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Evolution Equations with Infinite Delay
To the Memory of Professor T. Yoshizawa

BEKR NBEEEEE (Toshiki Naito)
HEER B IE#E (Jong Son Shin)

1 Introduction

Suppose that A is the infinitesimal generator of a Cy semigroup 7T'(t) on a

Banach space E with norm |-|. We consider the evolution equation with
infinite delay such that

W(t) = Au(t) + L(us), (1.1)

where u; is a function mapping (~o0,0] into E defined by u,(0) = u(t + 9)
for § € (—o0,0]. The operator L is a bounded linear operator on the phase
space B into F.

B is a Banach space of some functions mapping (—o0,0] into E. The norm
in B is denoted by || - ||. For a complex number A and for z € E we define
a function €y @ z : (—00,0] — E by (ey ® z)(8) = ez, 8 € (—00,0]. We
assume the following axioms on B: |

(H-1) There exists a constant H such that |¢(0)| < H||4|| for every ¢ € B.

(H-2) If a function u : (—oc0,0 4 a) — E is continuous on [o,0 + a), and
if u, € B, then

(i) ug € Bforallt € [0,0 4 a) and u, is a B valued continuous function of
t € [o,0 +a),

(1) fluell < K(t = o) sup{lu(s)| : 0 < s <t} + M(t ~ 0)||us |
for all t € [0,0 + a), where K(r), M(r),r > 0, are nonnegative, measurable,

locally bounded functions which are independent of w.



(H-3) If {¢"} is a Cauchy sequence in B, and if the sequence {¢"(0)}
converges to a function ¢(6 ) uniformly on every compact interval of (—oo,0],
then ¢ lies in B and lim, . ||¢" — ¢]| = 0. v

(H-4) There exists a constant ~y such that ey ® z € B for RA > v and
z € E, and that '

leall = sup{llex @ z[| : @ € E, |z <1}

is finite for each A with R\ > ~, and bounded for R > ; for some v; > 7.

We call the constant v in (H-4) the abscissa of the exponent of the space
B. The hypothesis (H-3) implies that the integral in B is computed from the

integral in F in the following manner.

Lemma 1.1 If f : [a,b] — B is a continuous function such that f()(8) s
continuous for (t,0) € [a,b] x (—00,0], then

[ [ s dt} 0= [ 00 &, e (-o00]

The growth bound w,(T'), and the essential growth bound w,(T) are de-
fined by '
o)t BEITQI g7

t—00 t >0 ¢ ’
o) o i QT Toga(T(0)
t—oo t >0 n

where o(T(t)) is the measure of noncompactness of T'(t) which is introduced
by the Kuratowskii measure of noncompactness of bounded sets of X, cf [2].
Then the spectral radius r,(T(t)) and the essential spectral radius ro(T'(t))
are given as 1,(T(t)) = exp(tws(T)) and re(T(t)) = exp(tw(T")). Let A be the
infinitesimal generator of T'(t), o(A) the spectrum of A, E,(A) the essential
spectrum of A, and set N,(A) := o(A) \ E,(A). The points in N,(A) are
called normal eigenvalues of A.

The important fact for our works is that the following mequahtles hold:
Bs(A) :=sup{RA: X € o(A)} < ws(T)

B.(A) := sup{R\ : A € E,(A)} < w(T).
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The first inequality is well known. The second inequality is proved in Webb
[7], and it implies the following theorems.

Theorem 1.2 Let T(t) and A be as in the above, and suppose that w.(T) <
ws(T'). Then the following results hold:

(1) There exists at least one point A € N,(A) such that R\ = w,(T):
consequently, B,(A) = ws(T) and N,(A) # 0.

(i) For any b,w.(T) < b < w,(T), the set (A) N {): RX > b} consists of
finite normal eigenvalues of A, and sup{R) : A € o(A), R\ < b} < b.

2 Semigroup generated by mild solutions

Let ¢ € B. The strong solution of (1.1) through (0, ¢) is a function u :
(—00,00) — E which has the following properties: (i

continuous, differentiable on [0,00), and u(t) € D(A)

holds for ¢ > 0. The mild solution of (1.1) through (0, ) is a function
u : (—00,00) — E which has the following properties: (i) uo = ¢ and wu is
continuous on [0, 00); |

Ug ¢ and u is

) up =
for ¢ > 0; (ii) (1.1)

(i) mﬂ:T@mm+Aﬁv—gu%ym £>0.

