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Abstract

Pareto optimality conditions in multiobjective programming with sub-
differentiable set functions are established. We define a generalized
(3*, p, 0)-convex and prove that an (S*, p,0)-convex set functions is a
convex set function. We discuss the Wolfe-type and Mond-Weir-type
duality, and establish the weak-duality and strong-duality theorems for
the two types of duality models.

1. INTRODUCTION

There are many types of functions. For instance functions of point to

point; point to set; point to vector or set to point; set to vector; set to set
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etc. In this talk we will discuss about set functions in some programming
problems. Throughout the paper, we consider an atomless finite measure
space (X,T, u) with seperable L!'(X,T', 1) space. For each measurable
set Q € T, it corresponds a characteristic function yq € L®(X, T, p) =
LY(X,T, pn)*, and so for any f € L'(X,T, 1), the dual pair is represented
by

(f, xa) = /X F(2)xa (z)du(z) = /Q F(@)dp(z).

Since p(x) < oo,
L®(X, 1) C LY(X,T, p).

Like functions defined on linear space, we will define both the convex
family of measurable sets and convex set functions, and investigate the
optimality conditions of the multiobjective programming with set func-
tions. Formally, we give the programming problem with set functions as

follows:

(P) Minimize F(Q)
subject to Q€ SCI and

G() <0

where F' : I' — R™ and G : T’ — R™ are convex set functions and S is
a convex family of measurable subsets of X. Then under suitable condi-
tions, Lai and Lin [5, Theorem 12] established the necessary optimality
condition for problem (P). In this paper, we define a generalized (<, p, 0)-
convex and ($*, p, #)-convex, and proved that every (3*, p, 0)-convex set
function is a convex set function. This is a key theorem to establish a

sufficient optimality conditions for (P). We are also state Wolfe-type du-
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ality model and Mond-Weir type duality model, and establish the weak

and strong duality theorems for the above two duality models.

2. PRELIMINARIES AND DEFINITIONS

Let (X,T', u) be a finite atomless measure space with Ly (X, T, u) sep-
arable. Then we can find a countable L!-dense subset of elements in
L*>(X,T, ). It follows that for every (2,A,\) € I x T x [0, 1], there is a
Morris sequence {V,,} = {Q, UA,, U(Q N A)} with properties as follows:

Xa. —" Axau and xa, — (1- A)Xa\Q (2.1)

imply
XQ,UA,U(QNA) — Axa + (1= XA)xa, (2.2)

where —*" denotes the weak* convergence of elements in Loo(X, T, p).
We need the following definitions like the concept of functions defined

in linear space.

Definition 2.1. [5]. A subfamily S of T is called convex if for any
(A, 2) € S xS x [0,1] associated with a Morris sequence {V,,} in T,

there exists a subsequence {V,,, } such that

Vo =Qn, UA,, U{QNA}ES for all k. (2.3)

Definition 2.2. [5]. A set function F': S +— R is called convex on a
convex subfamily S C T if for any (Q,A,\) € S x § x [0, 1], there exists
a Morris sequence {V,,} in S such that

lim sup F(V,,) £ AF(Q) + (1 — M) F(A). (2.4)

n—oo
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Definition 2.3. [3]. An element f € L1(X,T, ) is called a subgradi-
ent of a set function F : T' — R at Qg if it satisfies the inequality

F(Q) 2 F(Q) + (xa - Xan, f)  forall QeT.  (25)

The set of all subgradients f of a set function F' at )y is denoted by

OF(Qy) and is called the subdifferential of F' at Q. If OF () # 0, F
is called subdifferentiable at ().

Remark 2.1. Every convex real-valued set function is subdifferentiable

but the converse is not true.

Definition 2.4. [5]. A set function F' : T' — R U {oo} with
DomF = {Q € T'|F(Q) is finite} = S, (2.6)
is called w*-lower (-upper) semicontinuous at ) € S if

—o0 < F(Q) £ lim inf F(Q,) (2.7)

n—0o0

( lim sup F(2,) £ F(Q) < o0)

n— o0
for any sequence {Q0,} C S with xa, =% Xa.
The function F is said to be w*-continuous at () if

F(Q) = lim F(Q) (2.8)

n—oo
for any sequence {Q,} C S with xa, =" Xa-

We will use the convention that F(#) = 0 and denote the weak™-
closure of S by S throughout. A set function F : T' — R U {oo} is said
to be proper if F' # co on I

121
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Definition 2.5. A functional & on T x T x Ly(X,T, 1) is said to be
‘sublinear with respect to its third argument if for any Q,Qy € T,
(2, Qo; f1 + f2) = S3(Q, Q05 f1) + (2, Qo; f2) (2.9)
for any fy, fo € L1(X,T', u), and
(9, Qo; af) = aS(€2, Qo; f) (2.10)
forany a € R, 20, and f € L (X, T, ).

