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TOEPLITZ OPERATORS IN THE ANALYTIC GOURSAT PROBLEM

MASATAKE MIYAKE (=% IFR)

Nagoya University (ZHEX%¥. $UBIERZHER)

0. Introduction - Goursat problem and the spectral condition.

Let P(z,D) be a partial differential operator of order m,

P(z,D) = Z an(z) D,
fef<m
where the coefficients a, () are assumed to be in O, the set of holomorphic functions in

a neighborhood of the origin z = 0 of C". Here we use the usual notation such as
L= (5111,2132,' .t ?mn) € Cn? D= (D17D2" * aDn) (Di = 8/833])

Let v € N™ (N = {0,1,2,---}) be a given multi-index of nonnegative integers with
|v] = m. Then the Goursat problem (P,0,7) is formulated as follows.

(P,0,7) P(z,Dyu(z) = f(z) € O, u{z)—v(z)=0(z")in O,

where w(z) = O(z?) in O means that w(z)z™ € O, or equivalently, w(z) € 27 - O.

We say that the Goursat problem (P, O, ) is unquely solvable if for any (f(z),v(z)) €
O x O there exists a unique solution u(z) € O of the problem above.

The most general result on the unique solvability of the Goursat problem (P,0,v) is

proved under the spectral condition which is stated by

(Sp> la’)'(o){ > Z Ia(!(O)tw’T—a, for 3W = (w17w27' v aw’rz) € RZ—)
joj=m, oty
where Ry = (0,00), and w¥™% = w* ™™ ...w)»~*, (Cf. Garding [G], Wagschal [W]).
The spectral condition enable us to employ the contraction mapping theorem or its

variation by intfoducing a Banach space associated with the Goursat problem, and this
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condition seems to be best possible so far as we employ the contraction mapping theorem.
In fact, while there are many variations of the Goursat problem, for example, there have
been made some attempts for the generalization of function spaces and also for the
method of proofs, in all those papers the spectral condition is posed as a fundamental
assumption (see Persson [P], Miyake [M] and references cited there).

In a very recent paper by the author with M. Yoshino ([M-Y]), we have succeeded
to relax this condition, and proved the spectral property of the Goursat problem by
employing the Toeplitz operator method in two dimensional case, which is attempted to
give a generalization of results by Leray ([L]) where a very simple example of operators
was studied.

In this report, we shall give more general results for the Goursat problem in the
function spaces, and remove the restriction on the dimension of & variables from the
view point of the Toeplitz operators, which is a generalization of results in [M-Y].

We note that this is a joint work with M. Yoshino of Chuo University, and the detail
will be published elsewhere.

1. Goursat problem in Gevrey space.

First, we introduce the Gevrey space where we consider the Goursat problem.
Let s = (s1,52,-++ ,5,) € R} and w = (w1, w3, -+ ,w,) € R%}. Then an s—Gevrey
space G°(w) is defined by the following isomorphism which is called the formal Borel

transformation.

:BQ Z(l s
W) )= I 0w g2 0 = Y v € Okl < w),
aEN® : «€EN™
where {|z| < w*} = [[}_,{lz;| < w;'}, and O(Q) denotes the set of holomorphic
functions on 2 C C". Here, s-a:= 3"/, sjo; and (s- o)l :=T(s o +1).
By the definition, G¥(w) has a structure of Fréchet space induced from O(|z] < w*)

equipped with uniformly convergent topology on every compact set of {|z] < w®}.