By the usual method of successive aproximation, we can prove that, for
every ¢ € B, there exists a unique mild solution through (0, 4); cf. [3],[5],[6],
and the references therein.

Denote by u(t, ¢) this mild solution. Define the solution operator Uy (t)
on B by

(UL(®)$)(6) = u(t+0,¢), 0 € (~o0,0].

Then using the axioms of the phase space, we see that Uy (t) is a Cy semigroup
of bounded linear operators on B. Denote by Ay the infinitesimal generator
of UL(t).

In the particular case that L = 0, Up(t) is given by (Us(t)¢)(8) = T(t +
0)¢(0), —t < 0 < 0 and (Up(¢)¢)(8) = #(t + 0), 6 < —t. Set Ky(t) =
Ur(t) — Uo(2), which is given by (KL(t)¢)(8) = 2(t + 0,¢), 0 € (—o0,0],



where

2(t, @) = { /0 T(t — s)L(us) ds ¢ >0
0

t<0.

Taking the Laplace transform of UL(t) = Up(t) + Kr(t), we can compute
the resolvent R(\, Az). To describe the result, we introduce the closed linear
operator A(A) as A(A)z = (\[—A—L))z, © € D(A), where Lz = L(\®z).
It is well defined for R > v. If A € p(A), then we can write (A — A— L)) =
(I — LyR(), A))(A] — A). Hence A(X)™" exists as a bounded linear operator
on B as long as R\ is sufficiently large. Let Ag be the infinitesimal generator

Of Uo(t)
Theorem 2.1  There exists an w such that, if RA > w, then
R(\, AL)¢ = R(A, Ag)d +ex @ AN L(R(A, A0)4), ¢ €B.

Since ¢ = R(\, AL)(A¢—Ar@) for ¢ € D(AL), the equation Ap¢ = 1 holds
if and only if ¢ = R(\, AL)(\¢ — ¢). Namely, we can compute Ay, itself from
the representation of R(), Ar). To do so, we use the infinitesimal generator B
of the trivial Cy semigroup S(t) on B defined as [S(t)¢](0) = ¢(0), t+6 > 0,
and [S(t)¢](0) = é(t+0), t+ 06 <O.

Theorem 2.2 A function ¢ lies in D(AL) if and only if $(0) € D(A) and
¢ —2"ley ® (Ad(0) + L(4)) € D(B) for some A > w, and

Apd = 3 ® (A$(0) + L(¢)) + B (¢ — X7'ex ® (Ag(0) + L(9))) -
In particular, (Ap$)(0) = A¢(0) + L(¢) for ¢ € D(AL).

The second equation avobe follows from the fact that (B¢)(0) = 0 for
¢ € D(B). As a result, we have the following theorem.

Theorem 2.3 If ¢ € D(AL), the mild solution u(t,$) is a strong solution.
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3 Growth bound and compact semigroups

The axiom (H-4) says that, if RA > «, ¢, is regarded as an element of £L(E, B),
the Banach space of bounded linear operators on F into B. We have the
following estimate for the abscissa . Let Sp(t) be the restriction of S(t) to
the subspace By = {¢ € B : $(0) = 0}.

Theorem 3.1 If R\ > w,(S,), then e lies in L(E, B), and it is holomorphic
for A. Hence the abcissa « in (H-4) satisfies v < w,(So). ‘

Theorem 3.2 For the semigroup So(t), the essential growth bound is the
same as the growth bound: w.(Sy) = w,(So).

Let BU.,, be the space of continuous functions ¢ : (—oo, 0] — E such that
e " $(0) is bounded, uniformly continuous for 8 € (—00,0], and define the
norm in this space as ||¢|| = sup{e="?|¢()| : § € (—o0,0]}. Then this space
satisfies the axioms (H-1,2,3,4), and v in the definition is the abscissa of the
exponent of this space.

