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Characteristic equation and asymptotic behavior of

2-dimensional delay-differential equations

RIRFFILRF TH#HW HE T (Rinko Miyazaki)

ABSTRACT. Consider 2-dimensional delay-differential equations

#o)=4 [ alt+s)ns),

—r

where A is a 2x2 constant matrix, r is a positive constant, and n: [—r, 0] — R is monotone
on [—r, 0] and continuous to the left on (—r,0). The purpose of this work is to show that
a necessary and sufficient condition under which the zero solution of (AL) is uniformly

asymptotically stable can be obtained, if we impose a restriction on 7 as follows:
n(s) + n(~r — s) = n(0) + n(-r) for a.e. se€[-r,0]

The proof will be give by using the characteristic equation.

1. Main Results

Consider 2-dimensional equations

&)= A [ 2t + 8)dn(s), | (AL)

-7
where A is a 2x2 constant matrix, r is a positive constant, and 7: [—r,0] — R is monotone

on {—r,0] and continuous to the left on (—r,0). Moreover, we assume that
n(s) + n(—r — s) = n(0) + n(—r) for a.e. s € [-r,0]. (H1)

In [5] we have discussed 1-dimensional case:
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Theorem A. Suppose (H1) holds. The zero solution of a scalar equation

i) =~ [ 2+ o)dns) (L)

is uniformly asymptoticaly stable if and only if n(0) > n(—r) and
0 s T
in{—-7)d -.
/;r sm( rvr) n(s) < -

In [1] we also have shown the following:

Theorem B. The zero solution of 2-dimensional equations

) cosf —sinf| N
m(t) = —a Z x(t —_— Tk),
sinff cos@ | k=1
where T is an arithmetric sequence, that is, Ty =T+ (k—1Dl withT>0and!l >0 for

k=1,2,...,N, 7y >0 and || < g—, s uniformly asymptoticaly stable if and only if
a>0

and

sin Vi (E — |«9|>
a(7’1+'rN) T1+TN 2

2 l T
i ——10
s (7 (5-)

By using the ideas of the proofs of Theorems A and B, we will give more extended results

<X _.

(Theorems 1.1 and 1.2.)
By the transfomation z(t) = Py(t) with an appropriate regular matrix P, we can rewrite
(AL) as
i) =Pap [ Ory(t + 8)dn(s).
Consequently, we only have to consider the equations (AL) where the matrix A is either

of the following two matrices:
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(I) in the case matrix A has real eigenvalues,

where a;, a; and b are real numbers;

(II) in the case matrix A has complex eigenvalues,

cosf —sinf
A=-R(6) =-

sinf cos@
T
h g < —.
where |0] < 5

For the case (I), we have

Theorem 1.1. Suppose (H1) holds. The zero solution of (AL) is uniformly asymptoti-

cally stable if and only if n(0) > n(—r),

o . s 7r .
a; >0 and ai‘/ sm(—;n)dn(s) <= 1=1,2.

-T

For the case (II), we have

Theorem 1.2. Suppose (H1) holds. The zero solution of (AL) is uniformly asymptoti-

cally stable if and only if n(0) > n(—r) and

/O cos {T_};‘QS (—g - |9|)}d77(s) < 71'_—_—_2|i] (1.2)

_r r

Remark 1.1. If 6=0, Theorem 1.2 coincides with Theorem A. We state in the following

section that Theorem B is included by Theorem 1.2.

Remark 1.2. In the case A is an nxn matrix, we can obtain the necessary and sufficient
condition for the uniform asymptotic stability of the zero solution of (AL) by applying

Theorems 1.1, 1.2 and theory of Jordan canonical form. (cf. [2, Theorem 3.4)).
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The proofs of Theorems 1.1 and 1.2 are very similar, so that we give only the proof of
Theorem 1.2.

We prepare a lemma to prove the theorem.

Lemma 1.1. For any integer n, if || < % and |a| < 1, then the following inequality

holds:

cos ((2n+ 12)7T + 20a>‘ < |2n+ 1[005{(% - |9|> ]al}

Proof of Lemma 1.1. First of all we note that |sin k¢| < |k||sin | for any integer k and

¢ € R. Then we have

|cos{(2k + 1)¢}| =

< |2k + 1

sin{(2k+ 1) ('72{ — ¢)H
e

= |2k + 1{| cos ¢|.

