Laplace tranform and Fourier-Sato tranform

MASAKI KASHIWARA AND PIERRE SCHAPIRA

Review on formal and moderate cohomology. Let M be a real manifold, and let R-Cons(M) denote the category of $R\text{-}constructible}$ sheaves on M, $D^b_{R-c}(C_M)$ its derived category. Recall first the functors $\mathcal{T}hom(\cdot, \mathcal{D}b_M)$ of [4] and the dual functor $\cdot \overset{w}{\otimes} \mathcal{C}^{\infty}_{M}$ of [6], defined on the category R-Cons(M), with values in the category $Mod(\mathcal{D}_M)$ of \mathcal{D}_M -modules on M. (The first functor is contravariant).

They are characterized as follows. Denote by $\mathcal{D}b_M$ the sheaf of Schwartz's distributions on M and by \mathcal{C}_M^{∞} the sheaf of \mathcal{C}^{∞} functions on M. Let Z (resp. U) be a closed (resp. open) subanalytic subset of M. Then these two functors are exact and moreover:

$$\mathcal{T}hom(\mathcal{C}_Z, \mathcal{D}b_M) = \Gamma_Z(\mathcal{D}b_M),$$

$$\mathcal{C}_U \overset{w}{\otimes} \mathcal{C}_M^{\infty} = \mathcal{I}_{M \setminus U}^{\infty},$$

where $\Gamma_Z(\mathcal{D}b_M)$ denotes as usual the subsheaf of $\mathcal{D}b_M$ of sections supported by Z and $\mathcal{I}_{M\setminus U}^{\infty}$ denotes the ideal of \mathcal{C}_M^{∞} of sections vanishing up to order infinity on $M\setminus U$.

These functors being exact, they extend naturally to the derived category $D_{R-c}^b(\mathcal{C}_X)$. We keep the same notations to denote the derived functors.

Now let X be a complex manifold and denote by \overline{X} the complex conjugate manifold and by X_R the real underlying manifold. Let \mathcal{O}_X be the sheaf of holomorphic functions on X, let \mathcal{D}_X be the sheaf of finite order holomorphic differential operators on X. The functors of moderate and formal cohomology (see [4], [6]) are defined for $F \in D^b_{R-c}(C_{X_R})$ by:

$$\mathcal{T}hom(F, \mathcal{O}_X) = R\mathcal{H}om_{\mathcal{D}_{\overline{X}}}(\mathcal{O}_{\overline{X}}, \mathcal{T}hom(F, \mathcal{D}b_{X_{\mathbf{R}}}))$$
$$F \overset{w}{\otimes} \mathcal{O}_X = R\mathcal{H}om_{\mathcal{D}_{\overline{X}}}(\mathcal{O}_{\overline{X}}, F \overset{w}{\otimes} \mathcal{C}_{X_{\mathbf{R}}}^{\infty}).$$

Laplace transform. Consider a complex vector space E of complex dimension n, and denote by $j: E \hookrightarrow P$ its projective compactification. Let $D^b_{R-c,R^+}(C_E)$ denote the full triangulated subcategory of $D^b_{R-c}(C_E)$ consisting of R⁺-conic objects (i.e.

AMS classification: 32L25, 58G37

objects whose cohomology is R-constructible and locally constant on the orbits of the action of R⁺ on E).

Let $F \in D^b_{\mathbf{R}-c,\mathbf{R}^+}(\mathbf{C}_{\mathbf{E}})$ and set for short

THom
$$(F, \mathcal{O}_{E}) = R\Gamma(P; \mathcal{T}hom(j_{!}F, \mathcal{O}_{P}))$$

WTens $(F, \mathcal{O}_{E}) = R\Gamma(P; j_{!}F \overset{w}{\otimes} \mathcal{O}_{P})$

These are objects of the bounded derived category $D^b(W(E))$ of the category of modules over the Weyl algebra W(E). Let E^* denote the dual vector space to E. One denotes by F^{\wedge} the Fourier-Sato transform of the sheaf F, an object of $D^b_{R-c,R^+}(C_{E^*})$. (see [5] for an exposition). One identifies $D^b(W(E^*))$ to $D^b(W(E))$ by the usual Fourier transform.

