Evolution Equations with Infinite Delay

To the Memory of Professor T. Yoshizawa

電通大 内藤敏機 (Toshiki Naito) 朝鮮大 申 正善 (Jong Son Shin)

1 Introduction

Suppose that A is the infinitesimal generator of a C_0 semigroup T(t) on a Banach space E with norm $|\cdot|$. We consider the evolution equation with infinite delay such that

$$u'(t) = Au(t) + L(u_t),$$
 (1.1)

where u_t is a function mapping $(-\infty,0]$ into E defined by $u_t(\theta) = u(t+\theta)$ for $\theta \in (-\infty,0]$. The operator L is a bounded linear operator on the phase space \mathcal{B} into E.

 \mathcal{B} is a Banach space of some functions mapping $(-\infty, 0]$ into E. The norm in \mathcal{B} is denoted by $\|\cdot\|$. For a complex number λ and for $x \in E$ we define a function $\varepsilon_{\lambda} \otimes x : (-\infty, 0] \to E$ by $(\varepsilon_{\lambda} \otimes x)(\theta) = e^{\lambda \theta}x$, $\theta \in (-\infty, 0]$. We assume the following axioms on \mathcal{B} :

- (H-1) There exists a constant H such that $|\phi(0)| \leq H||\phi||$ for every $\phi \in \mathcal{B}$.
- (H-2) If a function $u:(-\infty,\sigma+a)\to E$ is continuous on $[\sigma,\sigma+a)$, and if $u_{\sigma}\in\mathcal{B}$, then
- (i) $u_t \in \mathcal{B}$ for all $t \in [\sigma, \sigma + a)$ and u_t is a \mathcal{B} valued continuous function of $t \in [\sigma, \sigma + a)$,
- (ii) $||u_t|| \le K(t-\sigma) \sup\{|u(s)| : \sigma \le s \le t\} + M(t-\sigma)||u_\sigma||$ for all $t \in [\sigma, \sigma + a)$, where $K(r), M(r), r \ge 0$, are nonnegative, measurable, locally bounded functions which are independent of u.

(H-3) If $\{\phi^n\}$ is a Cauchy sequence in \mathcal{B} , and if the sequence $\{\phi^n(\theta)\}$ converges to a function $\phi(\theta)$ uniformly on every compact interval of $(-\infty, 0]$, then ϕ lies in \mathcal{B} and $\lim_{n\to\infty} \|\phi^n - \phi\| = 0$.

(H-4) There exists a constant γ such that $\varepsilon_{\lambda} \otimes x \in \mathcal{B}$ for $\Re \lambda > \gamma$ and $x \in E$, and that

$$\|\varepsilon_{\lambda}\| := \sup\{\|\varepsilon_{\lambda} \otimes x\| : x \in E, |x| \le 1\}$$

is finite for each λ with $\Re \lambda > \gamma$, and bounded for $\Re \lambda > \gamma_1$ for some $\gamma_1 \geq \gamma$.

We call the constant γ in (H-4) the abscissa of the exponent of the space \mathcal{B} . The hypothesis (H-3) implies that the integral in \mathcal{B} is computed from the integral in \mathcal{E} in the following manner.

Lemma 1.1 If $f:[a,b] \to \mathcal{B}$ is a continuous function such that $f(t)(\theta)$ is continuous for $(t,\theta) \in [a,b] \times (-\infty,0]$, then

$$\left[\int_a^b f(t) \ dt\right](\theta) = \int_a^b f(t)(\theta) \ dt, \qquad \theta \in (-\infty, 0].$$

The growth bound $\omega_s(T)$, and the essential growth bound $\omega_e(T)$ are defined by

$$\omega_s(T) := \lim_{t \to \infty} \frac{\log ||T(t)||}{t} = \inf_{t > 0} \frac{\log ||T(t)||}{t},$$
$$\omega_e(T) := \lim_{t \to \infty} \frac{\log \alpha(T(t))}{t} = \inf_{t > 0} \frac{\log \alpha(T(t))}{t},$$

where $\alpha(T(t))$ is the measure of noncompactness of T(t) which is introduced by the Kuratowskii measure of noncompactness of bounded sets of X, cf [2]. Then the spectral radius $r_s(T(t))$ and the essential spectral radius $r_e(T(t))$ are given as $r_s(T(t)) = \exp(t\omega_s(T))$ and $r_e(T(t)) = \exp(t\omega_e(T))$. Let A be the infinitesimal generator of T(t), $\sigma(A)$ the spectrum of A, $E_{\sigma}(A)$ the essential spectrum of A, and set $N_{\sigma}(A) := \sigma(A) \setminus E_{\sigma}(A)$. The points in $N_{\sigma}(A)$ are called normal eigenvalues of A.

The important fact for our works is that the following inequalities hold:

$$\beta_s(A) := \sup \{ \Re \lambda : \lambda \in \sigma(A) \} \le \omega_s(T)$$
$$\beta_e(A) := \sup \{ \Re \lambda : \lambda \in E_\sigma(A) \} \le \omega_e(T).$$

The first inequality is well known. The second inequality is proved in Webb [7], and it implies the following theorems.