Examples. Let s = (s,s,.++,5) (0 <s<1).
[1]
G'(w) = O(llzll/w < 1) = ()} O(ll=ll/w’ < 1),
wi<w
where {||z]|/w < 1} = {}a:ﬂ/wli—}- le2]/we + -+ + |2, /w, < 1}, and (wh, - ,w)) <
(w1, -+ ,w,) means that w} < w; (j =1,2,--- ,n). Here, O||z||/w < 1) := O(||z|]/w <
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1NC®(||z]}/w < 1) is a Banach space by the uniform convergence topology on {|le]l/w <
1}.
[2] For0<s <1,
g (w)= [} AVOTI(w),

w'<w
where A1/(1=*)(w) is a Banach space of entire functions of exponential order 1/(1 — s)
defined by

A=) w) = {uf);

. 1/(1—s)
ju(e)| < Cexp {(1 - o (1) } 30 = O(w) > 0},

WS
‘where |/ w® = |@1]/w§ + - - - |&n|/ws. Here, the norm, ||ul| for u(z) € AY=9)(w), is
defined by the infimum of such C’s in the above inequality.

Let P(z, D) be a partial differential operator with polynomial coefficients and we write

it by

finite sum

(2) P(z,D)= > aapa’ D% asp€C.
a,BEN™®

For a given multi-index v € N™, the Goursat problem (P,G%(w),v) is formulated by
(P,G°(w),7) P(z,D)u(z) = f(z) € G*(w),  u(z)—v(z)=0(z”) in G°(W),
where f(z),v(x) € G5(w) are given functions, and u(z) is the unknown function in G*(w).
Here w(z) = O(z7) in G*(w) means that w(z)z™7 € G*(w).

2. Gevrey filtlation and Assumptions.

Let P(z,D) be the operator given by (2). For s € R}, the s—Gevrey order of the

operator P(z, D), denoted by ords(P), is defined by

(3) ords(P) = max{s - a+ (1 —s) - B; aqs # 0}.

Remark. The assumption that the operator Pz, D) is of polynomial coefficients is made
only to assure that ordg(P) < +oo for every s € R7}. In fact, in the Goursat problem
(P,G%(w),7) we may assume that the coefficients of the operator are homomorphic in a

neighborhood of the origin in such variables z; that s; > 1.
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In the Goursat problem (P,G%(w),v), the multi-index v is assumed to be taken so
that

(4) s -y = ordg(P).
Also, as a fundamental assumption we suppose that

(5) Py(D):= Y awD*#0.

S X=8-7y
For the Goursat problem (P, G*(w),v), we define a function fs~(z) (z € C") by
(6) for(®)=Pa(z™) 27 = 37 a0

S-X=S§-7y

which is called the Toeplitz symbol associated with the Goursat problem. Here, z =
(21, ,2,) € C" and 2% = 2z --- 2% for o € Z".
3. Theorems.

Under the preparations as above, we can state our theorems as follows.

Theorem 1. Suppose that
(7) 0 ¢ Convex — hull {f; ,(2); |z| = w*},

where {|2| = w*} = [T/_,{|2;| = w;’ }. Then Goursat problem (P,G*(pw),~) is uniquely
solvable for sufficiently small p > 0.

Furthermore, suppose that the s—principal part of P(z, D) is of constant coeflicients,
ie,s-a+ (1 —s)-f < ordg(P) if B # 0 for ang # 0. Then the Goursat problem
(P,G*(pw),~) is uniquely solvable for any p > 0.

In the theorem, we do not assume a priori that a,o # 0 in the Goursat problem

(P,G*(w), 7). Concerning this we can prove the following,
Corollary. In the Goursat problem (P,G*(w), ), the condition (7) implies that a.q # 0.

Proof. The condition (7) implies that the Goursat problem (E’S(D), G%(w),~) is uniquely
solvable. On the other hand, if a,o = 0 then u{x) = 27 satisfies Ps(D)u(z) =0, u(z) =
O(z"), which menas that u(z) is a non trivial solution with 0 Goursat data which is a

contradiction to the unique solvability.
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Theorem 2. Let n = 2. Suppose f5,(z) # 0 on {|z| = w*}, and suppose
(8) f o dlog fs(z1,22) =0,
!Zl =wy

for any fixed zy (|za] = w3?). Then the index of the Goursat problem (P, Gs(pw),v)
is equal to O for sufficiently small p. Furthermore, if the condition (7) is satisfied on
{|z| = r%} for some suitable choice of r = (r1,r2) € R}, then the Goursat problem
(P,G%(pw),~) is uniquely solvable for sufficiently small p. In the case where the s—Gevrey

principal part is of constant coefficients, the assertions as in Theorem 1 hold for any p > 0.