Another space for B is made of the set of measurable functions ¢ :

(=00,0] — E such that e™%|¢(6)] is integrable on (—oo, 0], where the semi-
norm is defined by

I8l = 160)1 + [ el6(0)] do.

Denote by £ x L, the quotient space with respect to this seminorm. Then
this space is a Banach space satisfying (H-1,2,3,4), and ~ is the abscissa of
the exponent.

Theorem 3.3 If B =BU., or E x L., then w,(So) = w,(S,) = 7.

Suppose that the original semigroup T'(¢) is a compact semigroup. Then
Kr(t) = Ur(t) — Us(t) is a compact operator for ¢ > 0. This implies that
a(Ur(t)) = a(Us(t)) for t > 0. The following theorem follows from the
definition of the essential growth bound.

Theorem 3.4 If T(t) is a compact semigroup, then w,(UL) = w.(Up).



We have the estimate of a(Uo( )) in terms of H, K(r), M(r) in the axioms
of the phase space B, and the constant y7 = lim;_o||T'(2)]]-

Theorem 3.5 Let T(t) be a compact semigroup on E. Then the following
estimates hold fort > 0.

(1) a(Uo(t)) < Cilim,_¢_oM(s), where C; = Hlim_oK (¢) max{1,yr} +
lim,_o M (e).

(ii) Suppose that every bounded, continuous function ¢ : (—oco,0] — E lies
in B in the manner that sup{|$(0)| : 6 € (~o0,0]} < J||¢[|, where J is a
constant independent of ¢. Then a(Us(t)) < (1 + JH)Cilims—i—oa(So(s)).

4 An example

Let £ = L*([0, 7], C), the set of square integrable functions on [0, 7]. Consider

the equation

(1) = Ault +b/ =)y (s) ds, (4.1)

where A is defined as Af = f for f € E such that f is continuously dif-
ferentiable, the derivative f’ is abosolutely continuous, f* € E, and that
£(0) = f(x) = 0. It is well known that A is a closed linear operator with
dense domain. It is self adjoint, the spectrum of A consists of only point
spectrum A = —n® n =1,2,---, R(\, A) has a pole of order 1 at these points,
and |R(A, A)| < 1/]A+1] for RA > —1. Hence A is the infinitesimal generator
of a Cy semigroup T'(t) such that |T'(¢)| < e™* for ¢ > 0. Furthermore, T'(¢) is
a.compact semigroup.
Notice that

= o [ oty do| < pl [ es e iofs)) as,

If v = —c, we have that |L(¢)| < |b]||¢|| for ¢ € E x L_.. If v > —c, we have
that |L(4)] < |bl(c + )7 ||¢|| for ¢ € BU,. Hence, we can take the space
E x L_. or BU.,,v > —c, for the phase space of Equation (4.1).

The characteristic operator A(\) now becomes

A(z\)f:)\f—Af—b/O etV gof  feD(A), RA>y> —c
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If we set h(A) = A~b/(c+A) for RA > —c, then we can write A()) = h(A)]—A.
Since, from Theorem 3.5 (;), we(Ur) < v, the spectrum of Ay in RA > 4
consists of only normal eigenvalues. Let A be such an eigenvalue. Then from
[4] it follows that N(A())) # {0}. Thus we see that A(X) = —n? for some
—n? € P,(A). Set A, = {XA: k(X)) = —=n®, R\ > —c} and A = Uns1An.
The equation A(A) = —n? becomes (A + ¢)(A + n?) = b, which has the
roots &, = [—(c+n?) —VD]/2, N\, = [~(c + n?) + V/D]/2, where D =
(¢ + n?)? — 4(cn® — b). We are interested in the roots whose real parts are

greater than —c.

Proposition 4.1 ,

Case (i): 6>0. A={d:n2>1}, and My > Ay > > X, = —¢c  (n—
(i-1): ¢ £ 0. A, are all positive; (i-2): ¢ > 0. If0 < b < ¢, \, are all
negative. If b =n%c,n > 1, then Ay > Ay > - > A\, =0 > Apty > - If
nfc<b<(n+1)?e,n>1, then A\ > XAy > - > A, >0 > Apyr > oo

Case (ii): b < 0. A is an empty set or finite set. .