Theorem 1.2 Let T(t) and A be as in the above, and suppose that $\omega_e(T) < \omega_s(T)$. Then the following results hold:

- (i) There exists at least one point $\lambda \in N_{\sigma}(A)$ such that $\Re \lambda = \omega_s(T)$: consequently, $\beta_s(A) = \omega_s(T)$ and $N_{\sigma}(A) \neq \emptyset$.
- (ii) For any $b, \omega_e(T) < b < \omega_s(T)$, the set $\sigma(A) \cap \{\lambda : \Re \lambda \geq b\}$ consists of finite normal eigenvalues of A, and $\sup \{\Re \lambda : \lambda \in \sigma(A), \Re \lambda < b\} < b$.

2 Semigroup generated by mild solutions

Let $\phi \in \mathcal{B}$. The strong solution of (1.1) through $(0,\phi)$ is a function $u:(-\infty,\infty) \to E$ which has the following properties: (i) $u_0 = \phi$ and u is continuous, differentiable on $[0,\infty)$, and $u(t) \in D(A)$ for $t \geq 0$; (ii) (1.1) holds for $t \geq 0$. The mild solution of (1.1) through $(0,\phi)$ is a function $u:(-\infty,\infty) \to E$ which has the following properties: (i) $u_0 = \phi$ and u is continuous on $[0,\infty)$;

(ii)
$$u(t) = T(t)\phi(0) + \int_0^t T(t-s)L(u_s) ds, \quad t \ge 0.$$

By the usual method of successive approximation, we can prove that, for every $\phi \in \mathcal{B}$, there exists a unique mild solution through $(0, \phi)$; cf. [3],[5],[6], and the references therein.

Denote by $u(t,\phi)$ this mild solution. Define the solution operator $U_L(t)$ on ${\mathcal B}$ by

$$(U_L(t)\phi)(\theta) = u(t+\theta,\phi), \quad \theta \in (-\infty,0].$$

Then using the axioms of the phase space, we see that $U_L(t)$ is a C_0 semigroup of bounded linear operators on \mathcal{B} . Denote by A_L the infinitesimal generator of $U_L(t)$.

In the particular case that $L \equiv 0$, $U_0(t)$ is given by $(U_0(t)\phi)(\theta) = T(t + \theta)\phi(0)$, $-t < \theta \le 0$ and $(U_0(t)\phi)(\theta) = \phi(t + \theta)$, $\theta \le -t$. Set $K_L(t) = U_L(t) - U_0(t)$, which is given by $(K_L(t)\phi)(\theta) = z(t + \theta, \phi)$, $\theta \in (-\infty, 0]$,

where

$$z(t,\phi) = \begin{cases} \int_0^t T(t-s)L(u_s) \ ds & t > 0\\ 0 & t \le 0. \end{cases}$$

Taking the Laplace transform of $U_L(t) = U_0(t) + K_L(t)$, we can compute the resolvent $R(\lambda, A_L)$. To describe the result, we introduce the closed linear operator $\Delta(\lambda)$ as $\Delta(\lambda)x = (\lambda I - A - L_{\lambda})x$, $x \in D(A)$, where $L_{\lambda}x = L(\varepsilon_{\lambda} \otimes x)$. It is well defined for $\Re \lambda > \gamma$. If $\lambda \in \rho(A)$, then we can write $(\lambda I - A - L_{\lambda}) = (I - L_{\lambda}R(\lambda, A))(\lambda I - A)$. Hence $\Delta(\lambda)^{-1}$ exists as a bounded linear operator on \mathcal{B} as long as $\Re \lambda$ is sufficiently large. Let A_0 be the infinitesimal generator of $U_0(t)$.

Theorem 2.1 There exists an ω such that, if $\Re \lambda > \omega$, then

$$R(\lambda, A_L)\phi = R(\lambda, A_0)\phi + \varepsilon_{\lambda} \otimes \Delta(\lambda)^{-1}L(R(\lambda, A_0)\phi), \quad \phi \in \mathcal{B}.$$

Since $\phi = R(\lambda, A_L)(\lambda \phi - A_L \phi)$ for $\phi \in D(A_L)$, the equation $A_L \phi = \psi$ holds if and only if $\phi = R(\lambda, A_L)(\lambda \phi - \psi)$. Namely, we can compute A_L itself from the representation of $R(\lambda, A_L)$. To do so, we use the infinitesimal generator B of the trivial C_0 semigroup S(t) on \mathcal{B} defined as $[S(t)\phi](\theta) = \phi(0)$, $t + \theta \geq 0$, and $[S(t)\phi](\theta) = \phi(t + \theta)$, $t + \theta < 0$.