It is obvious that the condition (8) is replaced by
(8) f? e dlog fs 4(z1,22) =0,
zz|=w,

for any fixed z; (|z13 = wi').

Examples. , _
[1] Let P(D) = D; — D3 be the heat operator, and consider the following two Cauchy

problems,
(1) (P,G% ) (ws,wa),(1,0)), (2) (PGP (wy,ws),(0,2)),

where s > 0. The Toeplitz symbols corresponding to each Cauchy problem are given by

2
21 z

(1) fs,(l,())(z) =1- 2 (2) fs,(O.Z)(z) = 2 _ 3
z3 Z1

where |2;] = w?%, |22| = w$. Hence the problem (1) is uniquely solvable if w1 < w2, and
the problem (2) is uniquely solvable if w; > ws.

[2] (Example by Leray [L]) Let P(D) = AD1D; — D} — D3, where A € Cisa complex
parameter. Let w = (w,1) (w > 0) and v = (1,1), and consider the Goursat problem
(P(D), O

|z||/w < p),7). Then this Goursat problem is uniquely solvable if

(ReX)?  (ImA)?
Trwp - wp
A € [“2a2]7 w=1

>1, w#1l

[3] Let .
9 4
P(D) = -ZD;" +3DyD3 + ng.
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Let w = (w,1) and v = (2,1), and consider the Goursat problem (P(D), O(||z||/w <
p),7), where DZD, is absent from the operator P(D).
Then for any w with 3/4 < w < 5/2, this Goursat problem has an index 0 with 1

dimensional kernel and cokernel. In fact, in this case the Toeplitz symbol is given by

2
fiy(21,1) = —ngl +321 + g‘zf = (% - ;1;) (zl + g) ;
and the condition (8) is satisfied only for 3/4 < w < 3/2, but the condition (7) can not
be satisfied on {|z| = r®} for any r = (ry,72). It is easily seen that u(z) = z%z, is the
base of the kernel, and (v(z), f(z)) = (0,1) is the base of the cokernel of the Goursat

problem.

4. Toeplitz operators.

Theorems are proved by employing the following elementary results on the Toeplitz
operators.

Let T" = [[;_,{l2;| = 1} be the n—dimensional torus. We denote by L?(T") the set
of square integrable functions on 7™, that is, the set of functions u(z) = Y aczn o 2°
with finite norm ||u|| := 37 ez [ual® < oo. Let H?(T™) be the Hardy space on T, that
is, the set of functions u(z) € L*(T™) such that u, = 0 for o ¢ N”. Let « : L*(T") —
H?(T™) be the natural projection. Then for f(z) continuous on 7, the Toeplitz operator
Ty : H*(T™) — H?(T™) is defined by

(9) Ty(u) = (f(z)u(2)), u(z) € H*(T").

Here f(z) is called the Toeplitz symbol of the operator T.

Now we have,
Proposition 1. (i) Let o(Ty) be the spectrum of Ty : H*(T™) — H?*(T™). Then,
(10) o(Ty¢) C Convex — hull{f(z); 2 € T"} = L(f).
: pu

For A\ ¢ I'(f), the operator norm of Al — T is estimated by
(1) AT = Ty|| > dist(\, T(7)).

(i) Let n =1. Then if f(z) # 0 (|z| = 1), Ty is a Fredholm operator with an index
x(Ty) given by

(12) x(Ts) = 2_—:; fuzldlogf(z).
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Next we introduce the notion of finite section Toeplitz operators.

