dim V \neq n$. Then, for any $k \in \mathbf{Z}$, $\mathrm{Tor}_k^{\mathcal{D}}(\mathcal{M}^{\bullet}, \mathcal{A}_M)$ and $\mathrm{Ext}_{\mathcal{D}}^k(M; \mathcal{M}^{\bullet}, \mathcal{B}_M^{(n)})$ are vector spaces of finite dimension and dual to each other.

Let E^k , $0 \le k \le k_0$, be holomorphic vector bundles over X and let

$$(1.1) \mathcal{O}(E^0) \xrightarrow{L_0} \mathcal{O}(E^1) \xrightarrow{L_1} \cdots \longrightarrow \mathcal{O}(E^{k_0})$$

be a differential complex of vector bundles, where L_k is a differential operator mapping $\Gamma(\mathcal{O}(E^k))$ to $\Gamma(\mathcal{O}(E^{k+1}))$. [For a holomorphic vector bundle E, $\mathcal{O}(E)$ denotes the sheaf of holomorphic sections of E.]

Let $\mathcal{M}^k = \mathcal{O}(E^k) \otimes_{\mathcal{O}} \mathcal{D}$ and

$$(1.2) \mathcal{M}^{\bullet} = \left[0 \longrightarrow \mathcal{M}^0 \xrightarrow{L_0} \mathcal{M}^1 \xrightarrow{L_1} \cdots \longrightarrow \mathcal{M}^{k_0} \longrightarrow 0 \right],$$

where L_k acts on \mathcal{M}^k by left multiplication; \mathcal{M}^{\bullet} is then an object of $D_{g,coh}^b(\mathcal{D}^{\circ})$. Then $R\Gamma(\mathcal{M}^{\bullet} \otimes_{\mathcal{D}}^{L} \mathcal{A}_{M})$ is represented by a differential complex

$$(1.3) 0 \longrightarrow \Gamma(M, E^0) \xrightarrow{L_0} \Gamma(M, E^1) \xrightarrow{L_1} \cdots \longrightarrow \Gamma(M, E^{k_0}) \longrightarrow 0$$

and $\operatorname{Tor}_{-k}^{\mathcal{D}}(\mathcal{M}^{\bullet}, \mathcal{A}_{M})$ is its k-th cohomology group, where $\Gamma(M, E^{k})$ denotes the space of analytic sections of E^{k} on M. For a vector bundle E, let us set $\mathcal{B}^{(n)}(E) = \mathcal{O}(E) \otimes_{\mathcal{O}} \mathcal{B}_{M}^{(n)}$. RHom $_{\mathcal{D}}(M; \mathcal{M}^{\bullet}, \mathcal{B}_{M}^{(n)})$ is represented by

$$0 \longleftarrow \Gamma(M, \mathcal{B}^{(n)}(E_0^*)) \stackrel{L_0}{\longleftarrow} \Gamma(M, \mathcal{B}^{(n)}(E_1^*)) \stackrel{L_1}{\longleftarrow} \cdots \longleftarrow \Gamma(M, \mathcal{B}^{(n)}(E_{k_0}^*)) \longleftarrow 0,$$

where E_k^* is the dual bundle of E^k and L_k acts on $\mathcal{B}^{(n)}(E_k^*)$ by right multiplication; $\operatorname{Ext}_{\mathcal{D}}^{-k}(M; \mathcal{M}^{\bullet}, \mathcal{B}_M^{(n)})$ is its k-th homology group. The pairing of $\operatorname{Tor}_{-k}^{\mathcal{D}}(\mathcal{M}^{\bullet}, \mathcal{A}_M)$ and $\operatorname{Ext}_{\mathcal{D}}^{-k}(M; \mathcal{M}^{\bullet}, \mathcal{B}_M^{(n)})$ is induced from

$$\Gamma(M, E^k) \times \Gamma(M, \mathcal{B}^{(n)}(E_k^*)) \to \mathbf{C}, \qquad (u, v) \mapsto \int_M \langle u, v \rangle,$$

 $\langle u, v \rangle$ being the pairing of E^k and E_k^* .

Remark. If (1.3) is an elliptic complex of vector bundles on M, for \mathcal{M}^{\bullet} given by (1.2), $Ch(\mathcal{M}^{\bullet}) \cap T_M^*X$ is contained in the zero section. The converse is not true in general.