Theorem 2.2 A function ϕ lies in $D(A_L)$ if and only if $\phi(0) \in D(A)$ and $\phi - \lambda^{-1} \varepsilon_{\lambda} \otimes (A\phi(0) + L(\phi)) \in D(B)$ for some $\lambda > \omega$, and

$$A_L \phi = \varepsilon_{\lambda} \otimes (A\phi(0) + L(\phi)) + B\left(\phi - \lambda^{-1}\varepsilon_{\lambda} \otimes (A\phi(0) + L(\phi))\right).$$

In particular, $(A_L\phi)(0) = A\phi(0) + L(\phi)$ for $\phi \in D(A_L)$.

The second equation avobe follows from the fact that $(B\phi)(0) = 0$ for $\phi \in D(B)$. As a result, we have the following theorem.

Theorem 2.3 If $\phi \in D(A_L)$, the mild solution $u(t,\phi)$ is a strong solution.

3 Growth bound and compact semigroups

The axiom (H-4) says that, if $\Re \lambda > \gamma$, ε_{λ} is regarded as an element of $\mathcal{L}(E,\mathcal{B})$, the Banach space of bounded linear operators on E into \mathcal{B} . We have the following estimate for the abscissa γ . Let $S_0(t)$ be the restriction of S(t) to the subspace $\mathcal{B}_0 = \{\phi \in \mathcal{B} : \phi(0) = 0\}$.

Theorem 3.1 If $\Re \lambda > \omega_s(S_0)$, then ε_{λ} lies in $\mathcal{L}(E,\mathcal{B})$, and it is holomorphic for λ . Hence the abcissa γ in (H-4) satisfies $\gamma \leq \omega_s(S_0)$.

Theorem 3.2 For the semigroup $S_0(t)$, the essential growth bound is the same as the growth bound: $\omega_e(S_0) = \omega_s(S_0)$.

Let \mathcal{BU}_{γ} be the space of continuous functions $\phi:(-\infty,0]\to E$ such that $e^{-\gamma\theta}\phi(\theta)$ is bounded, uniformly continuous for $\theta\in(-\infty,0]$, and define the norm in this space as $\|\phi\|=\sup\{e^{-\gamma\theta}|\phi(\theta)|:\theta\in(-\infty,0]\}$. Then this space satisfies the axioms (H-1,2,3,4), and γ in the definition is the abscissa of the exponent of this space.

Another space for \mathcal{B} is made of the set of measurable functions ϕ : $(-\infty,0] \to E$ such that $e^{-\gamma\theta}|\phi(\theta)|$ is integrable on $(-\infty,0]$, where the seminorm is defined by

$$\|\phi\| = |\phi(0)| + \int_{-\infty}^{0} e^{-\gamma \theta} |\phi(\theta)| d\theta.$$

Denote by $E \times \mathcal{L}_{\gamma}$ the quotient space with respect to this seminorm. Then this space is a Banach space satisfying (H-1,2,3,4), and γ is the abscissa of the exponent.

Theorem 3.3 If $\mathcal{B} = \mathcal{BU}_{\gamma}$ or $E \times \mathcal{L}_{\gamma}$, then $\omega_e(S_0) = \omega_s(S_0) = \gamma$.

Suppose that the original semigroup T(t) is a compact semigroup. Then $K_L(t) = U_L(t) - U_0(t)$ is a compact operator for t > 0. This implies that $\alpha(U_L(t)) = \alpha(U_0(t))$ for t > 0. The following theorem follows from the definition of the essential growth bound.

Theorem 3.4 If T(t) is a compact semigroup, then $\omega_e(U_L) = \omega_e(U_0)$.

We have the estimate of $\alpha(U_0(t))$ in terms of H, K(r), M(r) in the axioms of the phase space \mathcal{B} , and the constant $\gamma_T = \overline{\lim}_{t\to 0} ||T(t)||$.

Theorem 3.5 Let T(t) be a compact semigroup on E. Then the following estimates hold for t > 0.

- (i) $\alpha(U_0(t)) \leq C_1 \overline{\lim}_{s \to t-0} M(s)$, where $C_1 = H \overline{\lim}_{\epsilon \to 0} K(\epsilon) \max\{1, \gamma_T\} + \overline{\lim}_{\epsilon \to 0} M(\epsilon)$.
- (ii) Suppose that every bounded, continuous function $\phi: (-\infty, 0] \to E$ lies in \mathcal{B} in the manner that $\sup\{|\phi(\theta)|: \theta \in (-\infty, 0]\} \leq J\|\phi\|$, where J is a constant independent of ϕ . Then $\alpha(U_0(t)) \leq (1+JH)C_1\overline{\lim}_{s\to t-0}\alpha(S_0(s))$.