Suppose that n = 1. For N > 0, we define
Hy(T) = HYT)NPx,

where Py denotes the set of polynomials of z of degree at most N. Let wy : L*(T) —
H%(T) be the natural projection. Then an N—th finite section Toeplitz operator T¢(N) :
H%(T) — H%(T) is defined by

(13) Tr(N)(u) = mn(f(2)u(z)),  u(z) € Hy(T).

Proposition 2. Let f(z) € Clz,z7!]. Then we have:
(i) In order that there exists Ny > 0 such that

T#(N) : HY(T) — HR(T)
is invertible for all N > N, with the uniform norm estimate from below
Ty (N)|} 2 d >0

for some constant d independent of N > Ny, it is necessary and sufficient that f(z) # 0
and x(Ty) = 0.

Moreover, if 0 ¢ I'(f), then we can take Ny = 0.

(ii) The Toeplitz operator Ty is invertible if and only if f(z) # 0 (|z| = 1) and
x(T¢) = 0. And the operator norm of T is estimated by ||T¢|| > d > 0, where d depends
on min {Jz — 2] |2] = 1, f(2}) = 0}.

5. Sketch of the proof.
We shall give an outline of the proofs deviding several steps.

5.1. Reduction to an integro-differetial equation.

Let u(z) = 3 enn Ua 2%/al € Cl[z]], the set of formal power series of z— variables

over C. Then an integration D™ 7u(z) for v € N™ is defined by

ot

(14) D u(z)= Y uq @

a€EN?
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Then by the definition we have that D*D~" = D®~7 for all o,y € N”. Especially we
have D7D~ = id. on Cf[z]}, and D™7D"” = id. on 2" - C[[z]] for all v € N”.
It is easily proved that

D™ : G5(ow) — 27 - G5 (pw)

is isomorphic.

We notice that in the Goursat problem (P, G%(pw), v), we may assume that v(z) = 0
for the Goursat data (i.e., u(z) = O(z7) in G*(pw)), by taking w(z) = u(z) — v(z)
as a new unknown function. Hence the unique solvability of the Goursat problem

(P,G®(pw),7) is equivalent to the bijectivity of the mapping
P(z,D) : z7 - G%(pw) — G*(pw).

These observations show that the study of the Goursat problem (P, G%(pw),7) is reduced
to the study of the following mapping of integro-differential operator

(15) L(z,D) = P(:c,D)Df”’ 1 G (pw) — G (pw).

We notice that

finite sum

L(x,D) = Z aa[-}mﬁDa—’Y p—:t ZawazﬁDé, (6 €Z™)
a.p 6.5

satisfies

asp#0=s-6+(1-38)-5<0, ie, ords(L)<O0.

Also by the assumption (5) we have

Li(D):= 3" agD? = Py(D) D™ £0.

s:0=0
To end this section, we remark that the Fredholm property of the Goursat problem
(P,G*(w),7) means that of the mapping (15) and an index of the Goursat problem is
just given by that of the the mapping (15).

5.2. Hilbert space G*(pw).
We define a Hilbert space G%(pw) by

m(Y,
u(z) = Z Ua —7 € G*(pw)
x€EN” )

vl = 30 i wra)” e B
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where (pw)*z = ({pw1)** 21, ,(pwy)*"2y). Then it is easily seen that

G (pw) = ﬂ G*(kw) (= proj HmGs(nw)).

K< p &/ p

Hence by taking the procedure of projective limit the Goursat problem (P,G*(pw),7)
is reduced to the following mapping instead of (15},

(16) L{z,D) : G3(rw) — G*(sw), 0< &k <p.
Now we decompose the operator L(z, D) in the form

L(ﬂ},D):LS(D)+ Z a,s,l’,’ﬂ:BDé-f- Z aéﬁxa:ﬁDlS
s-6+(1—s)-B=0;850 s:6+(1-5)-0<0

= L.(D)+Q(z,D) + R(z, D).

