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On Boundary Value Problems for Micro-hyperbolic

Systems of Differential Equations

MoToo UcCHIDA

Osaka University, Graduate School of
Science, Department of Mathematics

NHEZER (RRRERFREFHER)

In [KK], Kashiwara and Kawai formulate boundary value problems for
elliptic systems of differential equations from a microlocal point of view, where
they describe the obstruction of extension beyond the boundary in terms of a
system of micro-differential equations induced on the boundary. In this short
paper, we prove the same formula as established in [KK]| for (semi-)micro-
hyperbolic systems of differential equations. This enables us to understand
boundary value problems for elliptic systems and for semi-hyperbolic systems
in a unified manner.

The results proved in this paper! are more or less known to specialists, but
are not found in the literature. '

Notations. In this paper, we freely use the notations of [KS1] for sheaves
and functors. For a complex manifold X, T* X denotes the cotangent bundle
of X. Ox denotes the sheaf of holomorphic functions on X, Dx the sheaf of
rings of differential operators, and £x the sheaf of rings of microdifferential
operators. If M is a closed real submanifold of X, T, X denotes the conormal
bundle of M, 7y : T§; X — M the projection to the base space. We denote
by H the Hamiltonian map T*T*X — TT*X. If M is a real submanifold of
X, H induces an isomorphism T*7T5 X — +T*X, which is also denoted

T3
simply by H.

lIts original version is in Research Reports in Mathematics 96-04, Osaka University
(March 1996). The contents of this paper are not related to the author’s seminar talk
at RIMS; the author would like to thank the editor of this volume who has given the
opportunity of reproducing here the preprint.
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1. Main Theorems

Let M be a real analytic manifold of dimension n > 1, N a submanifold
of M of codimension 1 defined by equation f = 0 for a real-valued analytic
function f with df|xy # 0. Let Z, denote the closed subset {f > 0} of
M; then Z, is a real analytic submanifold of M with boundary. We set
N+t = {k-df(z) | x € N, k> 0}; then N* C THM. Let X be a complex
neighborhood of M, Y a closed complex submanifold of X of codimension 1
such that M N'Y = N. Denote by ¢ the closed embedding ¥ — X.

Let M be a coherent Dx-module. Ch(M) denotes the characteristic variety
of M. We assume the following conditions :

(A.1) ¢:Y — X is non characteristic for M.
(A.2) At any point p of (T5; X NTxX \ N) N Ch(M),

(L1) ~H(x*df) ¢ Co(Ch(M), Zy xar T3 X) T, X,

where 7 : TJEX — M and 7* : T:(p)M — T:TJ’\'}X.

In the right-hand side of (1.1), Cp(Ch(M), Z; x Th;X) denotes the nor-
mal cone at p (cf. [KS1, Def.4.1.1]), which is a closed cone in T,7*X, and
Cp(-, -)/T,T5; X the image of the normal cone in (TT;.; XT*X )p for short.

Let (TxX)* be an open subset of Tx X defined by (T X))t = ¢ }(NT),
with ¢ being the canonical projection T X — TN M. Let %/ : T*X xx Y —
T*Y the induced map of ¢, p: T X — TxY the projection induced from %’
on N.

Let M = Ex ®p-1p, ™ M, with 7 : T*X — X. Denoting by ¢*M the

—~—

induced £y-module of M on Y, we have :

Lemma 1.1. If we assume (A.1) and (A.2), there exists a coherent Ey -mod-

ule Nt defined on TXY \ N and an Ey-homomorphism N+ — ©* M such
that

1%

pE(TH X)+NCh(M)Np~1(q)
for any € TRXY \ N.

Let B be the sheaf of hyperfunctions on M, Cy the sheaf of microfunctions
on N (cf. [SKK]). Let orpjas be the relative orientation sheaf of N in M as
C-module.
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Theorem 1.2. Assume (A.1) and (A.2). There is an isomorphism
(1.3) 'RFZ+RH0mDX (M, BM)IN X OI‘N|M[ 1] = RﬁN*RHong (N+, CN),

where iy : THY \ N — N.

Remark 1. Theorem 1.2 is first proved for elliptic Dx-modules by Kashiwara
and Kawai [KK]. Note that (A.1) and (A.2) are automatically satisfied if M is
elliptic. Let (z1,...,zy) be a system of local coordinates of M, Z, = {x; >
0}. A classical example of non-elliptic differential operators which satisfy
condition (A.2) is D? — z¥A(z, D), with k € Z, k > 2, where D; = 8/9x;
and A(z, D) is a differential operator of order 2 such that [z1, A] = 0 and
its principal symbol o(A) is negative valued on T3, X NTxX \ p~1(0n), On
being the zero section of TxY (i.e. o(A)(x, in') < 0 if ’ # 0).