4 An example

Let $E = L^2([0, \pi], C)$, the set of square integrable functions on $[0, \pi]$. Consider the equation

$$u'(t) = Au(t) + b \int_{-\infty}^{t} e^{-c(t-s)} u(s) \ ds, \tag{4.1}$$

where A is defined as Af = f'' for $f \in E$ such that f is continuously differentiable, the derivative f' is abosolutely continuous, $f'' \in E$, and that $f(0) = f(\pi) = 0$. It is well known that A is a closed linear operator with dense domain. It is self adjoint, the spectrum of A consists of only point spectrum $\lambda = -n^2, n = 1, 2, \dots, R(\lambda, A)$ has a pole of order 1 at these points, and $|R(\lambda, A)| \leq 1/|\lambda+1|$ for $\Re \lambda > -1$. Hence A is the infinitesimal generator of a C_0 semigroup T(t) such that $|T(t)| \leq e^{-t}$ for $t \geq 0$. Furthermore, T(t) is a compact semigroup.

Notice that

$$|L(\phi)| := \left| b \int_{-\infty}^{0} e^{c\theta} \phi(\theta) \ d\theta \right| \le |b| \int_{-\infty}^{0} e^{(c+\gamma)\theta} e^{-\gamma\theta} |\phi(\theta)| \ d\theta.$$

If $\gamma = -c$, we have that $|L(\phi)| \leq |b| ||\phi||$ for $\phi \in E \times \mathcal{L}_{-c}$. If $\gamma > -c$, we have that $|L(\phi)| \leq |b| (c+\gamma)^{-1} ||\phi||$ for $\phi \in \mathcal{BU}_{\gamma}$. Hence, we can take the space $E \times \mathcal{L}_{-c}$ or \mathcal{BU}_{γ} , $\gamma > -c$, for the phase space of Equation (4.1).

The characteristic operator $\Delta(\lambda)$ now becomes

$$\Delta(\lambda)f = \lambda f - Af - b \int_{-\infty}^{0} e^{(c+\lambda)\theta} d\theta f \qquad f \in D(A), \quad \Re \lambda > \gamma \ge -c.$$

If we set $h(\lambda) = \lambda - b/(c + \lambda)$ for $\Re \lambda > -c$, then we can write $\Delta(\lambda) = h(\lambda)I - A$. Since, from Theorem 3.5 (i), $\omega_e(U_L) \leq \gamma$, the spectrum of A_L in $\Re \lambda > \gamma$ consists of only normal eigenvalues. Let λ be such an eigenvalue. Then from [4] it follows that $N(\Delta(\lambda)) \neq \{0\}$. Thus we see that $h(\lambda) = -n^2$ for some $-n^2 \in P_{\sigma}(A)$. Set $\Lambda_n = \{\lambda : h(\lambda) = -n^2, \Re \lambda > -c\}$ and $\Lambda = \bigcup_{n \geq 1} \Lambda_n$.

The equation $h(\lambda) = -n^2$ becomes $(\lambda + c)(\lambda + n^2) = b$, which has the roots $\kappa_n = [-(c+n^2) - \sqrt{D}]/2$, $\lambda_n = [-(c+n^2) + \sqrt{D}]/2$, where $D = (c+n^2)^2 - 4(cn^2 - b)$. We are interested in the roots whose real parts are greater than -c.

Proposition 4.1

Case (i): b > 0. $\Lambda = \{\lambda_n : n \ge 1\}$, and $\lambda_1 > \lambda_2 > \cdots > \lambda_n \to -c \quad (n \to \infty)$.

(i-1): $c \leq 0$. λ_n are all positive; (i-2): c > 0. If 0 < b < c, λ_n are all negative. If $b = n^2c$, $n \geq 1$, then $\lambda_1 > \lambda_2 > \cdots > \lambda_n = 0 > \lambda_{n+1} > \cdots$. If $n^2c < b < (n+1)^2c$, $n \geq 1$, then $\lambda_1 > \lambda_2 > \cdots > \lambda_n > 0 > \lambda_{n+1} > \cdots$.

Case (ii): $b \leq 0$. A is an empty set or finite set.

(ii-1): $c \leq 1$. $\Lambda = \emptyset$; (ii-2): c > 1. There exists an integer n_c such that $\Lambda = \{\kappa_n, \lambda_n : 1 \leq n \leq n_c\}$, and the following cases occur. If $b < -(c-1)^2/4$, then κ_n, λ_n are all imaginary numbers with real part $x_n \leq x_1 = -(c+1)/2$. If $-(c-1)^2/4 \leq b \leq 0$, then, for some $k \leq n_c$, the first k terms of both $\{\kappa_n\}$ and $\{\lambda_n\}$ are real numbers for which $\lambda_1 < 0$ is the maximum number, and the rest terms are imaginary numbers whose real parts are less than λ_1 .

Theorem 4.2 Suppose that $\lambda_n \in \Lambda$. If b = 0 or λ_n is a simple root of $h(\lambda) = -n^2$, then $R(\lambda, A_L)$ has a pole of order 1 at $\lambda = \lambda_n$. $M_{\lambda_0}(A_L) = N(A_L - \lambda_n I)$ consists of functions $\phi(\theta, x) = a_0 e^{\lambda_n \theta} \sin nx$, where a_0 is an arbitrary complex constant.

