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Difference equation in the space of
holomorphic functions of
exponential type and Ramanujan
summation
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1 Introduction
In this report we will consider the following difference equation:
R(z + 1) — BR(x) = A(z).

In [2] R.C.Buck studied this difference equation in the space of entire func-
tions of exponential type. Using Avannisian-Gay transform and Fourier-
Borel transform of analytic functionals with non-compact carriers, we will
study difference equations in the space of holomorphic functions of expo-
nential type defined in the right half plane. Our result is a generalization
of C.R.Buck’s result. For # = 1, our work is closely related to Ramanujan
summation studied by Candelpergher,Coppo and Delabaere ([3]). In §5
we will explain the relation between our results and their results. In final
section we will apply our results to Ramanujan summation.

2 Candelpergher-Coppo-Delabaere’s method

According to [3], we introduce Candelpergher-Coppo-Delabaere’s method
to solve the following difference equation :

R(z + 1) — R(z) = A(z), (D)



2-1. Formal series expansion of solution to (D)
E denotes the following infinite differential operator(translation opera-
tor):
o0 811,

E:eaz:Z—m

Ef@) =3 Z @) = flz+1).
n—0
Using operator F, difference equation
R(x + 1) — R(x) = A(z)
becomes to
~(I — e*)R(z) = Alz),

where I denotes identity operator. Hence we have

1 Oy
€= — IA(:E) Teds — [

Now we use following Taylor expansion

R(z) = 8, A(z).

1+ZB’“’c (2 < 2),

where By denotes Bernoulli number. For example,

1 1
B, = Y By = 6
For the details of Bernoulli numbers, we refer the reader to [4]. Making
use of this Taylor expansion, we have

O _

I+Z )0 LA(x)

I

- /A(x)dz+z Zk 551 A(x).

This is formal series expansion of the solution to difference equation (D).
Example 1.(Stirling’s formula [4]) Put A(z) = logz. R(z) = logT'(2)
satisfies the difference equation R(z + 1) — R(z) = logz. We have

IOgF(Z)“ZIOgZ‘Z-I-C——ilogz-!—Z (—1)F 2, Ft1

?

k(k —1)
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where C is a constant (= J log 2).

2-2.Integral representation of the solution to difference equa-
tion (D).
Suppose that A(z) has Laplace integral representation :

Alz) = L e A(2)dz

where < is suitable countour. Then we have
R(z) = / Az)dz + Z =0 A
= z)dx + 8 = [ ez Az)dz
[ Ay (3 3 L e A)
= /A(a;)dx+ Z / Ye-le 22 A(2)dz
k=

- [ (D)

This is the integral representation of the solution of the difference equation(D).

Example 2(Binet’s formula [4]) We put A(z) == ’(/J( ) = (( )) satisfies
difference equation R(z + 1) — R(z) = —. In this example A(z) =1 and

v = [0,00). So we have

P(z) = logz — /Ooo ( LI 1) e *dt, (Re(z) > 0).

1—et ¢

The relation between the solution of difference equation (D) and Ra-
manujan summation will be explained in §5.

3 Transformations of analytic functionals
with non-compact carriers

Let L = [a,00) + /—1[—b,b]. L, denotes the ¢ neighbourhood of L.
We introduce following test function space.

Q(L; 1) = limindeso g>0@Qb(Le : 7+ €'),
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where Qp(L, : T+€’) denotes the space of functions which are holomorphic
in the interior of L. , continuous in the closure of L. and satisfy following
estimate:

suprer, | f(£)e Y] < +o0.

@' (L : 7) denotes the dual space of Q(L : 7). The element of Q'(L : 7) is
called analytic functional carried by L and of type 7. For T' € Q'(L : 7)
we define Fourier-Borel transform T'(z) as follows; '

T(z) = (T}, ™), (Re(z) > 7).

Exp((r,00) + v/—1R; L) denotes the space of holomorphic functions F'(z)
defined in the right half plane Re(z) > 7 satisfying following estimate:
Ve > 0,Ve' > 0,3C. e >0,

|F(2)] < C’E,e:eHL(z)*s"", (Re(z) > 1+ €').

Following theorem characterizes Fourier-Borel transform of Q'(L; 7).

Theorem 1([5]) Fourier-Borel transform is a linear topological iso-
morphim from @'(L : 1) to Exzp((r,00) + v—1R : L).

(Remark) The theory of analytic functionals with non-compact carrier
is closely related to that of hyperfunction with exponential growth([8]).

If 7 < 1and 0 < b < 7, then we can define Avanissian-Gay transform

Gr(w) as follows:
1

1 — wet

GT(w) = (7}:7 >

Avanissian-Gay transform G7(w) has following properties.
Proposition 2([1],[6])
(1) Gp(w) is holomorphic in C'\ exp(—L).
(2)
0 ~
Gr{w) ==Y T(nyw™, (Jw] > e7?).
“n=1

(3) Ve > 0,Ve' >0,3Cce >0

Grw)] < Copl| ™, (b+e < Jarg(w)| < 7).
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(4) (Integral representation of T'(z))

_ 1

T(z) = —— “He *dt.