Remark 2. Condition (1.1) is an analogue of micro-hyperbolicity [KS2] and
naturally appears in microlocal study of boundary value problems (cf. [S2,
SZ)). It is well known that, if we assume

+H(n*df) ¢ Cp(Ch(M), Zy xpr Ty X) /T, Ths X
at p € Ty X NTx X, this entails propagation of regularity up to the boundary

point p from the positive side of N (see [Kt2, S1, S2, SZ]).

Let Aps be the sheaf of real analytic functions on M. In place of (A.1) and

(A.2), consider the following slightly stronger assumption. ((B.1) is the same
as (A.1).)

(B.1) ¢ : Y — X is non characteristic for M.

(B.2) ¢ is micro-hyperbolic for M at all p € T3, XNTH% X\ N [KS2, Def.2.1.2]:
For both =+,

+H(r*df) ¢ C,(Ch(M), Ti; X)/T, T X.

Theorem 1.3. Assume (B.1) and (B.2). There is an isomorphism
(1.4) RFZ+RH0mDX (M, AM)|N &® orN|M[ 1] = RﬁN*RHong (N+, CN)

as well as isomorphism (1.3), where Nt is the coherent Ey -module on T, Y\ N
gwen i Lemma 1.1.
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2. Proof of Theorem 1.2 and 1.3

As in [KK], the proof of Theorem 1.2 is divided into two steps. In the
first step, we relate the left-hand side of (1.3) to a differential complex with
coefficients in Cx|x induced from M. In the second step, proving Lemma 1.1,
we complete the proof of Theorem 1.2.

Let us recall the notion of the £x-module Cz_|x due to Kataoka [Kt1] and
Schapira [S2]. Following [S2], let

CZ+|X = phom(CZ+, Ox) & OI‘MIX['IZ].

Then all the cohomology groups H’“(CZ+|X), k # 0, are zero and H°(Cz, x)
is an £x-module. We identify Cz,|x with its zero-th cohomology H °Cz,1x)-
For the £x-module Cy|x, refer to [KK], [KS2] and also [S1, S2]. (In this
paper, we follow the definition of [KK, KS2] : Cyjx = H"un(Ox) ® ory|x-)
We prepare two lemmas.

Lemma 2.1.
(1) R?T*CZ+|X|M = RFZ+BM.
(2) supp(Cz,|x) NTHX C (THX)*T.
(3) There is an Ex-homomorphism Cnix ® oryjm — Cz,|x, and this is
an isomorphism on (T X)*. |

For the proof, see [Kt3, Sect.4] and [S2, S3].
Lemma 2.2. If we assume (1.1) at a point p of Tay X N TN X, we have

RHome, (Mv, CZHX)ITﬁX =0

in a neighborhood of p.
Proof. (Cf. the proof of Corollary 3.3 of [SZ].) Let g be a real-valued smooth
function defined on X such that gy = f. Weset h =gom, with7n: T*X —
X. From (1.1), we have

—H(dh) ¢ Cp(Ch(M), Z1 xpr Ti X).
Hence we can find an open subset U of T*X so that U N Ch(M) = &,

—H(dh) ¢ C,(T*X\ U, Zy xp Ty X),
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and —H(dh) ¢ C,(T*X\U, U). Let T, X denote the micro-support SS(Cz, )
of the sheaf Cz, on X (cf. [KSL, Sect.5.1]). Since Ty X C Z; xpy TH X UU
on a neighborhood of p, we have —H(dh) ¢ C,(T* X \ U, T} _X). This yields

—H(dh) ¢ Cp(Ch(M), T X).

Since

SS(RHomp, (M, Cz,.1x)) C C(Ch(M), TZLX),
it follows from the definition of micro-supports that

RF{hzo}RHOm’DX (M, CZ+|X)|{h=0} =0

in a neighborhood of p. Since C, . |x is supported on T}‘+X and T;+X C {h>
0}, we have

RHomp, (M, Cz,x)|(h=0y = RT (h>0)RHomp, (M, Cz, x)|(h=0) = 0.

Q.E.D.

