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NONLINEAR EIGENVALUE PROBLEMS
WITH SEVERAL PARAMETERS

EERTE HRABSE  YEM KBS (TETSUTARO SHIBATA)

1. INTRODUCTION. We consider the nonlinear multiparameter problem with indefi-
nite nonlinearities fi(1 < k < n):

-1
o’ (r) + N

W (r)+ > mfu(ru(r)) = Ag(r,u(r)), 0<r<1,
k=1

(1.1)
u(r) >0, 0<r<1,

4/ (0) =0, wu(l)=0.

Here N >3 and p = (u1, 2, -+ , bn) € R (n > 1), A € R are parameters. We know that
the radial solution of the following elliptic equation

pu+ S fellzlw) = Agllzl,u) in Bi={z € RV :|z| <1},
£t (1.2)

>0 in B, u=0 on 0B
satisfies the equation (1.1). The typical example of the nonlinearities f; and g is
fk (Ta U‘) = ak(r)|u|pk_1u) 9(7', ’LL) = ao(r)u,

where ag(r) € C*([0,1]), and

ap(r) <0,r €[0,1] (1 <k <n), ai(0) >0, ap(r) > 0,a0(r) > 0,r €[0,1], (1.3)
1<p<pe < pim1 <P <Piy1 S S pp <14+4/N. (14)

We emphasize that no sign conditions are imposed on ay(r)(k # ¢), and a;(r) may change
sign. If fr (1 < k < n) and g are odd in u and satisfy suitable growth conditions, then
by Ljusternik-Schnirelman (LS) theory, one can establish, given any o > 0, the existence

of variational eigenvalue A = A(u, ) for the equation (1.1) associated with eigenfunction
Uy o € My, where

u(x)
M, = {u € X .= WOI’Q(B) U (u) = %L (/0 g(l:c[,s)ds) dr = %oﬂ} ,

and w be the measure of unit sphere SV—1 in RV,
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The aim of this paper is to study asymptotic behavior of A = A\(u, a). More precisely,
let an arbitrary 1 <4 < n be fixed. Then we shall establish asymptotic formulas of A\(u, a),
which is dominated by p;, as p; — co. Hence, we fix 1 <4 < n throughout this paper.

Nonlinear elliptic multiparameter problems arises in many areas’of applied mathematics
including astrophysics, fluid mechanics, and especially, in the study of semilinear elliptic
equations, which are, for example, derived from nonlinear Klein-Gordon equations in RY

—Au= f(u) —\u in RN, (1.5)

Indeed, in many cases, the nonlinearity f contains several parameters (see Berestycki and

Lions [1]), and many interesting properties of solutions have been intensively investigated.
Another motivation comes from the study of ”asymptotic direction” (limit of the ratio

of the two eigenvalues) of the linear indefinite two-parameter Strum-Liouville problems

—(a(z)u(z)') + pb(z)u(z) = Ac(z)u(z), (1.6)

in which no sign conditions are imposed on b(z) and c(z). Asymptotic direction have
played a fundamental role in the study of two-parameter eigenvalue problems, and has
been studied extensively by many authors. Various references may be found in Faierman
[6], Turyn [14] and the references therein for further informations. Our problem is regarded
as the nonlinear version of finding asymptotic direction of eigenvalues and the variational
approach seems effective to the problem (1.1). We note that the equation (1.1) has two
variational structures to define variational eigenvalue.

Recently, Shibata [11] treated the simplest case of the equation (1.1), namely, one-
dimensional two-parameter definite problem of the form

v (z) + pu(z)? = Mu(z)?, w>0 for 0<z <1,

2(0) = u(1) = 0, (17)

where p1, A > 0 are parameters and 1 < g < p < g+2 are constants. By using the LS-theory
on general level set

Nop i= {u W)z [ (@) g / Ju() P do = —ﬁ} , (8> 0)

(1.8)
due to Zeidler [15], the variational eigenvalue A = Ag(u, B) is defined, and precise asymp-
totic formula of A\y(u, ) as p — oo for a fixed 3 > 0 was obtained:

ok, B) = Cru3 + o(u$¥), (1.9)

where

- 2(p—q)
Cy = q_'{:_l)g_(ql%(]?+3)(q+1)(p—q)ﬂ 2 T(#E)) 7 o
P+l 2(2¢-p+3) w(q+1)r( q+?;>> | |