() 2m+/—1 JoL. Gr(e™)e

Ho(C\exp(—L) : T) denotes the space of holomorphic functions which

satisfy (1) (2),(3) in Proposition 2.

Following Carlson’s theorem is an immediate consequence of Theorem
1 and Proposition 2.
Theorem 3(Carlson [6]) Suppose that r < 1 and F(z) € Ezp((r, 00) +
vV—1R : L) satisfies following condition:

F(n)=0, (n=1,2.).
If 0 < b < m, then F(z) vanishes identically.

To end this section we give the following proposition which character-
izes the sequences {F'(n)}®,.
Proposition 4(Leroy-Lindelof [7]) Suppose that 7 < 1,0 < b < .
For sequence {A(n)}%, following statements are equivalent.
(1) There exists F(z) € Exzp((r,00) + v/~1R : L) such that A(n) =
F(n),(n=1,2,..).
(2)3°52, A(n)w™ is analytically continued to C'\ exp(—L) and satisfies
the conditions (3) in Proposition 2.

(Remark) We call F(z) in prop.4 interpolating function for the se-
quence {A(n)}% . By virtue of Carlson’s theorem, there exists at most
one interpolationg function for the sequence {A(n)}®,.

4 Main theorem

In this section we will prove our main theorem.
Main Theorem Suppose that A(z) € Ezp((r,00) + /—1R : L), with
7 < 1land 0 < b < w. We consider the following difference equation

Fln+1)~BF(n) = A(n), (n=1,2.).  (Ds).



(1) If 3 is not in negative real axis, then difference equation (Dg) has a
solution in Exzp((r,0) + vV—1R: L).

If 3 = 1, then the solution is unique up to constant.

(2) If B is in negative real axis, then (Dp) has solution in Ezp((r, 00) +
v—1R : L) if and only if Gg(3) = 0.

(3) If A(z) is entire function of exponential type, then F(z) is also entire
function of exponential type.

(4)(Integral representation of solution of (Dg))

1 e *Ggle™t)
C2r/—1JoL. e t—p3

where A(z) = S(z),(Fourier-Borel transform of S € Q'(L : 7)), Gg(w) is
Avanissian-Gay transform of S and C' is a constant.

(Proof of main theorem)
By theorem 1, there exists an analytic functional with non-compact car-
rier S € (L : 7) such that S(z) = A(z). Suppose that

F(n+1) — BF(n) = A(n), (n=1,2.).
Multiply w™" to both sides of this difference equation, we have
(w=B)3Y Fln)w™ =Y An)w™+C,
n=1 n=1

where (' is some constant. So we have

& n_ Gstw) C
—nzz:lF(n)w = -3 w G

We put
. -1 Gs(e~t) —zt
F(z) = ZF;/BLE me“~,66 dt.
Then F(z) satisfies difference equation (Dg). Since
Gs(w) _
2l ¢ (e \ eap(—1) : 7,

F(z) € Exp((r,00) +iR;L). .
If 3 = 1, then the solution of (D) is unique up to constant. This follows
from Carlson’s theorem.
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5 Therelation between Candelpergher-Coppo-
Delabaere’s results and our results.

In this section we will derive Candelpergher-Coppo-Delabaere’s results
from our results. We consider the difference equation (D).
First we will show that integral representation (4) in our main theorem
coincides with integral representation obtained in section 2.
In previous section we obtained integral representation of the solution
F(z) of difference equation R(z + 1) — R(z) = A(z). Namely we have

-1 eHGg(e )

P(z) = 2ny/—1 JorL. et —1

dt + C,

where S(z) = A(z) and C is a constant.
On the other hand Candelpergher-Coppo-Delabaere obtained following
integral representation

RE) = [AG)z+ | ( ! +%) e " A(t)dt.

e t—-1

We put
e —zt

£(z) = / Alz)dz + /7 — A(t)d.

Then we have

df(2)
T2 = A +/7<—t) t

Hence f(z) is constant. So

e——zt R
R(z) = L <Ayt + C.

This is equals to our integral representaion with v = [, and /i(t) =
Gsle™)

Ir/—1°

Example 3(Complex integral form of Binet’s formula) Put A(z) = 1
z

/
P(z) = (2) satisfies the difference equation R(z+1)—R(2) = % Alz) =

['(2)
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L is Fourier-Borel transform of Heaviside function H (t) € Q(]0,00) :
z
{0}). Gule™) = log(1 — €*). So we have

-1 o) —zt 1 t
Y(z) =logz + T S e (e"t i 1) log(1 — €')dt.