If λ_n is a double root of $h(\lambda) = -n^2$, then $R(\lambda, A_L)$ has a pole of order 2 at $\lambda = \lambda_n$. $M_{\lambda_0}(A_L) = N((A_L - \lambda_n I)^2)$ consists of functions $\phi(\theta, x) = (a_0 + a_1 \theta) e^{\lambda_n \theta} \sin nx$, where a_0, a_1 are arbitrary complex constants.

Proof From the theorem [4], $\phi \in N(A_L - \lambda_n)$ if and only if $\phi = \varepsilon_{\lambda_n} \otimes f$

for some $f \in E$ such that $\Delta(\lambda_n)f = 0$. Recall that

$$\Delta(\lambda_n)f = (\lambda_n I - A - \frac{b}{\lambda_n + c}I)f = (-n^2 - A)f.$$

From the definition of A it follows that $f(x) = a_0 \sin nx$, $0 \le x \le \pi$.

In the similar manner, $\phi \in N((A_L - \lambda_n)^2)$ if and only if $\phi = \varepsilon_{\lambda_n} \otimes f_0 + \varepsilon'_{\lambda_n} \otimes f_1$ for some f_0, f_1 such that $D_1(\lambda_n) \operatorname{col}[f_0, f_1] = 0$, i.e.

$$\Delta(\lambda_n)f_0 + \Delta'(\lambda_n)f_1 = 0$$
 $\Delta(\lambda_n)f_1 = 0.$

It is easy to see that $\Delta'(\lambda_n) = (1 + b(\lambda_n + c)^{-2})I$.

Now consider the condition that $h(\lambda) = -n^2$ and $\Delta'(\lambda) = 0$, that is,

$$(\lambda + c)(\lambda + n^2) = b$$
 $1 + b(\lambda + c)^{-2} = 0$.

From the second equation, $b \neq 0$. Eliminating b, we have that $\lambda + n^2 = -(\lambda + c)$; hence, $\lambda = -(c + n^2)/2 = x_n$, the x coordinate of the minimum point of Γ_n . This means that, $\Delta'(\lambda_n) = 0$ if and only if $b \neq 0$ and λ_n is a double root of $h(\lambda) = -n^2$.

Suppose that b=0 or λ_n is a simple root. From the equation $\Delta(\lambda_n)f_1=0$, we have $f_1(x)=a_1\sin nx$. Set $a=(1+b(\lambda_n+1)^{-2})a_1$. Then $a\neq 0$ if and only if $a_1\neq 0$, and the equation $\Delta(\lambda_n)f_0+\Delta'(\lambda_n)f_1=0$ becomes

$$-n^2 f(x) - f''(x) + a \sin nx = 0 f(0) = f(\pi) = 0.$$

The solution of the first, differential equation is

$$f(x) = \cos nx \left[c_1 + (2n)^{-1} a \left((2n)^{-1} \sin 2nx - x \right) \right] + \sin nx \left(c_0 - (2n)^{-1} a \cos 2nx \right).$$

It satisfies the boundary condition if and only if $c_1 = a = 0$. Thus we have that $f_1(x) = 0$, $f_0(x) = c_0 \sin nx$. Thus the function ϕ lies in $N((A_L - \lambda_n I)^2)$ if and only if

$$\phi(\theta, x) = c_0 e^{\lambda_n \theta} \sin nx.$$

This shows that $N(A_L - \lambda_n I)^2 = N(A_L - \lambda_n I)$. Thus the eigenspace is the generalized eigenspace of dimension 1, and $R(\lambda_n, A_L)$ has a simple pole at λ_n .

Suppose that $b \neq 0$ and λ_n is a double root. Then $\Delta(\lambda_n) f_0 = \Delta(\lambda_n) f_1 = 0$; hence $\phi(\theta, x)$ is given as in the theorem. To show that $N((A_L - \lambda_n)^3) = N((A_L - \lambda_n)^2)$, consider the equation $D_2(\lambda_n) \operatorname{col}[f_0, f_1, f_2] = 0$. Since

$$\Delta''(\lambda_n) = -2b(\lambda_n + c)^{-3}I,$$

the equation becomes

$$\Delta(\lambda_n)f_0 + \alpha f_2 = 0$$
 $\Delta(\lambda_n)f_1 = 0$ $\Delta(\lambda_n)f_2 = 0$,

where $\alpha = -2b(\lambda_n + c)^{-3}$. From the second equation, it follows taht $f_1(x) = a_1 \sin nx$. Since $\alpha \neq 0$, we can apply the result above for the first, and the third equation. As a result, it follows that $f_0(x) = a_0 \sin nx$, $f_2(x) = 0$. Hence, $N((A_L - \lambda_n)^3) \subset N((A_L - \lambda_n)^2)$, and $N((A_L - \lambda_n I)^2)$ is the generalized eigenspace of dimension 2, and $R(\lambda, A)$ has a pole of order 2 at λ_n .

