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Normal Forms of Vector Fields and
Diffeomorphisms

By
Masafumi Yoshino!

Abstract

We shall show simultaneous normal forms of a system of vector fields and
diffeomorphisms under Brjuno condition. These results are proved by a new
scheme of a rapidly convergent iteration with high loss of derivatives such that
for some €,0 < € < 1, exp(exp((c — 0')7%)),0< o' < o .

We solve an overdetermined system of equations arising in the study of
normal forms and diffeomorphisms by this method.

1 Normal forms of vector fields
Let us consider a system of analytic vector fields X#(u = 1,- -, d) in some neighbor-
hood of the origin of z = (z4,---,2,) € R",

Xt = (XH,0,) = XM(z)0,;, 1<p<d, (1.1)

=1
with the convention that 8y = (Gzy,- -+, 0s,) , Oz; = 0/0x; . We assume
X* (1< p<d) aresingularie. X*(0)=0 for 1< p<d. (1.2)
The linear parts of X*(1 < p < d) are semi-simple i.e.,
XH(z) = (X{(z), -+, XH(z)) = APz + R*(z), 1< pu<d, (1.3)
where
A 0
A = I ’ A;L € c
0 AR

n

and where R*(z) are analytic at the origin and satisfy

RM(0) = 0,R*(0) =0, 1<pu<d.
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X*#(1 < p < d) are pairwise commuting, i. e. [X*, X"] =0, 1<y,pu<d (1.4)

Set \* = (M\,---, M), (1< p <d). We are interested in reduction of vector fields
to normal forms. If d = 1 (single case), a normal form was obtained by Poincaré under
the condition

(%) Aa| > ¢ola| fora € Z7, |a] >1

Roughly speaking, in order to find a change of variables which reduces a vector
field to its normal form we must solve a nonlinear equation, a so-called homological
equation. The condition (*) implies the existence of the bounded inverse of the
linearized operator. The solvability of certain nonlinear equations under Poincaré
condition was proved by Kaplan for more general equation.([6]).

The solvability of these nonlinear equations with unbounded inverse was proved by
Siegel in case d = 1 ([12]) under a famous Siegel condition :

dc> 0,3y > 0;|Aa— M| > cla|™ for1<k<n, a€Z’. (1.5)
Riissman ([10]) generalized his idea and proved

Assume d = 1. Suppose (1.2), (1.3) and (1.5). Then the vector field (1.1) can be
transformed to a normal form by a holomorphic change of variables.

By the studies of normal forms of mappings by Yoccoz ( [13]) and M. Perez ([9]), it is
natural to weaken the condition (1.5) to the following simultaneous Brjuno condition:

Je > 0,37 > 0 such that

||
log(2 + |a|)1+”

Pa— M| > - " < < n.
(Br) gllzg(dpxa /\k|_cexp( ) Vae Z7,1<Vk<n

We note that our condition is weaker because the bound from the below is exponen-
tially small when |a| — 00, and there is a maximum in p in the left-hand side. Hence
each vectors could be resonant and may not satisfy a Brjuno condition as a single
equation, while they simultaneously satisfy (Br).

We note that (Br) implies that A},..., A% are non simultaneous resonant, namely
lréll?%(d[)\“-a—)\myéO, VaeZ}, 1<k<n. (1.6)

Then we have

Theorem 1.1 Let X!(x),..., X%=x) be pairwise commuting holomorphic vector

fields satisfying the conditions (1.2), (1.8) and (1.4). If X}, ..., X? verify the Brjuno
condition (Br) we can find a neighborhood Q of the origin and a holomorphic change
of the variables z = y+u(y),y € Q which transforms simultaneously X*(z), ..., X%(z)
into Ny0y, . .., \lyd,, respectively. Moreover, u is a solution of the following equation

Lywu — Ry +u) =0, 1<p<d (1.7)
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1.1 Approximate solution to a homological equation

First we need to introduce some Banach spaces of holomorphic functions. Let Q be
an open ball containing the origin in C™ and let O(Q) be the set of holomorphic
functions on Q. Following [4] we define for 0 < T' < diam(2)/2

HT) ={u(z)= Y us*cO0®) pp= 3 |JuT <o}  (18)

acZn aEZ™

Theorem 1.2 The following estimate is true

C
8 -
Dt < e (19)
forall0< Ty <T.
We define
d
Mf=> Lxlywf, fe(HT)":=H(T)x---x H(T). (1.10)
p=1

If we expand f(z) into Taylor series f(z) = 3., foz® and if weset M f = 3> M(a) foz®
we can see that

d
M(a) = diag (Mi(a), ..., Mu(2)), M;(a)= Z Ao — )\;‘|2, 1<j<n (1.11)

p=1

Then we have

Lemma 1.3 Let Ty > 0 be given. Suppose that (Br) is satisfied. Then, for any
0 <T" <T < Ty there exists an inverse M~ : (H(T"))* — (H(T))™ and a constant
co > 0 such that the following estimate holds

1M |7z < exp (2exp(co(T — T)VD)), Ty <VI' < VT <20, (1.12)
Proof. Set 6 =T'/T. We have, for f =Y foz* € (H(T))"

M7l = 3 TM @) fal < (1.13)

a

< Y8 exp (2laf(in(la] +2)77) | fulTH.