The applications of this variational method are also applicable to our problem (1.1). More
precisely, it was shown in Shibata [12] that on the general level set

= Uu '1- ’U,ZZ'—n | u(m) I, 8)as = —DWw
Nu,ﬂ~—{ GX-Q/BIVId ;uk/B</o fr(lz|, )d>— B }
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where 8 > 0 is a parameter, the variational eigenvalue A\ = \g(y, §) is defined as Lagrange
multiplier of the minimizing problem ”minimize ¥(u) under the constraint u € N, g.”
Under the appropriate conditions on f; and g, the asymptotic formulas of \o(u, 3), which
are the extension of (1.9) were established (see Remark 2.3 in Section 2).

In this paper, we adopt another variational method, namely, the LS theory due to
Chiappinelli [3, 4], which is essentially developed in L?-framework, and shall establish
asymptotic formulas of variational eigenvalue A(u, ), which are different from those of
Xo(i, B). To obtain our results, the properties of the ground state solution w of the
nonlinear scalar field equation

N-1
w"(s) + ——w'(s) +w(s)” —w(s) =0, s>0,
S
w(s) >0, s2>0, (1.11)
lim w(s) = 0.
§—00
will also play important roles.

2. MAIN RESULTS. For simplicity, we denote by C the various positive constants
independent of (i, o). We explain notations. For u,v € X = I/VO1 ’Z(B)

=3 [ 1Vude, Jull = = [ w@Pds, o)== [ uGp@
Fy(r,u) := /ou fr(r,8)ds, G(r,u):= /Oug(r, s)ds, |

1

Bu(w) = 2 [ Fullol, u(@ds, 2,(0) = 5llulfk = 3 i)
k=1

We assume the following conditions (A.1)-(A.3) on fi and g:
(A.1) fr,g € CY([0,1]) x R are odd in u.

(A.2)
g(r,u) >0, 39_(67;32 >0 for (r,u)€[0,1] x Ry, (2.1)
Clu <g(r,u) <Cu for r€[0,1] and u > 0. (2.2)

(A.3) There exist constants {pg}7_,,{qk}7-; satisfying (1.4) with qx < pp(1 < k < n)
such that

[fe(r,w)] < C(lul™ + |u|®™) for r€[0,1], u€ R, (2.3)
%5(%?—) <0 for (r,u)€[0,1] x Ry. (2.4)

Furthermore, if ®;(ug) > 0 for ug € X, then

(fi(ra Uo), uO) - 2(1)1,(“0) > 0. (25)



Moreover, (A.4) (resp (A.5)) will be assumed in Theorem 2.1 (resp. Theorem 2.2).
(A.4) There exists ax(r) € C1([0,1]) (1 <k < n) such that

f—iﬁ%ci) — ak(r), g(_%u_) —ap(r) as u — o

uniformly for r € [0, 1], where ay(r) satisfies the condition (1.3). In addition,

/Mdng, / ?—mdszo for r € [0,1] and u >0,
0 or 0 or

where
fk,O(Ta ’LL) = fk(ra u) - a’k(r)upka gO(ra u) = g(’l‘, u) - aO(r)u'
(A.5) There exists bg(r) € C1([0,1]) (1 <k < n) such that

sz(J,Z;‘—U) — br(r), g_(r;u) —bo(r) as u |0

uniformly for 7 € [0, 1], where by (r) satisfies the condition (1.3). In addition,

u U
6—Jcl“Mazsgo, 991(1:5) 1o g for r €1[0,1] and 0 <u < 1,
0 87' 0 67‘

where
Fea(rsw) i= fie(r,u) = be(r)u®, gi(r,u) := g(r,u) — bo(r)u.
The typical examples of f; and g which satisfies (A.1) - (A.5) are:

fe(ryu) = ag(r)|uPctu, g(r,u) = ap(r)u,

Fr(ryw) = (cosmr)[ulP*~tu + ul™~tu, g(r,u) = (1+r?)u,

where ay(r), {px}7_, and {q}}_, satisfy (1.3) and (1.4).
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(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

For a given (u,a) € RTLI, we say that A = A(u, ) is the variational eigenvalue if the

associated eigenfunction u, o € M, is radially symmetric and the conditions (B.1) -

are satisfied:

(B.1) (1, 0, A(11, @), up0) € R x R x M, satisfies (1.1).
(B.2)

20 (Up,a) = B(p, ) = if}& 2, (u).

ucMq

A(p, @) is explicitly represented as follows:

o) = Mk + s b (f (7, i 0), U )
Mp ) = (00 t)s )

Indeed, multiply (1.1) by u, . and integrate it to obtain

~ltall%e + D 1k (Fr (s ), waa) = Aty 0)(9(r, Uppra) s s c0).
k=1

(B.2)

(2.13)

(2.14)

(2.15)
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This implies (2.14). Unfortunately, the positivity of A\(u,«) does not follow from (2.14)
directly.