Theorem 0.1. The classical Laplace transform extends naturally as isomorphisms in $D^b(W(E))$:

$$L_{\rm E}: {\rm THom}\,(F, \mathcal{O}_{\rm E}) \simeq {\rm THom}\,(F^{\wedge}[n], \mathcal{O}_{\rm E^*})$$
 (0.1)

$$L_{\rm E}: {\rm WTens}(F, \mathcal{O}_{\rm E}) \simeq {\rm WTens}(F^{\wedge}[n], \mathcal{O}_{\rm E^*}).$$
 (0.2)

Applications 1. Let M be a real vector space of dimension n such that E is a complexification of M. As a particular case of the theorem, we obtain a characterization of the Laplace transform of the space of distributions on M supported by (not necessarily convex) cones. Let γ denote a closed subanalytic cone in M and let $\Gamma_{\gamma}S'_{M}$ denote the space of tempered distributions supported by γ . One has $\Gamma_{\gamma}S'_{M} \simeq \operatorname{Thom}(C_{\gamma}[-n], \mathcal{O}_{E})$. Hence, we get that the Laplace transform of distributions induces an isomorphism:

$$L_{\mathrm{E}}: \Gamma_{\gamma} \mathcal{S}'_{M} \simeq \mathrm{THom}\left((\mathrm{C}_{\gamma})^{\wedge}, \mathcal{O}_{\mathrm{E}^{*}}\right) = .$$

When γ is proper and convex, this result is well known, since $(C\gamma)^{\wedge} \simeq C_U$ where U is the open convex tube $int\gamma^0 \times \sqrt{-1}M^*$, the interior of the polar cone to γ , and the right hand side denotes the space of holomorphic functions in this tube, tempered up to infinity. When $\gamma = M$, one recovers the isomorphism between \mathcal{S}'_M and $\mathcal{S}'_{\sqrt{-1}M^*}$.

Let us consider now the case where γ is a non degenerate quadratic cone. Let (x',x'') denote the coordinates on $M=\mathbb{R}^n=\mathbb{R}^p\times\mathbb{R}^q$ with $p,q\geq 1$, and let $\gamma=\{x;x'^2-x''^2\leq 0\}$. Let (u',u'') denote the dual coordinates on M^* , and let $\lambda=\{(u',u'');u'^2-u''^2\geq 0\}$. One checks easily that $(\mathbb{C}_{\gamma})^{\wedge}\simeq \mathbb{C}_{\lambda}[-q]$. We get the isomorphi= sm:

$$L_{\mathrm{E}}: \Gamma_{\gamma} \mathcal{S}'_{M} \simeq H^{q} \operatorname{THom} (C_{\lambda \times \sqrt{-1}M^{*}}, \mathcal{O}_{\mathrm{E}^{*}}).$$

This last result is essentially due to Faraut-Gindikin [2] (in a different langage and with a different proof).

Laplace tranform and Fourier-Sato tranform

Applications 2. Denote by $\mathcal{O}_{\mathrm{E}}^t$ and $\mathcal{O}_{\mathrm{E}}^w$ the conic sheaves on E associated to the presheaves $U \mapsto \mathrm{THom}\,(\mathrm{C}_U, \mathcal{O}_{\mathrm{E}})$ and $U \mapsto \mathrm{WTens}(\mathrm{C}_{\bar{U}}, \mathcal{O}_{\mathrm{E}})$, respectively. One easily deduces from the main theorem that the Laplace transform induces isomorphism=s:

$$(\mathcal{O}_{\mathrm{E}}^{t})^{\wedge}[n] \simeq \mathcal{O}_{\mathrm{E}^{*}}^{t},$$

 $(\mathcal{O}_{\mathrm{E}}^{w})^{\wedge}[n] \simeq \mathcal{O}_{\mathrm{E}^{*}}^{w}.$

This gives a new proof of a result of Hotta-Kashiwara [3] and Brylinski-Malgrange-Verdier [1] on the Fourier-Sato transform of the sheaf of holomorphic solutions of a monodromic \mathcal{D} -module.

References

- [1] J-L. Brylinski, B. Malgrange and J-L. Verdier, *Transformation de Fourier géométrique II* C.R.Acad. Sci. **303** 193-198 (1986)
- [2] J. Faraut, S. Gindikin, Private communication to P.S., 1995
- [3] R. Hotta and M. Kashiwara, The invariant holonomic systems on a semi-simple Lie algebra, Publ. inventiones Math. 75 (1984), no. 2, 327–358.
- [4] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 20 (1984), no. 2, 319–365.
- [5] M. Kashiwara and P. Schapira, *Sheaves on manifolds*, Grundlehren der Math. Wiss. Springer **292** (1990).
- [6] M. Kashiwara and P. Schapira, Moderate and formal cohomology associated with constructible sheaves, M=E9moires Soc. Math. France 64 (1996).
 692 (1987-88)

M.K. RIMS, Kyoto University, Kyoto 606 Japan

P.S. Institut de Mathématiques; Analyse Algébrique; Université Pierre et Marie Curie; Case 247; 4, place Jussieu; F-75252 Paris Cedex 05; email: schapira@mathp6.jussieu.fr