Using these relations, we have

l ((2n+1)7r+20 )'
COSs 2 «

cos {(2n+ 1)%&} cos (fa) — sin {(271 + 1)—27£a} sin (0(1)‘

(3% " (32)
COs 2& sm(ga

—i2n + 1] {cos (gm) cos (|0]|a]) + sin (g|a|> sin (|0Ha||)}

—jon + 1|cos{<—72z - lol) Ial}-

This completes the proof. O

<|2n + 1] |cos (8a)| + |2n + 1] |sin (6a)|

Lemma 1.2. Suppose (H1) holds. If f: [-r,0] — R is continuous, then

/_orf(S)dTI(S) = _/_Orf(s)dn(-—r —s).

Proof of Lemma 1.2. Define 7j: [-r,0] — R by 7j(s) = n(—r —s). Then j is monotone on

[-r,0] and f is Riemann-Stieltjes integrable with respect to 7. By the assumption (H1),
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for any positive integer n there exist ¢ € (—r,0) such that —r(1 - k—;—l) <t <-r(l- %)
and 1(tx) = —ij(tx) + 7(0) + n(—r) for k = 1,2,--- ,n. For a partition D,: —r=t)<t; <
o0 <tp <tpyy = 0 of [-r,0] and any choice of &, € [ty_1, %], we consider the Riemann

sum S(f;n; Dy; &). Then we have

n+1

S(f;m; Du; €) = kZ_: F (&) [n(te) — nltr-1)]

n+t1

== > FEit) = filts—1)] = —S(f; 7; Dn; §).
k=1 .

Noticing that d(Dn) = max)cg<pi1(ty — ti-1) < Z, we have

0 0
| $@ants) == [ 1(s)di(s)
as n — oo. This completes the proof. [

Proof of Theorem 1.2. The characteristic equation of (AL) is the following form;

A(A) = det [)J +RO) [ e’\sdn(s)] _o, (1.3)

where [ is the 2x2 identity matrix. We use the fact that the zero solution of (AL) is
uniformly asymptotically stable if and only if all the roots of the characteristic equation
(1.3) lie in the left half of the complex plane, that is, the real part of evéry characteristic
root A of (1.3) is negative.

Let

X 0
P 1) = A+ per? / et dn(s)

-T

for a parameter p € [0,1]. Then the characteristic equation of (1.3) can be expressed in

the following form:

0 0
A+cosf [ eMdn(s) —sinf [ e*dn(s)
A(X) = det o -
sin 9/ e*dn(s)  A+cosd | e*dn(s)

-r -r

-r

()\ + e¥ /j e’\sdn(s)) (A +e /_or e’\sdn(s)>

0 2 0 2
= (A+cos€ e’\sdn(s)> + (sin&/ e’\sdn(s)>
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=p" (N 1p~ (A1) =0.

Now we consider the distribution of the zeros of p*(X; u) and p~(X; ) in the complex
plane.

(Sufficiency) If p = 0, then A = —e*?{n(0) — n(—r)}. By (1.2) and n(0) > n(-r),
|| < Z. Then we have ReX = — cos(4:6){#(0) — n(—r)} < 0. Noticing that each branch of
) is continuous in the parameter p, we only show that there is no zeros on the imaginary
axis for any g € (0,1]. If A(iw) = 0 for an w € R, we have p* (iw; ) = 0 or p~(iw; p) = 0.
When ) is the complex conjugate of any complex A, the relation

pr(ip) =p~(Ap) (1.4)
stands and p~ (iw; u) = 0 implies p*(—iw; u) = 0. Thus, we only have to consider the case
pt(iw; p) = 0. Calculating p* (iw : p), we have

LU
pt(iw; p) = w + €? / eHodn(s)

. ’ 0
_ cos(f + pws)dn(s) + 1 (w + . sin(f + uws)dﬂ(s)) .