=t

Then we have

Proposition 3. (1) Ls(D) is a bounded operator on G*(pw) and the operator norm is

estimated independently on p > 0 by

LD < 3 laskw™,

s-6=0

b _ wi’ﬂiz 6,,,.

where w® ceewpt

(2) Q(D) is a bonded operator on G*(pw), and its operator norm is evaluated by
1Q(e, DYl = o(1) as p 0.

(3) R(z,D) is a compact operator on G*(pw), and its operator norm is evaluated by
|1 R(z, D)I| = o(1) as p 0.

As an immediate corollary to this proposition, we get the spectral condition as follows.

Corollary. Suppose for w the following condition is satisfied
(Sp) lasol > D laaolw* 7.
S-=s-y;0Fy

Then the Goursat problem (P(z, D), G%(pw),~) is uniquely solvable for sufficiently small
-
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Furthermore, if the s—Gevrey principal part of P(x, D) is of constant coefficients, i.e.,
Q(z, D) = 0 in the decomposition of L(z, D), then the Goursat problem (P,G*(pw),7)
is uniquely solvable for any p > 0.

Proof. As the considerations above the problem is reduced to the invertibility of the

integro-differential operator L(z, D) on G*(pw) for all small p > 0. Since

LS(D) = a0 + Z aaoDa_W,

s-a=s-yiaFy

the operator norm on G®(pw) is estimated by

LD 2 fassl = 3 Jaaolw® =) > 0,

S x=8-y;xFEYy

which implies the invertibility of ES(D) on G*(pw) with uniform norm estimates on p > 0
for ES(D)_l. Now the result follows from the operator norms for Q(zD) and R(z, D) on
G*(pw) as p — 0 in the above proposition.

To prove the latter half we notice that R(x, D) is a compact operator on G5(pw) for
all p > 0. Hence L(z, D) is a compact perturbation from the invertible operator IO)S(D),
and therefore the index of L(z, D) on G®(pw) is equal to 0. Hence it is sufficient to show
the injectivity of L(z, D) on G®(pw) for all p > 0. By the definition we easily see that
the inclusion G®*(pw) — G*(p'w) is injective for any p' < p. The invertibility of L(z, D)
on G*(p'w) for sufficiently small p’ implies the injectivity of L(z, D) on G*(pw), which

proves the assertion.

5.3. Reduction to the theory of Toeplitz operators.
Following the argument above, we study the following mapping,
(17) Ly(D) : G%(pw) — G*(pw).

Let 6 € 2" satisfy s- 6 = E?zl 8;6; = 0. Then the following commutative diagram is

examined easily.

r* Borel transf. Ugy
T D (R
ag) a! azz:o (s-a)
Dél lT((Pw)sz)—é
z* ’ Ua s _\a—¢
u — W) 2 .
a—zﬁ:ZO * (a - 5)' Borel transf. Q—Z(SZO (S . CZ)' ((P ) )
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Here T((,w)»)-+ is the Toeplitz operator on H2(T™) with symbol ((pw)*z)~°. By the

assumption that s -6 = 0, we have ((pw)°z) ™" = (w®2)~*, and hence
T(pwye -+ = Tiwory-», 2 €T™.

Here, we recall that fs,(z) = Ps(z71) 27 = Le(z71).

Thus we have shown that the mapping (17) is equivalent to the following Toeplitz
operator with a symbol fs,(W*z) (z € T™) which is independent of the paramerter
p> 0.

18 Te (wen : HA(T™) — H*(T™).
fa,y(Wo2) ,

5.4. Proof of Theorems.

Proof of Theorem 1. The assumption (6) is equivalent that
0 ¢ Convex-hull { fs ,(W°z); |z;| = 1} = I'(w).
pu

Hence by Proposition 1 the Toeplitz operator Ty, (ws.) is invertible and its operator

norm is estimated by

HTfs,y(WsZ)H Z dist (0, F(W)),

which is independent of p > 0. This shows that ES(D) on G%(pw) is invertible and the
operator norm of inverse operator is estimated from above uniformly on p > 0. Hence by
Proposition 3, we can conclude that the integro-differential operator L(z, D) is invertible
on G*(pw) for suffciently small p > 0, which proves the theorem.