We introduce (C-i) and (D-i) conditions for a sequence {(i, @)} C R+
(C-1)

aPi~ly, — oo, (2.16)
Ny — oo (2.17)

Alp—pg)  —A=N(PE—1)
QTR ) TN g (k£ ). (2.18)

(D-i)

a% 1y, — oo, (2.19)
Ny, — 0. (2.20)

4(qp—g;) —2=N(ge-1)
preTN@=D y NEED 0 (f £ ). (2.21)
Note that (2.19) and (2.20) occur when, for example, p; — co and a = p, (N/4+e) , where

0<e<{4—N(g—1)}/{4(¢; —1)}. Finally, w denotes the ground state solution of (1.11),
which uniquely exists, and W denotes the ground state of (1.11) with p; replaced by g¢;.

Theorem 2.1. Assume (A.1) - (A.4). Then the following asymptotic formula holds for
{(p, @)} C RY*" satisfying (C-i):
A, @) = Ca(@P ™ 1) T 4 o (a2~ ) =T ), (2.22)

4 __4p—1)
where C; = ao(0)™1a;(0) =D |lw] LInF "

Theorem 2.2. Assume (A.1) - (A.8) and (A.5). Then the following asymptotic formula
holds for {(u, )} C R satisfying (D-i):
A, @) = Ca(a*™ ) T + o (0 1) =D ), (2.23)

4(q;—1)

where 3 = bo(0)~b:(0) == [ W] Lny -

Remark 2.3. In Shibata [12], the following asymptotic formulas of variational eigenvalue
A = Ag(p, B) on general level sets N, g were obtained:

Theorem 2.4 ([12, Theorem 2.1]) Assume (A.1) - (A.4). Furthermore, assume that
(A.6) p;i—gqi < pp—qy for k <i.
Suppose that a sequence {(11,3)} C R satisfies
2 ;s _NA2-pp(N-2)
BulT, TR oo,y SRR T TR g ( 44),
Then the following asymptotic formula holds:

1 4 _2:T 2(p; ~1) L_l 2(p;—1)
No(p,B) = C1ao(0) ™ a;(0) TFFHTTI (BT T ) ST 4 o((Buf* ) AR ),
(2.24)

p 2(ps—1)
where Cy = {(N +2 — p;(N —2))/((4+ N — Npi)llw”iz(RN))}N+2—Pi(N—2) _
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Theorem 2.5 ([12, Theorem 2.2]). Assume (A.1) - (A.8), (A.5), and (A.6). Further-
more, suppose that a sequence {(u,8)} C R:L_H satisfied

E (N=-2)/2 B =
ﬁ

Buf ™" — oo, P 0, pBmFe=s=my, T 0 (k # 4).
Then the following asymptotic formula holds:
2 - 2 .
/\O(Ny IB) = C5b0(0)—-lbi (O) N+2—;¢(N_2) (ﬁuzfzi—l )N+§(_qqz.(1lv)_2) + O((ﬂ/‘lﬁi%ﬁl )—‘——L——-N+Z(_tzqi(2_2) )’

(2.25)
2(g;—1)
where Cs = {(N +2 - ¢;(N = 2))/(4+ N — Ng;) | W32 ) } 77207,

By comparing Theorem 2.1 with Theorem 2.4 for a fixed o, 8 > 0, we see that Ap, @)
tends to oo faster than A\g(u, 8) as pu; — oo.

Remark 2.6. (1) In Theorem 2.1, if we assume the condition

2{(N+2)—-p;(N-2)}

o! N(p;=1) Wi — 00, (2.26)

which is stronger than (2.17), then the technical condition (2.5) can be removed.
(2) The condition (2.5) can be weakened. Indeed, it is sufficient that (2.5) holds only for
U = u, o. The typical example

fi(r,u) = ag(r)u

satisfying (1.3) and (1.4) with ¢; < p;, fulfills this weaker condition. Hence, we can also
treat this nonlinearity by our arguments.