-T

Therefore we have

0 ‘ 0
/ cos(f + pws)dn(s) =0 and w=— [ sin(f+ pws)dn(s).

-7

Using the assumption (H1) and Lemma 1.2, we have

'/0 cos(f + pws)dn(s) :% [/0 cos(f + pws)dn(s) + /O—r cos {0 + pw(—r — s)} dn(—r — s)]

0 cos(f + pws) + cos {0 + pw(—r —s
:Lr (6 + pws) 2{ ps( )}dn(s)
- 0
:COSM/ costn(s)
2 —r 2
and
0 0 si i —r—
_ [° sin(0 + pws)dn(s) :_/ sin(@ + pws) +sm2{0+uw( - S)}dn(s)

- 0
:—sing—e——#/ cos W(T2 )d()



81

Therefore we have

—_ 0
29_2@/ oS ﬂ&’";_%ldn(s) =0 (1.5)

COs

and

- 0
w = —sin %—;ﬂ/ cos wdn(s). (1.6)

By (1.5) and [0] < Z, we get [°, dn(s) = 0 for w = 0. This contradicts the inequality
1n(0) > n(—r). Then w # 0, and hence [°, cos &';rz—s)dn(s) # 0 by (1.6). Therefore we
obtain cos &}M = 0 from (1.5), that is,

(2n+ )+ 20 .
w = " for some integer n.
7

Substituting the above w in (1.6), we have

Y 2n+ )7 +20 _ (_1)'1/0 COS{(2n+ m+20r+ 2S}dn(s).

1.
pur -r 2 T ( 7)

From Lemma 1.1 and 0 < u < 1, we obtain

0 0
Cn+ 1w+ 2 ‘<li/ cos

T T Jer

5 dn(s)

0
< |2n+ 1|/_rcos{(—72I - |0|) rt%}dn(s)

—9lo|  |2n+1lm —2l8
<un+u”r'|<|"+'” id

{(2n+1)7r+29r+2s}

?
r

where we used (1.2). This is a contradiction. Therefore there is no characteristic root on
the imaginary axis when p € (0, 1].

(Necessity) If n(0) = n(—r), then n(s) = 0 for s € [-r,0]. In this case, for any solution
z(to, ¢) of (AL), z(to,d)(t) = #(0) for all £ > t;. This is a contradiction and we obtain
n(0) # n(-r).

Suppose that 7(0) < n(—r) or

/0 cos{r t2s (g — |0|>}d17(s) > _7r_—_7_:2_|f_| (1.8)

-7

Claim 1. There exist a po € [0,1] and a Ag € C such that P (Xo; o) = 0 and ReXg > 0.
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Proof of Claim 1. If |6 = Z, then po = 0 and A = —i(sin 0){n(0) —n(-r)}. L || < 3
and 1(0) < n(—r), then pg = 0 and Ay = —e?{n(0) —n(—r)}. If |#| < 5 and n(0) > n(-r),

then there exists a o € (0, 1] such that

0 r+2s /m T — 2|6
2_10 —
po [ cos {TE=2 (5= 101) fan(s) = T=

by (1.8). This yeilds that Ao = "2,

por

Claim 2. Assume that there exist an w € R and a fi € [0,1] such that p*(iw; i) = 0.
Consider the zero of p*()\; u) with parameter p € [0,1] and let A be a branch of the zero
through A = iw at p = fi. Then Re(%’}) > 0 when A = iw and p = fi.

Proof of Claim 2. Taking the partial derivative of A with g on p* (X : ) = 0, we obtain

0
o\ —Xe? /_ . se*dn(s)

= = L=
On 1+ ue“’/. set e dn(s)

-7

If i = 0 and || < Z, there is no w € R such that p* (iw;0) = 0. If i = 0 and |f] = 7, then

w = —sinf{n(0) — n(-r)} and
O\
Re (@)

W = (nilm+20
ar

P
= Re {—iwe’ / se“’\sdn(s)}
A=iw -r

0 2
=wsinf [ sdn(s) = —732)—— >0
If i € (0,1], we have for some integer n from (1.7). Letting L, =
J°_ scos (6 + jiws) dn(s) and L, = [°, ssin (8 + jiws) dn(s). Noticing that sin{f + fiw(—r —
5)} = sin(0 + fiws) and the assumption (H1), we have
0 -7
L,= / ssin (6 + fiws) dn(s) + / (—r —s)sin {0 + fw(—r — 8)} dn(—r — s)
0

-r
rw

0
= —g/ sin (9 + ﬁws) dT](S) = _5_:

where we used the equality w = — [°,sin(# + fiws)dn(s) obtained from Imp* (iw; i) = 0.