Now, we consider the notion of generalized (3, p, §)-convexity, an ex-
tension of generalized (3, p)-convexity defined by Preda [10], for non-
differentiable set functions. Let us consider a sublinear functional <& :
I'xT'x Li(X,I',p) — R and a set function F : T — R. Let p € R and
0:T xT — Ry = [0,00) such that 6(€2, ) # 0 if Q # Q. Throughout
the paper we assume that the set functions are subdifferentiable. The

following definitions are essential in the paper.

Definition 2.6.

(1) The function F is said to be (S, p,6)-convex at Qq if for each
el and f € OF(Qy), we have

F(Q) = F(0) 2 (2, Qo; £) + p0(2, ). (2.11)

(2) The function F is said to be (S, p,0)-quasiconvex at g if for

each Q € I and f € OF(Qy),
F(Q) £ F(Q) implies (0Q,Q;f) £ —pb(22, Q). (2.12)

(3) The function F is said to be Ponstein (S, p, §)-quasiconvex at

Qo (cf. [12]) if for each Q € T and f € IF(Qy),

F(Q) < F(Q) implies (Q,Q0;f) S —pb(2,). (2.13)
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(4) The function F is said to be (S, p, §)-pseudoconvex at ) if for

each 1 € I" and f € OF(Qy),
(0,00 ) 2 —pB(Q, Q) implies F(Q) 2 F(Q0).  (2.14)

(5) The function F' is said to be strictly (S, p,6)-pseudoconvex
at (o if for each Q € I" and f € OF(Qy),

I(Q, Qo3 f) 2 —pb(Q, Q) implies F(Q) > F(Qp). (2.15)

Definition 2.7. In Definition 2.6, if p > 0 and the functional & : I x

I'x Li(X,T, u) — R is taken by a special case:

3(Q, Q05 f) = (xa = X090, ),

then (S, p,0)-convex is called (3*, p, 6)-convex.

Remark 2.2. From the Definition 2.6, it is easy to see that the following

implications hold:

(@) (1) = (2)=(3),
(b) (1) = (4),
(c) (5) = (4).

Remark 2.3. If a set function F is differentiable and (S*, p, §)-convex
at g with p = 0, then F becomes a convex set function at (cf. [1,

Theorem 4.6] ) .

3. SUFFICIENT CONDITIONS

In this section, we derive sufficient conditions for optima of (P) under

the assumption of a particular form of (3, p, §)-convexity. Let R™ be the
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n-dimensional Euclidean space. Throughout the paper, the following

convention for vectors in R™ will be adopted:

r>y<=uz;>y; forall i=1,---, n;
r2y<z;2y; forall i=1 .- n;
r>2y<=zx;,>y; forall i=1,---,n, but x #£y;

x #y is the negation of z >y.
We now consider the following nondifferentiable multiobjective program-

ming problem as the primal problem:

(P) Minimize F(Q) = (F1(Q), -, F.(Q))
subject to G;(2) <0, j=1,2,--- m, (3.1)
Qes,
where S is a subfamily of I', F; : S — R,i=1,2,--- ;n,and G; : S —
R,j=1,2,---,m.

Let H denote the set of all feasible solutions of (P). We say that a
measurable set 2* € H is a Pareto optimal solution of (P) if there is no
) € H to satisfy FI(Q) < F(Q*).

In [5], Lai and Lin proved the necessary optimality conditions of (P).
For convenience, we write o' F = S aiFy = (F,a),, for a € R™.
Theorem 3.1. [5, Theorem 12]. In problem (P), let S be a convex
subfamily of I and F;,i = 1,--- ,n,Gj,j = 1,--- ,m, be proper convex
set functions on I'. Let Q* be a Pareto optimal solution of problém (P).

Suppose that for each i € {1,2,--- ,n}, there corresponds a }; € S such
that

Gr() < 0, k=12 .m
FJ(QZ) < Fj(Q*),v for j=1,---,n,j #Z
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and assume that all functions Fy,--- | F, Gy, -+ ,Gpn, except possibly
one, are w*- continuous on S and that S contains a relative interior
point. Then there exist o* = (af,--- ,af) with of 2 1,0 =1,2,--- | n,

and \* = (A],---,Ay)) in R} such that

(N, G ) = 0 (3.2)
A* >0 (3.3)
o e, (3.4)
0 € (o, 0F(Q"))n + (A", 0G(Q))m + Ns(*)  (3.5)

where e =(1,1,---,1) in R™ and
NS(Q*) = {f € Ll(X7Fnu)|<XQ - XQ"‘)f) g 0
forall Qe S} (3.6)
O

In order to establish a theorem on sufficient conditions for a feasible
solution to be a Pareto optimal solution of (P) under the assumption of
(3, p, )-convexity of set functions, the following theorem is essential to

key such problem and strong duality theorem.

Theorem 3.2. Let F' be a (3™, p, 0)-convex real-valued set function at

{20. Then F is convex at ).