(iF1): e < 1. A =0; (ii-2): ¢ > 1. There exists an integer n, such that
A= {kn,An:1<n<n.}, and the following cases occur. If b < —(c—1)%/4,
then kn, An are all imaginary numbers with real part z, < z, = —(c+1)/2.
If =(c = 1)*/4 < b <0, then, for some k < n,, the first k terms of both {kn}
and {\,} are real numbers for which A < 0 s the mazimum number, and

the rest terms are imaginary numbers whose real parts are less than A;.

Theorem 4.2 Suppose that A, € A. Ifb=0 or ), is a simple root of h(X) =
—n?, then R(\, AL) has a pole of order 1 at A = ). My, (AL) = N(AL—\.T1)
consists of functions ¢(0,z) = ape*’ sinnz, where aq is an arbitrary complex
constant. :

If Ay is a double root of h()\) = —n?, then R(A, AL) has a pole of order
2 at A= XAy My (AL) = N((Ap — M\I)?) consists of functions ¢(0,z) =

(ao + a10)e*? sin nz, where ag, a1 are arbitrary complex constants.

Proof From the theorem [4], ¢ € N(AL —),) ifand only if ¢ =, ® f



for some f € E such that A(\,)f = 0. Recall that

b 2
) = (- A

A = (Ml — A -

From the definition of A it follows that f(z) = agsinnz,0 < z < 7.
In the similar manner, ¢ € N((AL — A,)?) if and only if ¢ = &, ® fo +
gy, ® f1 for some fo, f such that Dy(An)col[fo, f1] =0, ie.

. A()\n)fO + A,()\n)fl =0 A(An)fl = 0.

It is easy to see that A'(\;) = (1 + (A, + )" ) 1. :
Now consider the condition that A(A) = —n? and A'(A) = 0, that is,

(/\+c)()\+n2):b 1+b()\+c)_2=().

From the second equation, b # 0. Eliminating b, we have that A + n? =
—(X + ¢); hence, A = —(c + n?)/2 = z,, the 2 coordinate of the minimum
point of I',. This means that, A’(A,) = 0 if and only if b # 0 and A, is a
double root of () = —n?.

Suppose that b = 0 or ), is a simple root. From the equation A(X,)f1 =0,
we have fi(z) = a;sinnz. Set a = (1 + b(A, + 1)7?)a;. Then a # 0 if and
only if a; # 0, and the equation A(X,)fo + A'(A,) fa — 0 becomes

—n’f(z) — f'(z) + asinnz =0 f(0) = f(r) = 0.
The solution of the first, differential equation is

f(z) = cosnz [cl +(2n)"ta ((Zn)_l sin 2nz — :L)}

+ sinnz (co — (2n)tacos 2n:1:) :

It satisfies the boundary condition if and only if ¢; = @ = 0. Thus we have
that fi(z) =0, fo(z) = cosinnz. Thus the function ¢ lies in N((AL — A\, 1)?)
if and only if

$(0, ) = coe’ sinnz.

This shows that N(Ap — A\, I)*) = N(AL — A\ I). Thus the eigenspace is the

generalized eigenspace of dimension 1, and R(),, Ap) has a simple pole at A,.
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Suppose thai b # 0 and ), is a double root. Then A(X,)fo = A(An)f1 = 0;
hence ¢(0,z) is given as in the theorem . To show that N((Ar — X,)%) =
N((AL — A\n)?) , consider the equation Dy(),)col[fs, f1, f2] = 0. Since

A"(An) = —2b(\n + )31

Y

the equation becomes

AM)fo+afs =0 AM)AA=0 A()fa=0,

where oo = —2b(\, + ¢)7°. From the second equation, it follows taht fi(z) =
aisinnz. Since a # 0, we can apply the result above for the first, and
the third equation. As a result, it follows that fo(z) = agsinnz, fo(z) = 0.
Hence, N((AL—Xn)%) C N((AL—M)?), and N((Ap— X, 1)?) is the generalized
eigenspace of dimension 2, and R(), A) has a pole of order 2 at A,.