Define a curve $b=\chi(c)$ in the c-b plane by $\chi(c)=0,\ c\leq 1; \chi(c)=-(c-1)^2/4,\ c>1$. Following the Proposition 4.1, we devide c-b plane into the subregions as $\Pi_1:b>\chi(c),-\infty< c<\infty,\ \Pi_2:b\leq \chi(c),c>1,\ \Pi_3:b\leq \chi(c),c\leq 1$.

Theorem 4.3 Take the space $\mathcal{B} = \mathcal{BU}_{\gamma}$. If $\gamma > -c$ is sufficiently close to -c, then the growth bound of U_L becomes as follows:

$$\omega_s(U_L) = \begin{cases} \lambda_1 & \text{if } (c,b) \in \Pi_1 \\ -(c+1)/2 & \text{if } (c,b) \in \Pi_2. \end{cases}$$

If $(c,b) \in \Pi_3$, then $\omega_s(U_L) \leq \gamma$ whenever $\gamma > -c$.

Theorem 4.4 Take the space $\mathcal{B} = E \times \mathcal{L}_{-c}$. Then the growth bound, and the essential growth bound of U_L becomes as follows:

$$\omega_e(U_L) = -c, \quad \omega_s(U_L) = \begin{cases}
\lambda_1 & \text{if } (c, b) \in \Pi_1 \\
-(c+1)/2 & \text{if } (c, b) \in \Pi_2 \\
-c & \text{if } (c, b) \in \Pi_3.
\end{cases}$$

Theorem 4.5 If $\mathcal{B} = E \times \mathcal{L}_{-c}$, then the following assertions hold:

(i) If $(c, b) \in \Pi_1$ and b > c, then $\lambda_1 > 0$, and $||U_L(t)|| \ge e^{\lambda_1 t}$ for $t \ge 0$; (ii) If $(c, b) \in \Pi_1$ and b = c, then there exists an M such that $1 \le ||U_L(t)|| \le M$

for $t \geq 0$. If $(c, b) \in \Pi_1$ and b < c, then $\lambda_1 < 0$, and $||U_L(t)|| \leq M_{\epsilon}e^{t(\lambda_1 + \epsilon)}$ for $t \geq 0$; (iii) If $(c, b) \in \Pi_2$, then $||U_L(t)|| \leq M_{\epsilon}e^{t(-(c+1)/2+\epsilon)}$ for $t \geq 0$.

If $\mathcal{B} = \mathcal{BU}_{\gamma}$, $\gamma > -c$, then the assertions above hold provided γ is sufficiently close to -c.

Theorem 4.6 In the case $(c, b) \in \Pi_3$, we have different estimates of $||U_L(t)||$ according to the choice of \mathcal{B} .

Choose $\mathcal{B} = \mathcal{BU}_{\gamma}, \gamma > -c$. If c > 0, then we can take a negative γ and $||U_L(t)|| \leq M_{\epsilon}e^{t(\gamma+\epsilon)}$ for $t \geq 0$. If $c \leq 0$, then γ becomes positive, and we only know that $||U_L(t)|| \leq M_{\epsilon}e^{t(\gamma+\epsilon)}$ for $t \geq 0$.

Choose $\mathcal{B} = E \times \mathcal{L}_{-c}$. If c > 0, then $||U_L(t)|| \leq M_{\epsilon}e^{t(-c+\epsilon)}$ for $t \geq 0$. If c < 0, then $||U_L(t)|| \geq e^{-ct}$ for $t \geq 0$. If $c = 0, b \leq 0$, then $||U_L(t)|| \geq 1$.

Corollary 4.7 Take the phase space as $\mathcal{B} = \mathcal{BU}_{\gamma}$, $\gamma > -c$. If γ is sufficiently close to -c, then the null solution of Equation (4.1) has the following stability: if b = c > 0, it is stable but not as mptotically stable; if c > 0, c > b, it is exponentially asymptotically stable. If $(c,b) \in \Pi_1$, b > c, then the null solution of Equation (4.1) is not stable for any choice of $\gamma > -c$.

Corollary 4.8 Take the phase space as $\mathcal{B} = E \times \mathcal{L}_{-\gamma}$. The null solution of Equation (4.1) is exponentially asymptotically stable if and only if c > 0 and b < c. If c > 0 and b = c, it is stable but not asymptotically stable. If c < 0, or if $c \ge 0$ and b > c, then it is not stable.

In the case c = 0 the equation becomes

$$u'(t) = Au(t) + b \int_{-\infty}^{0} u(t+\theta)d\theta.$$

Since $|T(t)f| \leq e^{-t}|f|$ for $t \geq 0, f \in E$, it follows that

$$||U_{0}(t)\phi|| = |T(t)\phi(0)| + \int_{-t}^{0} |T(t+\theta)\phi(0)| d\theta + \int_{-\infty}^{-t} |\phi(t+\theta)| d\theta$$

$$\leq e^{-t}|\phi(0)| + \int_{0}^{t} e^{-s}|\phi(0)| ds + \int_{-\infty}^{0} |\phi(s)| ds$$

$$= |\phi(0)| + \int_{-\infty}^{0} |\phi(\theta)| d\theta = ||\phi||.$$

Hence, we have that $||U_0(t)|| \le 1$ for $t \ge 1$. Since $||U_0(t)|| \ge \alpha(U_0(t)) \ge 1$, it follows that $||U_0(t)|| = \alpha(U_0(t)) \equiv 1$ in the space $E \times \mathcal{L}_0$.