P by 4 by (r) Ju|% L, (2.27)

3. FUNDAMENTAL LEMMAS. Theorem 2.2 can be proved by the same arguments
as those used to prove Theorem 2.1. Therefore, we show Theorem 2.1. Let q;(0) =
ao(0) = 1 in what follows for simplicity. Furthermore, a subsequence of a sequence will be
denoted by the same notation as that of original sequence for convenience. Existence of of
variational eigenvalues A(u, @) follows from a simple application of the result of Chiappinelli
[4]. The aim of this section is to show:

Lemma 3.1. Assume (C-i). Then

A, @) > C(ab+= L) Tt

As a consequence of (2.1), (2.4), Lemma 3.1, and the result of Gidas, Ni and Nirenberg [7,
Theorem 1’], we obtain:

Corollary 8.2. Assume (C-i). Then u, o is radially symmetric.

To show Lemma 3.1, we prepare some inequalities and lemmas. By (2.2) and (2.3) we
haveforue X and1 <k <n

Fe()] < C(lufP + uf %), |8k (u)] < C(llullBE] + [luf 21D, (3.1)

C™'? < G(r,u) < Cu?, C7Hu|2 < U(u) < ClluljZ. (32)
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Furthermore, we know the interpolation inequalities (cf. Chiappinelli [4, Lemma 1].) -

—1) N+4+2—-pp(N-2 —1) N+2—qp (N —2)

1 k k ) 1 k
lullpe it <C||ullx lull; = lullgeis <C||u|\x full; 2 (33)

Lemma 3.3. Let w, be the unique solution of the following equation for a given T > 0:

N -1 .
wll(s) + —S——w’T (8) + wo(8)” —w,(s) =0, 0<s<T,
wr(8) >0, 0<s<rT,
wL(0) = w,(7) = 0.

(3.4)

Then w, (|z]) — w(|z|) not only uniformly on any compact sets on RN, but also in L?(RM)
and LP*HL(RN)(1 <k <n) asT — oo.

This lemma can be shown by the same arguments as those which will be used in the proof
of Lemma 4.1 and Lemma 4.8 proved later. Thus the proof is omitted.

The following properties of the ground state w of the equation (1.11) will play important
roles to show Lemma 3.1. There uniquely exists the ground state w of (1.11) such that: w
decreases for s > 0,w € C?(R), and for some constant § > 0

w(s) < Ce ™%, >0, (3.5)
2(ps +1) Npi 1)
pitl i 2 2 _ 2
ol = 5 g Wty = 7ty Eas
Here

N_ —_ «
lwll? gy o= | sV Hw(s)Pds, lwlik gy = [ " w'(s)*ds
p’ ) R R

and will be denoted by ||w||} and |lwl||3%, respectively for simplicity. For these properties,
we refer to Berestycki and Lions [2], Kwong [10] and Strauss [13].

2(p;—1)

Lemma 38.4. Assume (C-i). Let su.0 = ||Vialls rm(api_lui)m%’ﬁ, and V, o be
the unique solution of (8.4) for T = sy,o. Furthermore, let r := s;}xs, and
Vp,a(r) =V, ,a”2 a I\r(pz—l)(O‘ZLP'N)4 o DdyaVials),
where d, ., is defined by the rule ¥(v, o) = 1/2a%. Then
C™'<dya<C. (3.7)
Furthermore,
el < CuITrD o EREE, (38)
bl B4 < OuTTT o SR (39)
pillow all 13 < CN; D o R, (310)
il P ik 0l 2L, ik B ()] = (DT o TGS (ke £14).