Define a curve b = x(c) in the ¢-b plane by x(c¢) = 0, ¢ < 1;x(c) =
—(c—1)%/4, ¢ > 1. Following the Proposition 4.1, we devide c-b plane into

the subregions as IT; : b > x(c), —00 < ¢ < 00, I : b < x(c), e > 1, My:b<
x(¢),e < 1.

Theorem 4.3 Take the space B = BU.,. If v > —c is suﬁiciehtly close to
—c, then the growth bound of U, becomes as follows:

e if (¢, 0) € 1Ly
ws(Ur) = { —(c+1)/2 if (c,b)€ .

If (c,b) € I3, then w,(UL) < v whenever vy > —c.

Theorem 4.4 Take the space B = E x L_.. Then the growth bound, and the
essential growth bound of Up, becomes as follows:

. ' )\1 Zf (C, b) - H1
we(Ur) = —¢,  w,(Up) = { —(c+1)/2 if (c,b) eIl
—c if ‘(c, b) € 1.

Theorem 4.5 If B=FE x L_, then the following assertions hold:
(i) If (c,b) € Iy and b > ¢, then Ay > 0, and ||U(t)|| > €Mt for t > 0; (ii)
If (¢,b) € Iy and b = c, then there exists an M such that 1 < |UL(t)|| < M



fort>0. If (c,b) € II; and b < ¢, then A; <0, and ||UL(t)|| < M.e!*1+9) for
t>0; (iii) If (c,b) € Iy, then ||UL(t)|| < M.ef-(+D/2+9) for ¢ > 0.

If B = BU.,,v > —c, then the assertions above hold provided v is suffi-
ciently close to —c.

Theorem 4.6 In the case (c,b) € 3, we have different estimates of ||UL(¢)]]
according to the choice of B.

Choose B = BU.,,v > —c. If ¢ > 0, then we can take a negative v and
NUL(t)|] < M+ fort > 0. If ¢ < 0, then 4 becomes positive, and we only
know that ||Ur(t)|| < M.et0+9) fort > 0.

Choose B = E X L_,. If ¢ > 0, then ||UL(t)|| < Me"=¢t9) fort > 0. If
c <0, then ||[UL(t)|| > e fort > 0. If ¢ =0,b <0, then ||UL(t)] > 1.

Corollary 4.7 Take the phase space as B = BU.,,v > —c. If v s sufficiently
close to —c, then the null solution of Equation (4.1) has the following stability:
zf b=c >0, it is stable but not asmptotically stable; if ¢ > 0,c > b, it s
ezponentially asymptotically stable. If (c,b) € I1y,b > ¢, then the null solution
of Equation (4.1) is not stable for any choice of v > —c.

Corollary 4.8 Take the phase space as B = FE x L_.,. The null solution of
Fquation (4.1) is ezponentially asymptotically stable if and only if ¢ > 0 and
b<c Ifc>0andb=c, it is stable but not asymptotically stable. If ¢ < 0,
or if c > 0 and b > ¢, then it is not stable.

In the case ¢ = 0 the equation becomes
W(t) = Au(t +b/ u(t + 6)d
Since |T'(t)f| < e ¥|f| for t > 0, f € E, it follows that
0 -
[0o@)éll = [T@e(0)|+ [ |T(t+0)6(0) do+ [ |g(t+0)| do
¢ 0
< elo(0)] + / 19(0)] ds + [ 1g(s)] ds
ol+ [ ls@as =1l
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Hence, we have that ||[Up(t)|| < 1 for ¢t > 1. Since ||Up(¢)|| > a(Us(t)) > 1, it
follows that ||Us(t)|| = a(Us(t)) = 1 in the space E x L.

If b =0, then Ur(t) = Up(t), and the null solution is stable. If b > 0, the
null solution is not stable from Corollary 4.8. If b < 0, from Theorem 4.6
we only know that ||UL(t)]] > 1. Is the null solution stable or not? About
this interesting problem, Murakami has informed us of the following stability

result.

Theorem 4.9 If c = 0,b < 0, the null solution of Equation (4.1) is B — E
uniformly asymptotically stable: that is, there exists a constant M such that

lu(t, ¢)| < M||¢|| fort > 0,4 € B, and for any € > 0 there exist a 7(€) > 0
such that |u(t, ¢)| < €||@]| fort > 7(e), ¢ € B.