Since

sup (6'“' exp (2]a|(ln(|a| + 2))'7_1)) < exp (exp (c(lné'l)‘l/(l”))) (1.14)

la>1

for some ¢ > 0 and since In(T/T") = In(1+ (T —T")/T") is bounded by the constant
times of ' — T" from the above and the below we have (1.12). O.



For the later use we define the approximate inverse to a homological operator as
follows:

-t d -
D)f = Z ,C)\—uM—lf”, f= (fh ey fd) € (H(T))nd (115)
p=1

We observe that

d
LwPD)f=fu+ M Y Lo(Lwfo—Laxf) 1<Vp<d (1.16)

v=1v#p

1.2 Rapidly convergent iteration scheme
Now we will prove Theorem 2.1. We shall find u(z) such that

<1 + ZZ) XH(x 4+ u(z)) = Az =4 (Nizq,..., Mozy) (1.17)

for 1 < u < d. The equation (1.17) is equivalent to solvmg the following overdeter-
mined system of equations

Lyu(z) = Ru(z + u(x)), 1<pu<d (1.18)
We set
vo(z) = ZL M™R%(2), RY(z) = R,(x). (1.19)

By a scale change of variables we may assume that |vo|r < 1. Then we consider the
change of the variables = + vo(z) and obtain the new system of vector fields

Xtl(z) = (1 + %9> X"z +w(z)) = Az +Ri(z), 1<p<d (1.20)

Straightforward calculations show (multiplying by (1 + Ovo/0z) from the left and
recalling that X*(z + vo(z)) = A"z + APvo(z) + R (z + vo(z)) )

Az -+ Noun(@) + Rz + voz)) = (1 + %—) Nz (1 * %U'g) )

ie.,

<1+8—1§> Rl(z) = ?;;)A“x+1\.“vo( ) + R (z + vo()) (1.21)

= —Lwv + R (z + vo())
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d
= —R)(@)+ Y, LoM™ (LawR) — LywRD) + RS ( + ()
v=1

1 d
— () /O /(2 + tuo(2))dt + 3 LyzM ™ (RSO RY — RO, R,
v=1

where we have used
LR (x) — LavR¥(z) = OR*(z)RY(z) — ORY(z)R*(z), 1<wv,pu<d.

This is equivalent to [X*, X*] = 0. Therefore, R}L is estimated quadratically.
We conditnue this process. Suppose that we have constructed vy(z), ... , Vk—1()
such that after a change of variables

(14+v)o(l+wv)o---0(l+vp_1)(x)

we have obtained

XHk(g) = APg + RY(z), 1<pu<n. (1.22)
Next we define J
=Y LwM™'RE(z), (1.23)
v=1
and
X“’k“(:v) = (1+ &,,vk)‘lX“’k(z + vg(x)) (1.24)

(1 4+ 0puk) "M (1 + Bpvg_) 7L+ (1 4 Bywp) !
.X“((l +vg)o (1 +vg—g)o---0(1+ v)(z))
A“$E+Rﬁ+l(a¢)_

X

i

As before we get
1+ 6$vk)R,’j+1(x) = —Lywvg + Rﬁ(x + v(z))

d
= —Ri(@)+ Y LM (LaRE - LywRE) + RE(z + v (2))
v=1

= w(x) /0 1 RN (z + tvg(z))dt + é LM (Rﬁf}le’f - R’;@,,,R,’j) . (1.25)
Hence, there exist ¢ > 0 and ¢; > such that
A R A e
+ I(l + 8mvk)°1\T exp (2 exp(e(T — T’)_l/(l”))) |Rk]T/|DRﬁ]T') :

By using the estimate for composition of maps we see that

(14+wv)o(l+wv)o---o(l4+wv)(z) — 1+u in H(T) as r — 0o (1.27)
and |R*|r — 0, as k — oo. It follows that

(14 Ouk) ' XH(z + up(z)) — (14 0u) ' X*(z + u(z)) = A z. (1.28)

|DRE|r+ (1.26)



1.3 Normal forms in the case of Jordan blocks
Now we shall remove the restriction (1.2). Namely,
XH(z) =" (X{(z),..., X5 (@) = Tz + RMz), 1<p<d,

where the matrices J* are not necessarily semi-simple and we use the same notations
as before. We define the homological operator Ly» by

Lyvu = OuJ*z — J*u, (n=1,...d), we (HT))". (1.29)

The commutativity of X*(z) imply that the matrices J# commute each other, namely
[J#, J¥] = 0 for every pu and v. This determines J* up to their Jordan blocks if we
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fix one Jordan normal form of some J#. In the following, we may assume that all J*

are diagonalized up to their Jordan blocks.
We assume the following simultaneous Poincaré condition; there exists ¢ > 0 such
that

max |Ma — M| >cla] VaeZt 1<Vk<n. (1.30)
1<u<d

We note that this condition is stronger than the usual Poincaré condition if d = 1
because we have a nonresonance condition. Then we have the following

Theorem 1.4 Let X(z),...,X%x) be pairwise commuting holomorphic vector
fields as above. If X!, ..., \% verify (1.30) we can find a neighborhood ) of the origin
and a holomorphic change of the variables x = y + u(y),y € Q which transforms
simultaneously X'(z), . .., X%(z) into their linear parts J'yd,, .. ., J%d,, respectively.
Moreover, u is a solution of (1.7).