If b=0, then $U_L(t)=U_0(t)$, and the null solution is stable. If b>0, the null solution is not stable from Corollary 4.8. If b<0, from Theorem 4.6 we only know that $||U_L(t)|| \ge 1$. Is the null solution stable or not? About this interesting problem, Murakami has informed us of the following stability result.

Theorem 4.9 If c = 0, b < 0, the null solution of Equation (4.1) is $\mathcal{B} - E$ uniformly asymptotically stable: that is, there exists a constant M such that $|u(t,\phi)| \leq M||\phi||$ for $t \geq 0, \phi \in \mathcal{B}$, and for any $\epsilon > 0$ there exist a $\tau(\epsilon) > 0$ such that $|u(t,\phi)| \leq \epsilon ||\phi||$ for $t > \tau(\epsilon)$, $\phi \in \mathcal{B}$.

Proof. Let $\{f_n\}, n = 1, 2, \dots$, be the complete orthonormal system of the self adjoint operator A, and set $u^n(t) = \langle u(t), f^n \rangle$. Then $u(t) = \sum_{n\geq 1} u^n(t) f^n$, and $T(t)u(0) = \sum_{n\geq 1} e^{-n^2t} u^n(0) f^n$, $t \geq 0$. Since

$$L(u_s) = \sum_{n>1} < L(u_s), f^n > f^n,$$

it follows that

$$T(t-s)L(u_s) = \sum_{n\geq 1} e^{-n^2(t-s)} < L(u_s), f^n > f^n.$$

From the definition of L, it follows that

$$< L(u_s), f^n > = < b \int_{-\infty}^{0} u(s+\theta) \ d\theta, f^n > = b \int_{-\infty}^{s} < u(r), f^n > dr.$$

Hence $u^n(t)$ satisfies the equation

$$u^{n}(t) = e^{-n^{2}t}u^{n}(0) + \int_{0}^{t} e^{-n^{2}(t-s)}b \int_{-\infty}^{s} u^{n}(r) dr ds.$$

Taking the derivatives successively, we know that $u^{n}(t)$ satisfies the equation

$$x'(t) = -n^2 x(t) + b \int_{-\infty}^t x(r) dr$$

with the initial condition $x(\theta) = \phi^n(\theta) := \langle \phi(\theta), f^n \rangle, \theta \in (-\infty, 0]$, and the equation $x''(t) = -n^2x'(t) + bx(t)$ with the initial conditions

$$x(0) = \phi^{n}(0), \quad x'(0) = -n^{2}\phi^{n}(0) + b\int_{-\infty}^{0} \phi^{n}(\theta)d\theta.$$

Set $\lambda_{\pm}^n = (-n^2 \pm \sqrt{D_n})/2$, $D_n = n^4 + 4b$. If $D_n \neq 0$, the solution is given as

$$u^{n}(t) = x(t)$$

$$= \frac{-\lambda_{-}^{n}x(0) + x'(0)}{\sqrt{D_{n}}} e^{\lambda_{+}^{n}t} + \frac{\lambda_{+}^{n}x(0) - x'(0)}{\sqrt{D_{n}}} e^{\lambda_{-}^{n}t}.$$

$$= \frac{(n^{2} + \sqrt{D_{n}})e^{\lambda_{-}^{n}t} - (n^{2} - \sqrt{D_{n}})e^{\lambda_{+}^{n}t}}{2\sqrt{D_{n}}} \phi^{n}(0)$$

$$+ \frac{(e^{\lambda_{+}^{n}t} - e^{\lambda_{-}^{n}t})b}{\sqrt{D_{n}}} \int_{-\infty}^{0} \phi^{n}(\theta) d\theta.$$

If $D_n = 0$, then $\lambda_{\pm}^n = -n^2/2$, and the solution is given as

$$u^{n}(t) = x(t)$$

$$= \left[(1 + (n^{2}t/2))x(0) + tx'(0) \right] e^{-n^{2}t/2}$$

$$= \left[(1 - (n^{2}t/2))\phi^{n}(0) + bt \int_{-\infty}^{0} \phi^{n}(\theta) d\theta \right] e^{-n^{2}t/2}.$$

Since b < 0, it follows that $\Re \lambda_{\pm}^n < 0$ for $n \ge 1$, and there exists a constant c_1 such that, for $D_n \ne 0$,

$$|u^n(t)| \le c_1 \left[|\phi^n(0)| + \frac{|b|}{\sqrt{|D_n|}} \int_{-\infty}^0 |\phi^n(\theta)| d\theta \right],$$

and for $D_n = 0$,

$$|u^n(t)| \le c_1 \left[|\phi^n(0)| + |b| \int_{-\infty}^0 |\phi^n(\theta)| d\theta \right].$$