2. Proof of Theorem 1

We can assume that $H^k \mathcal{M}^{\bullet} = 0$ for any $k \neq 0$; in what follows, \mathcal{M} denotes a coherent right \mathcal{D} -module on X.

Let $\mathcal{M}^* = \mathcal{E}xt^n_{\mathcal{D}}(\mathcal{M}, \mathcal{D})$; then \mathcal{M}^* is a holonomic left \mathcal{D} -module, and we have an injective \mathcal{D} homomorphism $\mathcal{E}xt^n_{\mathcal{D}}(\mathcal{M}^*, \mathcal{D}) \to \mathcal{M}$. Let $\mathcal{M}^{**} = \mathcal{E}xt^n_{\mathcal{D}}(\mathcal{M}^*, \mathcal{D})$, and $\mathcal{N} = \mathcal{M}/\mathcal{M}^{**}$; then \mathcal{M}^{**} is a holonomic \mathcal{D} -module, and the sequence

$$(2.0) 0 \to \mathcal{M}^{**} \to \mathcal{M} \to \mathcal{N} \to 0$$

is exact. Since $\mathcal{E}xt^{n-1}_{\mathcal{D}}(\mathcal{M}^{**}, \mathcal{D}) = 0$ and $\mathcal{E}xt^n_{\mathcal{D}}(\mathcal{M}, \mathcal{D}) \to \mathcal{E}xt^n_{\mathcal{D}}(\mathcal{M}^{**}, \mathcal{D})$ is an isomorphism, we see that $\mathcal{E}xt^n_{\mathcal{D}}(\mathcal{N}, \mathcal{D}) = 0$. Hence, by [K2, 2.11], $\mathrm{Ch}(\mathcal{N})$ has no irreducible components of codimension n. Since $\mathrm{Ch}(\mathcal{N}) \subset \mathrm{Ch}(\mathcal{M})$, by the hypothesis of the theorem, $\mathrm{Ch}(\mathcal{N}) \cap \mathrm{SS}(F)$ is contained in the zero section; therefore (\mathcal{N}, F) is elliptic in the sense of [SS]. Moreover, by the definition of \mathcal{N} , if \mathcal{M} is a good coherent \mathcal{D} -module, \mathcal{N} is also good coherent.

Since Theorem 1 is proved for elliptic pairs in [SS, Part 1], by exact sequence (2.0), we may assume from the beginning \mathcal{M} to be holonomic. If \mathcal{M} is holonomic, by Kashiwara's theorem [K1], $\mathcal{M} \otimes_{\mathcal{D}}^{\mathbf{L}} \mathcal{O}$ is **C**-constructible. Hence $(\mathcal{M} \otimes_{\mathcal{D}}^{\mathbf{L}} \mathcal{O}) \otimes F$ is an **R**-constructible sheaf on X. Its support being compact by assumption, by [KS, Prop.8.4.8], $H^k R\Gamma((\mathcal{M} \otimes_{\mathcal{D}}^{\mathbf{L}} \mathcal{O}) \otimes F)$ is finite dimensional for all $k \in \mathbf{Z}$. In the same way, the **C**-constructibility of $R\mathcal{H}om_{\mathcal{D}}(\mathcal{M}, \Omega^n)$ yields the finite dimensionality of $H^k R\Gamma(R\mathcal{H}om_{\mathcal{D}}(\mathcal{M} \otimes F, \Omega^n))$. This completes the proof of the finiteness part.

We now prove (1.0) to be an isomorphism for a holonomic \mathcal{D} -module \mathcal{M} , assuming $\operatorname{Supp}(\mathcal{M}) \cap \operatorname{Supp}(F)$ is compact. Let $\operatorname{D}_{h}^{b}(\mathcal{D}^{\circ})$ denote the full triangulated subcategory of $\operatorname{D}^{b}(\mathcal{D}^{\circ})$ consisting of bounded complexes with holonomic cohomology groups. Letting $\operatorname{DR}(\mathcal{M}) = \mathcal{M} \otimes_{\mathcal{D}}^{L} \mathcal{O}[-n]$ for an object \mathcal{M} of $\operatorname{D}^{b}(\mathcal{D}^{\circ})$, we have first:

Lemma 2.1. Let \mathcal{M} be an object of $D_h^b(\mathcal{D}^\circ)$, F of $D_{\mathbf{R}\text{-}c}^b(X)$. Then there is an isomorphism

(2.1)
$$\mathrm{DR}(\mathcal{M}) \otimes F \cong \mathrm{D}' \, \mathrm{R} \mathcal{H} om_{\mathcal{D}}(\mathcal{M} \otimes F, \, \Omega^n),$$

where $D' = R\mathcal{H}om_{\mathbf{C}}(\bullet, \mathbf{C}_X)$.

The proof will be given later.

Since $R\mathcal{H}om_{\mathcal{D}}(\mathcal{M}\otimes F,\Omega^n)$ is **R**-constructible, from (2.1), we have

$$D'(DR(\mathcal{M}) \otimes F) \cong R\mathcal{H}om_{\mathcal{D}}(\mathcal{M} \otimes F, \Omega^n).$$

By the Verdier duality, we get

$$R\Gamma (R\mathcal{H}om_{\mathcal{D}}(\mathcal{M} \otimes F, \Omega^{n})) [n] \cong RHom_{\mathbf{C}}(R\Gamma_{c}(DR(\mathcal{M}) \otimes F), \mathbf{C})[-n]$$
$$= RHom_{\mathbf{C}}(R\Gamma_{c}(\mathcal{M} \otimes_{\mathcal{D}}^{\mathbf{L}} \mathcal{O} \otimes F), \mathbf{C}).$$

This completes the proof of Theorem 1.

QED

Proof of Lemma 2.1. If $F = \mathbf{C}_X$, this duality formula is contained in [KK] and [M2], and we have

(2.2)
$$\mathrm{DR}(\mathcal{M}) \cong \mathrm{D}' \, \mathrm{R} \mathcal{H}om_{\mathcal{D}}(\mathcal{M}, \, \Omega^n).$$

Let $C = R\mathcal{H}om_{\mathcal{D}}(\mathcal{M}, \Omega^n)$; then, by Kashiwara's theorem [K1], C is C-constructible. Hence

$$D'(D'C \otimes F) \cong R\mathcal{H}om_{\mathbf{C}}(F, C)$$

(see [KS, 3.4.6]), and, since $D'C \otimes F$ is **R**-constructible,

$$D'C \otimes F \cong D'R\mathcal{H}om_{\mathbf{C}}(F, C).$$

By (2.2), we get

$$DR(\mathcal{M}) \otimes F \cong D' R\mathcal{H}om_{\mathbf{C}}(F, C).$$

QED

References

- [K1] Kashiwara, M., On the maximally overdetermined systems of linear differential equations, I, Publ. RIMS, Kyoto Univ, 10 (1975), 563–569.
- [K2] Kashiwara, M., *B-functions and holonomic systems*, Invent. Math. **38** (1976), 33–53.
- [KK] Kashiwara, M. and Kawai, T., On holonomic systems of microdifferential equations, III, Publ. RIMS, Kyoto Univ, 17 (1981), 813–979.

- [KS] Kashiwara, M. and Schapira, P., Sheaves on Manifolds, Springer-Verlag, 1990.
- [Kw] Kawai, T., Finite dimensionality of cohomology groups attached to systems of linear differential equations, J. Math. Kyoto Univ. 13 (1973), 73–95.
- [M1] Mebkhout, Z., Théorèmes de dualité globale pour les D-modules cohérents, Math. Scand. **50** (1982), 25–43.
- [M2] Mebkhout, Z., Théorèmes de bidualité locale pour les D-modules holonomes, Ark. Mat. **20** (1982), 111–124.
- [Sai] Saito, M., Induced D-modules and differential complexes, Bull. Soc. Math. France 117 (1989), 361–387.
- [SKK] Sato, M., Kawai, T., and Kashiwara, M., Microfunctions and pseudodifferential equations, Lect. Notes in Math. 287, Springer, 1973, pp. 265–529.
- [SS] Schapira, P. and Schneiders, J.-P., *Index Theorem for Elliptic Pairs*, Astérisque **224**, Soc. Math. France, 1994.