Consider the case where the s—principal part of Pz, D) is of constant coefficients. In
this case, @(z, D) = 0 in the decomposition of L{z, D}, and hence L(z, D) is a compact
perturbation from the invertible operator is(D) on G*(pw) for any p > 0. Now the
reasoning below is the same with that of Corollary to Proposition 3, and the proof is

completed.

Proof of Theorem 2.
The assumption (8) says that

y{ dlog fs.(wi'z,w5?) = 0.
jza}=1
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We shall prove an index of the operator of L(z, D) on G®%(pw) is equal to 0 for sufficiently
small p > 0 under this condition.
For this purpose we first consider the following mapping,
Ls(D) : G%(pw) — G*(pw).
In the following, we consider only the case where s, /s, is rational for s = (51, 52) € R%,
since if otherwise we know that Ls(D) = Const. which means that the above mapping is
invertible, and the conclusion is obvious.

Let 51/s2 = g/p be the irreducible fraction. We recall that the Toeplitz symbol g(z) =
pu

fsy(wW®z) € Clz,27%] is s—quasi homogeneous of degree 0, that is, g(c*z1,c%25) =

g(21, 22) for ¢ # 0 (c € C). Then g(z) is written in the form,
g(z) = ijzsz;qj, <Imez.
7=

As we have shown the above mapping is equivalent to the following Toeplitz operator,
T, : H3(T?) — H*(T?).

Let us show that this mapping is decomposed into a direct sum of finite section Toeplitz
operators as follows.

Let P3(k) = {u(z) = >, 1 Ua 2“} be the set of s—quasi homogeneous polymonial
of degree k € Q4 equipped with L2—norm on |z| = 1. Then the s—quasi homogeneity of
zero of g(z) implies that the Teoplitz poerator 7}, becomes an operator on P5(k). Hence
by decomposing the space H?(7T?) into the direct sum of s—quasi homogeneous spaces
{P*(k)} (k € Q4), the Toeplitz operator T, on H%(7T?) is decomposed into the operators
on s—quasi homogeneous spaces.

Let dim, P*(k) = N, and put

m

h(zr) = 3 bz (= g(z,/7,1)).

j=—t
Then we can easily see that
T, : P*(k) — P5(k)

is equivalent to
Tw(N) : H3(T) — H%(T).



59

The assumption (8) shows that flz§=1 dlog h(z) = 0. Hence by Proposition 2, there
exists Ny such that for all N > Ny, Ti(N) is invertible on H3(T'), and the norm in-
equalities ||T,(N)|| > d > 0 hold by a positive constant d independent of N > Ng. This
implies that x(7T,) = X(ES(D),GS(/}W)) =0 (Yp > 0), and the first half of Theorem 2
follows from Proposition 3.

Recall the assumption of the latter half is that there eixsts r = (r1,72) € Ry such
that 0 ¢ Convex-hull {fs ,(rz) |z;| = 1}. Hence, 25(1)) is invertible on G*(r). This
shows that for any f(z) € C[[z]], the equation E}S(D)u(w) = f(z) has a unique solution
u(z) € C[[z]]. In fact, by decomposing C{[z]] inte the direct sum of s—quasi homogeneous
polynomials, we see that on each space of s—quasi homogeneous polynomials Ps(k)
(k € Q) ES(D) is invertible. Hence ZS(D) on G%(pw) is injective, and therefore is
invertible for any p > 0 with uniform norm estimates on p for the inverse operator

' IOJS(D)“I. Now by the same reasoning as above we can conclude the invertibility of
L(z, D) on G*(pw) for sufficiently small p > 0. |
The case where the s—principal part is of constant coefficients is the same as in

Theorem 1. Thus the proof is completed.
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