(3.11)
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Proof. By definition of v, a, we have ||v, /|3 = a®d2 . This along with (3.2) implies
. 1 . .
C_lazdi,a = C7Hvpall3 < V(vp,a) = ‘2‘0‘2 < Cllvuells = Cazdia

Thus, (3.7) is proved. Next, by (3.7), and Lemma 3.3, we obtain

[Vp,ell % < Cum 2N I2opi(N-2))

Thus, we obtain (3.8). (3.9) is also obtained by dlrect calculation. Since v, o € My, we
obtain by (3.3) and (3.8) that

4(pr—p;) 4-N(pp—1) 4 2(N+2—p; (N —2))
pr+1 NGO A-N(p;—1) \, I=N(p;—1)  —F—Fre—T——
pellvpallpiis < Clupa®™NE=0p, ) o TNGED
4(pg—D5) 4-N(pk 1) (Gk—PE) A 2AN+2—p;(N=2))
e[V, ll 24T < C (™ NED ] T (o Ny e RO e

(3.12)
This along with the fact that g, < pg, (2.17), (2.18), and (3.1) implies that

2(N+2-p; (N —2))

1 1 —-—1 H2-p (1 )

P @k (V)| < Cig([vpallbiiy + lvpall@t]) = o) "™V a™ =80 (k #4),
4 a(N42-p(N—2))

13 ®i(Vp,a) | < Cri(J|vp,a qt“) <Cu;- Npi=1) = 4N, -D

+1
Pz + ”,Ull',a| g:+1

(3.13)
Thus we obtain (3.10)—(3.11). O

To obtain Lemma 3.1, we need further observation of asymptotic property of d, . We
put

F.o(u / Jro(r,s)ds, Go(u) :——/ go(r, s)ds.
o- .
Then, by (2.2) and (2.6) we have

Igo(T, u)[ <Cu for (Ta ’U,) € [07 1] X Ry,

Sro(rw)| | Fro(r,w)|  |go(r,u)| |Go(r,u) s U — Co.
uPe |7 | ypetl 7 uw | u? (3.14)
By using Lemma 3.4 and a direct calculation, we obtain:
Lemma 3.5. Assume (C-i). Thend, o —1. O
Furthermore, by Lemmas 3.3 - 3.5 we also obtain
2 40 —pg) 4 2(N+2-p;(N-2))

i (Vp,a) = (1 +o(W)llwlly ™7 ™ T TN (3.15)

N +2—p(N -2)
Lemma 3.6. Assume (C-i). Then

Tm 2(N+2—p; (N—2))

el < Cu; SCEU I (3.16)
—A . 2AN+2-p(N-2)) )
1] @i (wp0) s pill a5, pallup ol 21 < Ouf T ® D o” T RGD (3.17)

pr+1 gr+1 __ i— N(p,—l) (I\itil—(;):(_]\i)_z) k .
uqu)k(u”,a)h /l'klluﬂ,allpk+17'u'k:HuF»,quk+1 - 0(1)/1' P ( 7é Z)'

(3.18)
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Proof. (2.13) along with the fact that v, o € M, implies

%= e ®r(va,0); (3.19)

1 - 1
Au(“u,a) = ‘2”||uu,a||§(—2ﬂk‘1)k(uu,a) < AM('U#,a) = EHU.u,a

k=1 ) k=1
this implies that
1 = 1 =
Sl < D el )] + vl % + D el et (3.20)
k=1 k=1

Here we recall the inequality
ab < af /B +6% /B2 (a,6>0, 1/81+1/B2=1). (3.21)

Since v, o € My, we obtain by (3.3) and (3.21) thatfor 0 <e<land 1<k <n

4~-N(pg—1)

N(pkp—1) 4(pr—P3) — 4
pr+1 - — | - — 4-N(p;—1) \TTN(pp—1
Nk|!uu,a”pk+1 < Ce TN (upad=N@i=D py, ) (=)
4 __ 2(N+2-p;(N—2))
ITN(p; =1~ 2
X 1, a” “NED 4+ Celluy ol (3.22)
N(qp—1) 4(pp—py) —iNlpg-1) .

el |83 < O T (o R D) D

4(qx —Pk)

4 2(N+2-p;(N—2)) k
1-N(p;-1) Y(d—N{ax—1)) +C€Huu a”%{_
K

X o A-N(p;—D (a4ué\7)(4—N(piw1)

By (2.17), (2.18), (3.1), and (3.22), we obtain for k # ¢

+1 +1
1kl ®r (o) < Cllug allpri + 1t allgri1)
4 2(N+2—-p;(N-2)
< 0(1)/1,:7N(m—1) o FNe-D 4 CG”'UIM,a”%(;

2(N+2—p; (N—2)

4
13 (w,0)] < CluallZH + el @37) < Cuf P a” =7 4 Celluy ol ki
| (3.23)
this along with (3.8), (3.13) and (3.20) implies that
4 2(N+2-p;(N-2))
lupald < Cul "™V TN —1) + Cellupalk- (3.24)