Since Cz, is cohomologically constructible, if we set
F = RHO’ITLDX (M, Ox),
it follows from [KS1, Prop.4.4.2] that

Rm«RT 1y RHomp, (M, Cz, 1x)|v 2 RsRT 1y phom(Cz, , F)|n[n]
= RHomc(Cz, , Cx) ® F|n[n]

ZFRCz NN
= 0.

Hence, from Lemma 2.1, we have

RTz, RHomp, (M, By)|n = RrxRHompy (M, Cz, 1x)|n
— R« RT 74\ x RHomp (M, Cz, )N

=~ Rl (R’Homgx (MV, CZ.,.]X)IT]’\';X\N) ’
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where 7/ : T X \ N — N. It then follows from Lemma 2.1(2), (3) and 2.2
that

RHomeg, (M, CZ+|X)lTﬁX\N = RF(T;SX)JF (RHomg, (M, CZ+|X)‘TﬁX\N)
= RF(T;EX)JFRHO’ITL(;X (M, CN|X) & OrN|M -
Thus we have
(2.0) RI'z,RHomp, (M, Bu)|n ® ornm
= R,RT 4 . RHome, (M, Cnix).
Since T3 X N Supp(M) C TEX, we have

the right-hand side of (2.0)
= Ranx [Rp*RP(Tﬁx)JrRHO’ITLgX (M, CN|X)‘T;\,kY\N]

= Ry« [Rpi (RHomgX (M, CN}X)‘(T§X)+) |T§Y\N] )

where we denote by pt : (THX)t — TXY the restriction of p. Hence, in
summary, we have?

(2.1) RI'z, RHomp, (M, Bar)|n Q ornim
>~ RinxRpt (RHomgX (M, CNIX)I(TEX)JF) :
In the rest of this section, we prove
(22)  Rpt (R’Homgx (M, Cxix)| (T;X)Jr) [1] & RHome, N'*, Cy)
on TXY \ N. Combining (2.1) and (2.2), we get isomorphism (1.3).

We prepare two lemmas for the second part of the proof. Lemma 1.1 follows
from the following Lemma 2.3 with I = TxY \ N.

2 Takeuchi also proves (2.1) in the case where (B.1) and (B.2) are fulfilled; see K.
Takeuchi : Edge of the wedge type theorems for hyperfunction solutions, preprint (Jan.
1996). If we assume (B.2), M — X is non characteristic for F on N*(C T*M), and we
immediately obtain (2.0) by applying Theorem 6.7.1 of [KS1] (see also Corollary 6.7.3).
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Lemma 2.3. Let I be a conic open subset of Ty Y \ N. Let M be a coherent
Ex -module on a conic neighborhood of p~1(I), with p : THX — TxY . Assume
the following :

(a.1) ¢ : Y — X is non characteristic for M on a neighborhood of I in the
sense of [SKK, II, Def.3.5.4].
(a.2) For a conic neighborhood U of p~1(I) N T, X,

UN(THX)" N Supp(M) = 2.
Then (1) p is finite on p~*(I) N (T X)* N Supp(M). (2) If we set
NT = ps((Ey—x ®ex M) ® Cirxx)+)s
N7 is a coherent Ey|r-module.

(We omit the proof. Cf. [SKK, II, Thm.3.5.3].)

Lemma 2.4. Let M, N be as in Lemma 2.3. Then there exists a commu-
tative diagram on I

RHong (N+, gy) — Rpi(RHOMgX (M7 ‘S’X««Y)|(T;\§X)+)[1]

T T

RHome, (¢* M, E&y) ——  Rpx(RHome, (M, Exey)|px )]

and every horizontal arrow is an isomorphism, where p* = p|(THX)™T.

Proof. This follows from the definition of N* and [SKK, II, Thm.3.5.6].
QE.D.

o~

Since N+ is coherent over Ey | xy and pt is finite on Supp(M)N(THX)™T,
N
by Lemma 2.4, we have

RHome, (N, Cn) = RHome, (N, &) ®E, Cn
= phRHome, (M, Exey )| px xye] ©F, Cn 1]
=~ pE[RHome, (M, Exy) @t x)+ On-rey, p7ICN][L].
Using the £x-homomorphism Ex .y Rp-1g, p~ICn — Cnix [KK, II], we have
RHome, (N, Cn)
(23) = pLIRMomey (M, Exy ®Fg, p7'Cx)l g 111
— ph[RHome, (M, Cnix)l gt xy 1[1-
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Let g € TxY \ N. For k € Z, looking at the stalk on g, we have from (2.3)
5xt§'y (Nq+7 Cng) — @ &Utgil(jva’ (Cnix)p)-
pE(TH X)+NSupp(M)Np=1(q)

It follows from the division theorem for the £x-module Cyx [KK, II, Prop.3;
KS2, 6.3.1] and the definition of Nt that this is an isomorphism for any
'k € Z; therefore (2.3) is an isomorphism in DP(T%Y \ N). This completes the
proof of Theorem 1.2.