Remark. The novelity of the theorem lies in the case d > 2 under natural extension
of a usual Poincaré condition for a single equation.
In order to prove Theorem 2.4 we define the operator M by (1.10). Then we have

Lemma 1.5 Suppose that (1.80) is satisfied. Then the followings holds;

i) There exists a scale change of variables z; = p;y; (p; > 0,5 = 1,...,n) and
Ty > 0 such that in the new coordinate y, the inverse M~ : (H(T))™ — (H(T))™
erists as a continuous linear operator for any 0 < T < T.

it) We have
MY, L] =ML, L] =0 forevery 1< pu<d. (1.31)
Especially, the operator P(D), (1.15) satisfies (1.16).

Proof. We write Lyx = L, + L., where £}, and L}, correspond to semi-simple
and nilpotent part of J#, respectively. Because the change of variables in the lemma
transforms ,4¢0;, into pyiep; Yu+40y,, it follows that (0_; L5L5.) 7 LY, can be
made arbitrarily small by an appropriate choice of p;. It follows that M has the



representation M = Zz:l L5 + €, where € has small norm while the first term is
invertible by (1.30). This proves i).

In order to prove ii) it is sufficient to show that [M, Lau] = Oforevery 1 < p < d. In
view of the definition of M we shall show the commutativity of £y. and £y.. Noting
that [J#, J¥] = 0 and the symmetry of 8%u we have, for u € (H(T))"

[Lon, Lav]u = Op(Oput’z — J'u)J*z — JH(But’z — J¥u)
—0y(Opudtz — JHu)J'z 4+ JY(Opud*z — JPu) =tJFxd*ut’x — LI 2 ud x = 0.

This ends the proof.
The proof of Theorem 2.4 can be proved by the same argument as in Theorem 2.1.

2 Normal forms of commuting holomorphic dif-

feomorphisms
We consider d pairwise commuting local biholomorphic maps &, : £ — C”, y =
1,...,d in a neighbourhood 2 of the fixed point 0. Hence we can write
Q,(x) = Ay + pu(z), p=1,...,d (2.1)

where A, € GL(n : C) and ¢, € (C1{z})", i.e.
wu(z) = O(|z]?), |z| — 0, p=1,...,d (2.2)

The commuting relation ®, 0 ®, = @, o ®, implies A, o A, = A, o A, for all
p,v = 1,...,d. Without loss of generality (after a linear change of the variables)
we may assume that all matrices are in the Jordan normal forms with identical block
structures. We set A\, = (Au1,..., Aun) to be the vector consisting of the eigenvalues
of the matrix A, p=1,...,d.

Our result for (simultaneous) analytic equvalence of the maps to their linear parts
will be proved under the additional requirement that all matrices are semisimple.
Therefore we can set

Ay =diag{Au1,..., A}, M €EC, j=1,...,n, u=1,...,d. (2.3)
We suppose that the vectors A,, p = 1,...,d are nonresonant, namely

Ar= N ANy, a€ZM|al>2,5=1,...,n,p=1,....d  (24)

In fact, we will impose a simultaneous Brjuno type condition: there exist two
positive constants ¢y and 7 such that

lof

W) 5 a € Z_?_, |O[} > 2. (25)

. oy s )
1rﬁnjléln lrélfg)_(d P‘# )‘#J’ 2 Cpexp (
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Furthermore, in the case of more than one diffeomorphism (i.e. d > 2) we impose
the following restriction: there exist a constant Co > 0 such that

et X7
— <Cy Vo,veZl, >2,v<a. 2.6
1+ E:ﬁzl l)\pal =0 v + h’l Y ( )

We note that in the case of a single map (d = 1) the vector A; belongs to the
Poincaré domain if either nflun |A1;] > 1 or jmax |>\1,] <1 (cf. [1, p. 311]). In that

...,

case the condition (2.6) is always fulfilled. One checks easily that it is also true when
the space dimension is one (n = 1) while d is arbitrary positive integer. Then we have

Theorem 2.1 Let ®4,..., P4 be pairwise commuting local biholomorphic maps pre-
serving the origin and satisfying the conditions (2.5) and (2.6). Then we can find a
neighborhood B of the origin and a holomorphic change of the variables y — = = u(y)
which transforms simultaneously ®,, ..., ®, into their linear parts Az, ..., Aqz, Te-
spectively.
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