This integral representation coincides with Binet’s formula in example 2.
Next we consider the series expansion of the solution of difference equation
(D). We have

et—1

1 . 1 > Bk k—1
= t+k§::1 AU
On L., we have

1 ]. & Bk- k—1
et—1 '{”t Y }

k=1

S Cnltln+1-

where C, is a constant depending on n.

i) = —— [ eagety [—1— - —3+ 5~ B el
7= 2my/—1 JoL. 5 et—1 t 1 k!
“‘1 ' —zt _ ]. ok Bk .
_— “Gs(e™h) 3 —= —(=t)F 1y dt + C.
org/ T Jon, ¢ Os(e ){ Pt Y } *
The first integral is estimated by C’,|z|™™ ! and second integral is equals
to

B L, _ _ By, 8!
Zk—;/LEe tGs(et)(—t)F 1dt——z kfa —1A(2).

So we have

F(z) — /A z)dz—Z?faakkvl (2)

This gives the same formal expansion of solution to (D) obtained in §2.

< Cylz|™ L.

6 Ramanujan transform and Ramanujan
“summation

According to [3] we explain Ramanujan transform and Ramanujan
summation briefly. For the sequence {a(n)}%,, we put

o0

Rn) =Y a(k).

k=n
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Then R(n) satisfies
R(n) — R(n + 1) = a(n), (n=1,2..).

And -
R(1) =Y a(k).
k=1
This is the basic idea to caluculate the infinite sum
> alk).
k—1

Ramanujan sum 3" a(n) is defined as follows:
(i) Solve the difference equation

R(n) — R(n + 1) = a(n), (n=1,2..).

with [ R(t)dt = 0.

The solution of above difference equation is denoted by R,(t).

(ii) Calculate R4(1).

Rq(1) is called Ramanujan sum of {a(n)}%.; and we put R,(1) = YK a(n).

n=1
R:a—- R,

is called Ramanujan transform.

We put Lo = [0,00) + v/—1[—b,d].

Proposition 5([3]) Suppose that b is less than 7 and there exists d(z) €
Ezp((1,00) + /=1R : Ly) such that d(n) = a(n),(n = 1,2,...). Then
following statements are valid.

(1)If0 € L, then Ramanujan transform is a linear isomorphism of Ezp((r, 00)+
\/:_1R . L())

If 0 ¢ L, then Ramanujan transform is linear map from Ezp((r.00) +
vV/=1R : L) to Ezp((r,00) + vV=1R: L,).

(2)If a(n) = b(n), (n = 1,2...) then

> a(n) =3 b(n)
n>1 n>1
(3)If f7° |a(t)|dt < oo, then we have
R o)

S am) =3 a(n) - /1 ® ()t

n>1 n=1
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(Proof)

(1) is an immediate consequence of main theorem. By virtue of Carlson’s
theorem, interpolationg function for {a(n)} and {b(n)} are same. Hence
we can conclude (2).

To prove (3) we make use of integral representation of solution to (D):

-1 e #Gg(e™)
R = 7T Jo., 1 2T C
where S(z) = —a(z) and C is a constant determined by the condition
2
/1 R(t)dt =0..
_ -1 C'th(evt)
k@) = 2r/—1JoL. et—1 dt+C
= G1)+C
= Y a(n)+C.
n=1

2
Now we calculate constant C' which satisfies the condition /1 R(t)dt = 0.

_ P -1 Gs(e™) 2 .,
0 = /lza:(t)dt_zm/:T [ = /16 dzdt + C

_ 1 et
= o ,_:1 8LEGS(6 ) P dt + C

So

-1 net
= ) —dt
¢ 2nv/—1 JaL. Gs(e™) t d

~1
= == Gs(e™ ”t/ “tdzdt
2w/ —1 JaL. sle™)e 0 ¢ "dzd

= / Y gt ! Gsle t)e 1t dzdt
0 2r+/—1 JoL.

= _/Oma(1+ z)dz = ~/1°° a(z)dz.

Hence we have -

Ra(1) =Y a(n) — [ " a(2)dz.

n=1 1



Example 4. a(n) = 1. In this example, Ro(z) = 3 — 2.

Remark that Ramanujan summation Z,fz 1= % is not equals to {(0) =
Y21 1= —3. (¢(z) denotes Riemman zeta function).

1
Example 5. a(n) = - In this example R,(z) is given by —¢(z) =
[(2)
L(z)’
(1) = —v. Hence we have

(I'(2) denotes Euler Gamma function). It is well known that

R

R,(1) =) a(n) =1.

n>1

(v is Euler’s constant).
1
Example 6. a(n) = 5 In this example solution R,(z) is given by
¥'(z) — 1. So we have
1 o 1

! _7r2 _..00____ —
_Ra(l):w(1)—1_—6——1_kzzjlk2 [ .
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