Proof of Theorem 1.3. If v is micro-hyperbolic for M at peTHX xu N, we
have [KS2]

Since this holds at all p € (T3;X \ M) xpr N by assumption (B.2), we have
an isomorphism '

RFZ+RH0mDX (M, AM)!N = RFZ_I,RHOm’DX (M, BM)‘N-
Combining this and (1.3), we get (1.4). ' Q.E.D.

3. Application

Let M, = Z, \ N. Isomorphism (1.3) gives a description of the structure
of the sheaf £xtk, (M, T'p Bar)|n in terms of a system of micro-differential
equations on the boundary.

Theorem 3.1. Let M be a coherent Dx-module. Assume (A.1) and (A.2).
Assume moreover S:Ut%x (M, Ap) =0 for allk > 0. Then

(3.1) Extd (M, Tar, Bu)|n = Ker(Homp, (9* M, By)
— ﬁN*Hong (N+, CN)),

where o* M = Dy _x Q,-1p, ¢ M and Nt is the coherent Ey-module on
TNY \ N given in Lemma 1.1, and

(3.2) 5131}%)( (./\/l, PM+BM)|N = HkaTN*RHOng (QO*M/N+, CN)
for k # 0.

Proof. Let us first recall that, if ¢ : Y — X is non characteristic for a Dx-
module M, we have a canonical isomorphism

RI'NRHomp, (M, Bur)|n ® oryjm[1] = RHomop,, (¢* M, Bn)
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[SKK, II, Cor.3.5.8]. By the proof of Theorem 1.2, the following diagram is
commutative :

RI'NRHomp, (M, By)|n ® oryjm[1] —— RaysRHome, (QD*MV, Cn)

l l

RFZ+RHO’ITLDX (M, BM)(N ®OI’N|M[1] T;;—* RﬁN*RHong (N+, CN)

Hence, from the Mayer-Vietoris cohomological sequence, we have a long exact
sequence

- — Exth (M, Tar, Bur)|n ® oy — Exth (9* M, By)
— H*Ran«RHome, (N, Cn) — - - -,
where the second arrow is factorized as follows :
Exth (p*M, Byn) = H*RiyxRHome, (9* M, Cn)
B, H*RinsRHome, (NT, Cy).
Since Sa:t%y (@*M, Ay) = 0 for k > 0 by assumption, « is surjective for all

k € Z and is an isomorphism for k£ > 0. On the other hand, since N7 is a
direct summand of ¢* M as an Ey-module, 3 is surjective and

Ker(B) = H*Rin«RHomeg, (w*ﬂ/N+, Cn).

Hence, using an isomorphism oryy = Cn (see Remark 1 below), we obtain
(3.1) and (3.2). Q.E.D.

Remark 1. The following diagram is commutative and every vertical arrow is
an isomorphism :

CMJr EE— CZ

l l

RHomC(CZ+, CM) _— RHomC(CM+, CM)

+

Hence we have an isomorphism 7 : Cny — oryas such that

Cz, — Cy —— Char, [1]

! I" l

RHomc(CM+, CM) T— OrNIM —_— RHomC(CZ+, CM)[l]
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becomes commutative. (This corresponds to choosing a non-degenerate sec-
tion df of Th M as positive orientation.) Note that the following diagram is
then commutative for F € Ob(DP(M)) :

R, Fln _en, RI'y, F|n ® oryim —

|+

RHomc(Cum, , F)In —— RHomg(orna[-1], F)ln =

C— RFNFIN[1]®OI‘N|M

E

__§_> RFNF|N[1]®OI‘§’M

with or\](” y = Homg(ory|a, Cn), which is canonically isomorphic to oryas-
(The topological boundary value morphism for F is defined [S2, S3] as anti-
clockwise composition of morphisms, from RI'a7, F|n to RT'n F| N1 ]®01%I e
in this diagram.) |

Remark 2. For single differential equations, Oaku [O, Sect.3] extends (3.1) to
the case where condition (A.2) is satisfied locally on TxY. If N* = 0 in that
case, this has been first treated by Kaneko [Kn)].
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