Thus, (3.16) follows immediately from (3.24), and (3.17) follows from (3.16) and (3.23).
Since € > 0 is arbitrary in (3.23), (3.18) follows from (3.16) and (3.23). [J

By Lemma 3.3, Lemma 3.5 and (3.6), we obtain:
Lemma 3.7. Assume (C-i). Then

n
23 i B (U0 ~ ol
k=1 (3.25)

. 4(1—p;) 4 —pi (N —
4—N(p;,—1) NG | Tl | M a2

= 1 1 I—N(p;—1)
N+2——p,-(N—2)( +o(1))l[wlly i
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Now, we are ready to prove Lemma 3.1.

Proof of Lemma 8.1. By (2.3) and (3.18), for k # ¢ we have

2(N+2—p; (N —2))

il ], ), )] < Coe (2550 + Nt all252) = o) o S
(3.26)
By (3.11), (3.18), (3.19), and Lemma 3.7
° 4 2(N+2—p;(N—-2))
’U’IL Ot Z k(I)k Uﬂ,a) ”'Up,,a”X Zukq)k Uy, a) > Cu,“ Npe=1) 4—N(I;>z-71
k=1 k#i
(3.27)
Therefore, by (2.5)
(f’i(Ix]’uu,a)’uy,a) - 2(I)i(up,a) > 0. (3.28)

Now, by (2.2), (2.14), (3.18), (3.26), (3.28) and Lemma 3.7

)\(/,1, a) — _||u“’a”§( + 2::1 ,u’k(fk(up,’a),uu,a)
’ (g(uﬂ,a)’uu,a)

> Ca? {Z /vbk{(fk(lfdvuu,a)a uuya) — 2@ (up,a)} +2 Z pe®@r (Vp,e) = V4,0 |§(}
k=1 k=1

2 Ca_z{(fz(lml Up, aau;t,a) —2®;(up,a)) + (2[1,7;@1'('1)”@) — ||'Uu,an§()
2(N+2—p; (N —2)) 4
a NGD ) > C(aPiT ) TNeD,

4— N(p,,—l)

+o(1)p;

Thus the proof is complete. [

4. THE LIMITING PROCEDURE. To prove Theorem 2.1, we follow the arguments
used in Shibata [11, 12]. We put

s 1= (\(11, @) /1) 7T, 0 (8) = Ex b a(r), 5 == v/A(, ) (4.1)
Then (1.1) implies that w, o(s) satisfies the following equation (4.2):

N-—-1 _ . _
“’Z,a(s) + _S_w:lv,a(s) +a;(AM(p, @) 1/23)wu,a(s)pz — ao(A(p, @) l/zs)wu,a(s)

+ > A )T R g (Mp, @) T 2s)w (s, o, 5)P
k=1,k#1

+ > A @) ik S 01 @) 728, € 0ty a(5)) (42)

3l

- ;L_,LQO()‘(/JH a)_l/zsagu,awu,a(s)) =0, s€l,q:=(0,v/Aua)),
Wy al(s) >0, 0<s <Ay, ),
w:l,,ot(o) = wﬂ,a(\/ A(p, ) = 0.

Therefore, we expect that the limit equation of (4.2) should be (1.11), and the first aim of
this section is to show the following Lemma 4.1:
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Lemma 4.1 Let w = w(s) be the ground state of (1.11). Assume (C-i). Then wy o(s) —
w(s) uniformly on any compact subsets on R.

By the transformation and change of variable of (4.1), we have

||wﬂ,04||§(,,u.,a =

/V )\([J,,OL)
0
/‘V A(ﬂ'va)

- N-2 . .
sVl L (8)2ds = A, 0) 7 &2 lup el (4.3)

+1

— N o
sV wy o (8)P s = A, @) T €L P luy 6l (44)

- N
wpall3 s 0 == s w0 (8)2ds = AMp, @) 6,2 unall- (4.5)

/\/ A(.’-"aa)

We may abbreviate [|wy allx 4.0 |Wsallppua(P = 2,pc +1) to [[wuallx, lwy,allp, respec-
tively. To show Lemma 4.1, we prepare some lemmas. By Gidas, Ni and Nirenberg [7] and
Corollary 3.2, we know that u, o satisfies the following properties:

/ ' — _
U, o(r) <0, 7€(0,1), wu,,(0)=0, 0ouo:= Orgfx%{l Up,a(r) = uy o (0). (4.6)

Lemma 4.2. For a solution u, o of (1.1), the following equality holds for r € [0, 1]:

S

1 "N —1 i
a4 [ S (612 Ty (1)) = Dk B )
0

k=1
+ )\(,LL, a)BO (H, a, 7") = J(/"’a a, 0, U#,a) (47)
1 IN-1 -
= _’l‘l’,/(,l.,oz(l)2 + / u;z,a(s)zdrr - Z/LkBk(lJ'v a, 1) + /\(I*L7 a)BO(p‘7 a, 1) > 07
2 0 s =
where
T ryu) = 3 e Py u) = A, 0) G, ), (49)
k=1
r Uy, () 9 F.(t
Bi(p, a, ) :=/ {/ %da} dt <0, re€]0,1], (4.9)
0 0
T Uy, ()
Bo(u, a,7) ;=/ {/ ai(attﬁlds}dt >0, relo1] (4.10)
0 0

Lemma 4.3. Assume (C-i). Then 0, o — 0.

Proof. Assume that there exists a subsequence of {0} o} such that 0, < C. By (2.18)
we have for k # ¢

u e = o(1)(aul ) TG (4.11)
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this along with (3.1), (3.2), (4.7) and Lemma 3.1 implies that

p;—1 o
Ca* )™ e < (Z’ ) < CZuka (Cna)t; 'G(0pa)™?
v k=1

Zuk(a‘“ P o e <C’Zukuz < O(1+0(1)(a ) THGED).
k=1

(4.12)

- This is a contradiction, since we assume (2.17). Thus the proof is complete. [
Lemma 4.4 Assume (C-i). Then proBiyt < CpioBist for 1 <k <n.
Proof. Since g < pg, by (3.1), (3.2), (4.8), Lemma 3.1, and Lemma 4.3, we obtain

Ay, @) < CZuka (0.04,6)G(0,0,.0)7 1 < Cz,uk(op" 1 +oky < CZukapk 1

k=1 k=1
(4.13)
Since g < pi, we obtain by (3.1), (4.7), (4.9), (4.10) and (4.13) that for 0 < r < 1
L 2 - pet1
5 %ua () ST (0,7, 000) = J(b, 0,7 0,0) S CY poitL, (4.14)

k=1

Let 71 := 1y, € [0,1) satisfy u, o(r1) = 1/20, 4. Since u, o(r) is decreasing in r and
Uy o € M, by (3.2) we have

1 m
5(12 = U(up,a) > Clluy o3 > C/O N1y, o(r)2dr > Co? Y. (4.15)

For each (u,a), let 1 < j(u,a) < n satisfy u, a)aﬁf“‘ et = maxj<k<n ;LkO'p"+l. Then

there exists a subsequence of {(u, @)} and 1 < j < n such that j = j(, a) for all (u, @)
commonly. Along this subsequence we have

,ukap’“Jrl < ujcrpﬂLl (4.16)

for any 1 < k£ < n. We fix this subsequence of (1, @) and j. Then by mean value theorem,
(4. 14) and (4.16) we obtain

2’)“1 1

1—p.
this implies that J,L,—&l p; > < Cry. This along with (4.15) yields

[

—2
O < ClaP) /%) =TT (4.18)

By (4.13), (4.16) and (4.18)

4
A, @) < Cpjolis! = C(aPi=p ) =7 (4.19)
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Since (2.18) implies that for k # 4
(aP* =1 ) =GR (P~ L) T RGEED 5 0,

it follows from Lemma 3.1, and (4.19) that the inequality (4.16) never occurs for some
j # 4. Namely, we find that J(pye)=1 for all (1, @) except finite members of (u, ). Thus
the proof is complete. [l

Lemma 4.5. Assume (C-i). Then
A, @) < C(a ™ psy) TN (4.20)

Proof. By (4.13) and the arguments of (4.14)-(4.18), we see that (4.16) and (4.18) are valid
for 3 =1, that is,

2
ko < pioBt,  opa < CloPu)?)TREED, (4.21)

s

Substituting (4.21) into (4.13), we obtain our assertion. [

By Lemma 3.1 and Lemma 4.5, we obtain:
Lemma 4.6. Assume (C-i). Then A(p, ) ' pupéliyt — 0 fork#i. O
By using the idea of Dancer [5], we can prove:

Lemma 4.7. Assume (C-i). Let .o 1= maXsel, , Wy,a(8)(= wp,a(0) =&, L0ua. Then
Cl<n <C. O

Now we are ready to prove Lemma 4.1.