Proof. Let {f,},n = 1,2,---, be the complete orthonormal system of
the self adjoint operator A, and set u"(¢) =< u(t), f* >. Then u(t) =
Yn>1 UM (t)f", and T'(t)u(0) = a1 e‘”ztu”(O)f”,t > 0. Since

L(us) =Y, < L(us), f* > f*,
n>1
1t follows that
T(t—s)L{ug) = > ™) < L(u,), f* > fm.

n>1

From the definition of L, it follows that
< Lluy), f* >=< b/.ooo u(s + ) db, fr > = b[w <u(r), f*> dr.
Hence u"(t) satisfies the equation
w(t) = (o) + Lm0 [ ) dr ds.

Taking the derivatives successively, we know that u"(t) satisfies the equa-
tion

z'(t) = —n’z(t) + b/_too z(r)dr



with the initial condition z(0) = ¢"(0) :=< ¢(), f* >,0 € (—o0,0], and the
equation z”(t) = —n2z'(t) + bz(t) with the initial conditions

0
o(0) = ¢°(0), 2'(0) = ~n¢"(0) + | 4"(0)as
Set A\t = (-n®*++/D,)/2,D, = n*+4b. If D, # 0, the solution is given as

u™(t) = z(t)
L (0) £#0) s 250(0) = #(0) o,
/5, VP

(n? + VDa)et=t — (n? — VDy)et

= e R

(BAit _ e)\’_’_t)b 0
"(0) db.
e [0
If D, =0, then A* = —n?/2, and the solution is given as
u™(t) = z(t)

- [(1 + (n’t/2))2(0) + t:v’(O)] e~ T2
= [(1 — (n’t/2))¢"(0) + bt /_Ooo ¢™(0) dg} —

Since b < 0, it follows that A} < 0 for n > 1, and there exists a constant ¢
such that, for D,, # 0,

(8] < e [[67(0)] +

V—/ 470 |d9}

@) < e [l47 )1+ 8 [ 16°(6)] ds].

and for D, =0,

Since
[ grends< [ 140 ds

for n > 1, it follows that

(i |u“<t>12)1/2 < o (i |¢”(0)l2)1/2

+c1 || (1 + Z

nt+44b£0

1/2 o
B |) 160 db.
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for ¢ > 0. Thus there exists a constant M such that
u(t, é)l < M||¢|| fort>0,¢ € B.

Take an N such that D,, > 0 for n > N. For n > N, set

hn = (12 +y/D0)/2y/ D, kn = (n* —/D,)/21/D..

Since e*~f < e7t !t < 1, it follows that

218]
VD, J-
Set Hp = sup{|h,| : n > m},K;, = sup{|ks| : » > m},m > N. Since

limp oo [ha] = 1, and since lim, o kr = 0, H,, is bounded, lim,, o K, = 0,

and

[ ()] < (Jhale™ + [kal)|67(0)] +

|4(6)] df.

1/2 1/2
(Z Iun(t)lz’) < (Hne™ + Kn) (}: |¢”(0)!2)

n>m n>m

A2
+(Z"}'§’l) [ 160 do

an QO

app?\ "’
< (Hme‘t+f<m+(2 - ) )||¢||-

n>m

Let € > 0. Then there exist m = m(e) > N and 7;(e) such that

1/2
(Z lun(t)lz) <¢l|g]l fort>m(e), ¢ € B.

Since [u™(t, ¢)| — 0 as t — oo uniformly for 1 < n < m and for ¢ such that
]l <1, there exists a m5(¢) > 0 such that (5« ‘u'”(?f)['z)l/2 < e provided ¢t >
72(€), [|#]] < 1. Consequently, it follows that, if ¢ > 73(e) := max{7(€), m2(€)}
and if [|4]] < 1, then |u(t,d)] < V2¢. Since u(t, ¢) is linear in ¢, it follows
that |u(t, 8)| < €||@|| for ¢ > 7(¢) := 73(¢/V/2), ¢ € B.
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