Therefore we obtain

oA\
Re (5;)

—iw(Le +1Ls)
~R
s 6{1 T (Lo + iLs)}
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—iw { Le(1 + jiLe) + L2} + wLy

= Re (T+ BLo + (BL,)?

w2'r

= 2 > 0.
(1+ ALe)? + (ALe)?

Claims 1 and 2 yield that the branch of the zero of p*()\; 1) through the point A = )¢ at
K = po continues to lie in the right half of the complex plane for u € (1, 1]. So the zero

solution of (AL) is not uniformly asymptotically stable. This is a contradiction and the

proof is completed. 0O

2. Applications

We will give some applications of Theorems 1.1 and 1.2.

Ezample 2.1. Consider 2-dimensional delaly differential equations with N delays

z(t) = Z apz(t — %), (2.1)
cosf —sinf

where R() = and [0| < 7. Suppose 7 = 7+ (k— 1)l and ay_r41 = ak
sinf cosé

for k=1,2,--- ,N. Here 7 > 0 and | > 0 are constants. We also suppose that a;a; > 0

fori,j=1,2,--- ,N and 75 > 0. Let r = 75 + 7, and

N 0 s € [-r,—7k],
n(s) =Y ex(s),  e(s)=
k=1 Qg s € (—Tk,O].

Then the assumption (H1) holds, and Theorem 1.2 is applicable. Let us compute ‘the

formula in the condition (1.2).

[ {2 ()t~ e {522 -}

Then we have the following:
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Corollary 2.1. The zero solution of (2.1) is uniformly asymptotically stable if and only
if

m — 2|0
B! +7'N '

¢ Foen{Emzn (5o)
Zak>0 an Zakcos{ 5 16]) ¢ <

T+ TN

Remark 2.1. Thorem B is given by putting ay = a in this corollary. Stépan [6, p. 65
and Kuang [4, p. 87] proved that the zero solution of the scalar delay differential equation

with two delays
' (t) = —az(t — 1) — az(t — ),

where a > 0, 11,7 >0, 7, + 7 > 0, is uniformly asymptotically stable if and only if

T — T T
— . 2.2
2a(m + T2) cos (T1 T 2) < (2.2)

If § = 0,a; = a and N = 2, the condition in Corollary 2.1 coincides with (2.2). The proof

of Theorem 1.2 is given by generalizing the proof given by Kuang.

Ezxample 2.2. Consider a scalar integro-differential equation

() = — Ai ot — s)z(s)ds, (2.3)

where c: [0,7] — [0, 0o) is continuous satisfying ¢(s) = c¢(r —s) and r is a positive constant.
If we choose 7(s) = [; c(—£)dE for s € [—r,0], then the assumption (H1) holds. Applying

Theorem 1.2 for 8 = 0, we have

Corollary 2.2. The zero solution of (2.3) is uniformly asymptotically stable if and only
if

0< /OT c(s) sin (;ﬂ') ds < . (2.4)

r
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Remark 2.2. Krisztin [3] gives the following excellent sufficient condition as far as the

author knows; If

o< Or sldn(s) < 7, (2.5)
then the zero solution of (1.1) is asymptotically stable. In fact, it becomes a necessary and
sufficient condition in case N = 1 and 6 = 0 in Example 2.1. However, let ¢(s) = 1 for
s € [0,7] in (2.3), then conditions (2.4) and (2.5) are reduced to 0 < r < m/y/2 = 2.221...
and 0 < r < /m = 1.772..., respectively. This gap suggests us it should be difficult
to obtain an explicit necessary and sufficient condition ensuring the uniform asymptotic

stability of the zero solution of (AL) without some restriction on 7.
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