Proof of Lemma 4.1. Tt follows from (4.14) and (4.21) that

1
—52 (1 Q)W 0 (5)7 = S, 0 (r)* < CZLW"’““ + CMp, )0, o < miohid™;
k=1

this along with Lemma 4.7 yields

Wh,a(8)* < Cpiofi A (p,0) 717 < C.
Therefore, |w), ,| < C. This together with (4.2) and Lemma 4.7 yields |wj, ,| < C. Now
we choose a subsequence of {w, o} and we, such that w, o — Weo, W), , — W, uniformly
on any compact sets in R. By a standard limiting procedure and regularity argument, we
see that We, = Weo(s) € C?(R) satisfies (1.11). Moreover, since |[u, o|l2 = O(a), it follows
from Lemma 3.1 that

_4-N(p;-1) 2
[ wpald = A, )N 26 2wy all3 < CA(p, @)™ @D pFi 77 a® < C
this along with Fatou’s lemma yields

lweoll3 < liminf [[wy a3 < C. (4.22)
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Since weo($) is decreasing in s, it follows from (4.22) that we, (s) satisfies (1.11). Lemma
4.7 implies that we, # 0. The positivity of we follows from the uniqueness theorem of
ODE. We, therefore, find that we is exactly the ground state solution w of (1.11). Now,
full assertion follows from a standard compactness argument. []

The following lemma is a variant of Shibata [11, Lemma 4.7].
Lemma 4.8 ([12, Lemma 6.6]) Assume (C-i). Then there ezists Yo(z) = Yy(|z|) €
L2RNYn P+ 1(RN) (1 < k < n) such that wy.o(|z]) < Yo(z|) for z € RN.

5. PROOF OF THEOREM 2.1. By Lemma 4.1, Lemma 4.8, and Lebesgue’s conver-
gence theorem

1pallz = llwll2,  Nwpalpets = lwllprs (1 <k <n). (5.1)

For 1 <k <n, by (4.5) and the same argument as that used in Lemma 3.5 we obtain

(fr,0( M1, a)—1/2$’ §poWp,a), Wy a) = 0(1)55}}1“"”/1,& ”g:i}’ (5.2)

(90(A (1, @) ™25, €4 Wy 0), Waa) = 0(1)E2 w012 (5.3)
Moreover, by (5.3) and the same argument used in Lemma 3.5, we have

1 1
50 = U(uya) = 5(1+0(1)) upall3,

(5.4)
(9(r up ), tp,a) = (1+0o(1)Jupal3 = (14 0(1)a?.

Multiply (4.2) by w, o. Then integration by parts together with Lemma 4.6 and (5.1)~(5.3)
yields

n

i+1 z : — — _

iiil - ”wﬂ,a”% + A(/‘l’7 a) 1/”’]062:;0; l(ak(/\(l'l'7 a) l/zs)wlz:,l:a7w,u,a)
k#i

) A, @) T ik (froOM (1, @) 7Y28, 6y 0t a), Wy o)
k=1

||wu,a”§( = ku,a

;+1
pit1 — llwll3.

- é;,t (90()‘(/‘1‘7 a)—l/Zs’ éu,awu,a)) w#,a) - ”’UJ
(5.5)
Then by (2.14) and (5.1) - (5.5)

s+ 1
P — Nwpell%

n
) M ) 25 (ar (A, @) TH2sYwbE L w, o)
ki

—+ Z )‘(Ma a’)_lﬂkf;,nly(fk,o()‘(ﬂy a)—l/ZS, gu,awu,a)y w,u,a)
k=1

— & L (oM, @) 728, €y W 0)y Wy ) -

A @) (9 (T, Upsa), U a) = (14 0(1)A(, @)o® = A, @) €2 o {|[wpro

(5.6)



190

That is, . , ’
2N
(1 + o(1))A(1, )0® = (1 + (1) A, @) 2 & [|wll3- (5.7)
This implies ‘
Y ) _ 4(}71'—.1)
(lu'7 a) . N ”'UJ”2 4—~N(p;—1) . (58)
(aPi—1p;) TN G0
This proves our theorem. []
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