Since

$$\int_{-\infty}^{0} |\phi^{n}(\theta)| \ d\theta \le \int_{-\infty}^{0} |\phi(\theta)| \ d\theta$$

for $n \geq 1$, it follows that

$$\left(\sum_{n=1}^{\infty} |u^{n}(t)|^{2}\right)^{1/2} \leq c_{1} \left(\sum_{n=1}^{\infty} |\phi^{n}(0)|^{2}\right)^{1/2} + c_{1}|b| \left(1 + \sum_{n^{4} + 4b \neq 0} \frac{1}{|D_{n}|}\right)^{1/2} \int_{-\infty}^{0} |\phi(\theta)| d\theta.$$

for $t \geq 0$. Thus there exists a constant M such that

$$|u(t,\phi)| \le M \|\phi\|$$
 for $t \ge 0, \phi \in \mathcal{B}$.

Take an N such that $D_n > 0$ for $n \ge N$. For $n \ge N$, set

$$h_n = (n^2 + \sqrt{D_n})/2\sqrt{D_n}, \quad k_n = (n^2 - \sqrt{D_n})/2\sqrt{D_n}.$$

Since $e^{\lambda_{-}^{n}t} \leq e^{-t}, e^{\lambda_{+}^{n}t} \leq 1$, it follows that

$$|u^n(t)| \le (|h_n|e^{-t} + |k_n|)|\phi^n(0)| + \frac{2|b|}{\sqrt{D_n}} \int_{-\infty}^0 |\phi(\theta)| d\theta.$$

Set $H_m = \sup\{|h_n| : n \geq m\}, K_m = \sup\{|k_n| : n \geq m\}, m \geq N$. Since $\lim_{n\to\infty} |h_n| = 1$, and since $\lim_{n\to\infty} k_n = 0$, $\lim_{n\to\infty} K_m = 0$, and

$$\left(\sum_{n\geq m} |u^{n}(t)|^{2}\right)^{1/2} \leq \left(H_{m}e^{-t} + K_{m}\right) \left(\sum_{n\geq m} |\phi^{n}(0)|^{2}\right)^{1/2} + \left(\sum_{n\geq m} \frac{4|b|^{2}}{D_{n}}\right)^{1/2} \int_{-\infty}^{0} |\phi(\theta)| d\theta$$

$$\leq \left(H_{m}e^{-t} + K_{m} + \left(\sum_{n\geq m} \frac{4|b|^{2}}{D_{n}}\right)^{1/2}\right) \|\phi\|.$$

Let $\epsilon > 0$. Then there exist $m = m(\epsilon) \geq N$ and $\tau_1(\epsilon)$ such that

$$\left(\sum_{n\geq m} |u^n(t)|^2\right)^{1/2} < \epsilon \|\phi\| \text{ for } t > \tau_1(\epsilon), \phi \in \mathcal{B}.$$

Since $|u^n(t,\phi)| \to 0$ as $t \to \infty$ uniformly for $1 \le n < m$ and for ϕ such that $||\phi|| \le 1$, there exists a $\tau_2(\epsilon) > 0$ such that $(\sum_{n < m} |u^n(t)|^2)^{1/2} < \epsilon$ provided $t \ge \tau_2(\epsilon)$, $||\phi|| \le 1$. Consequently, it follows that, if $t > \tau_3(\epsilon) := \max\{\tau_1(\epsilon), \tau_2(\epsilon)\}$ and if $||\phi|| \le 1$, then $|u(t,\phi)| < \sqrt{2}\epsilon$. Since $u(t,\phi)$ is linear in ϕ , it follows that $|u(t,\phi)| \le \epsilon ||\phi||$ for $t > \tau(\epsilon) := \tau_3(\epsilon/\sqrt{2}), \phi \in \mathcal{B}$.

REFERENCES

- 1. Hale J.K. and Kato J., Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21, 11-41(1978).
- 2. Hale J.K. and Lunel S.M.V., Introduction to Functional Differential Equations, Springer-Verlag, (1991).
- 3. Murakami S., Stability for functional differential equations with infinite delay in Banach space, unpublished.
- 4. Naito T., Shin J.S. and Murakami S., On solution semigroups of general functional differential equations, to appear in the Proc. of the WCNA96, Elsevier Sci. Ltd.
- 5. Shin J.S., Comparison theorems and uniqueness of mild solutions to semilinear functional differential equations in Banach spaces, Nonlinear Analysis, T.M.A., 23, 825-847(1994).
- 6. Travis C.C. and Webb G.F., Existence and stability for partial functional differential equations, Trans.A.M.S., 200, 395-418 (1974).
- 7. Webb G.F., Theory of Nonlinear Age-dependent Population Dynamics, Marcel Dekker, INC., (1985).