Proof. For any Q, Qg € I, there is a Morris sequence {V,} = {Q, UA, U
(2N Q) } with Q, C 2\ Qo and A, C Qg \ Q such that

X2, —* Axava, and xx, —* (1- A)Xao\Q

imply

XQauAau@n2e) —" Axa + (1= MNxa,, forany Ae[0,1. (3.7)
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By assumption, we have

F(Q) — F(0) 2 (xa — xa,, f) + p0(2, Q) (3.8)

and
F(Qo) 2 (xa,, f) + p8(Q0,0). (3.9)

Then, multiplying (3.8) by A(> 0) and adding the resulting inequality
to (3.9), we have
F(Q0) + A[F(Q) = F(0)] 2XMxe — X0, f) + (X0, f) 310
AR %) +0(2,0).

Now, for (€2,Q0,A) € I' x I’ x [0, 1], there is a Morris sequence: {V,} =
{9, UA, U (QNQ)},n = 1,2,... as before, and for each n, we let
0 < Anp < A <1 and satisfy

and |
limsup pA,0(V;,, Qo) = pAO(Q, Qo). (3.12)

From (3.8), (3.9), and (3.11), we have

F(V,)=F(Q, UA,U(Q2NQ))
=F(Q,UA, U(QNQ)) — F(Qo) + F(Q) — F(0)
2 (XQ.UA.UQND) — X2 f) + (X0, f)
+ p[AO(V,, Qo) + 0(Q0, 0)]
2 (XQn,UALUQNQ) — X0 f) + (X0, f)
+ p[An0(Vi, Qo) + 6(Q0, 0)].
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We let €,, > 0 be such that

F(Vn> = (XQnuAnu(Qan)> f> + P[)‘n9<vm QO) + ‘9(907 Q))] + €n

where €, — 0 as n — oo. It follows from (3.7), (3.12), and (3.10), the

limit superior of the above expression gives

lim sup F(V,) = (Axa + (1= Mxaq, f) + p[A0(Q, Qo) + 6(Q0, 0)]
= AMXxa — Xao, f) + (Xa,, ) + p[A0(2, Q) + 6(Qo, 0)]
S AF(Q) = F(Q0)] + F(0)
= AF(Q) + (1 — ) F(Q0)

since F' is (S, p, §)-convex at {2y. This shows that F is also convex. O

Now, we come to one of our main theorems on sufficient criteria for
problem (P) under generalized convexity of set functions.
In the following theorems, we state here without proofs. The complete

paper will appear elsewhere.

Theorem 3.3 (Sufficient Optimality Conditions). Let Q* € H and as-
sume that 0, o*, and \* satisfy (3.2)-(3.6), and that (2, Q*; —h) 2 0,
for each h € Ns(Q*),Q € H. Assume furthermore any one of the follow-

ing conditions holds:
(1) F;is (S, p1i,0)-convexat Q*, i =1,--- ,n,G; is (3, p2;,0)-convex
at %, j=1,---,m, and (a*, p1)n + (A*, p2)m 2 0,
(2) a*TF+ X TG is (S, p, 0)-convex at Q* and p 2 0,
(3) o*TF + )\*TG is Ponstein (S, p, 8)-quasiconvex at * and p > 0,
(4) o TF is (3, p1,0)-pseudoconvex at O* , \* TG is

(3, p2, 0)-quasiconvex at Q* | and p; + ps 2 0,
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(5) o* TF is (S, p1, 0)-quasiconvex at Q*, \* T G is strictly (S, p2,0)-
pseudoconvex at Q* | and p; + py > 0,
(6) a*TF is Ponstein (3, p1,0)-quasiconvex at Q* | \* TG is

(3, p2,0)-quasiconvex at Q* , and p, + py > 0.

Then Q* is a Pareto optimal solution of (P).

4. DUALITY THEOREMS

The result of Theorem 3.2 is used to formulate two dual problems
of both the Wolfe-type (D;) under convexity and Mond-Weir-type (D,)

under generalized convexity for (P) as follows:

(D1) Maximize F(U)+ (\,G(U))me
= (F1(U) + A GU))m, -+, Fa(U) + (X, G(U))m)

subject to
Aj20,5=1,---.m, UEe€S, (4.1)
ai>0,i:1,---,n,2a,~=1, (4.2)
=1
0€ (0, OF(U))n + (X, 0G(U))m + Ns(U), (4.3)

(D2) Maximize F(U)= (F(U),---,F,(U))

subject to
(A GU))m 20, (4.4)
Aj20,j=1,---,m UEeS§, (4.5)
@i >0i=1,-,nY a;=1, (4.6)
=1

0 € (&, 0F(U))n + (A, 0G(U))m + Ns(U).  (4.7)



129

LAI AND LIU

We denote, respectively by K; and K, the sets of feasible solutions of
problems (D;) and (D3). Then for the dual problem (D;), we have both

weak duality and strong duality as follows.

Theorem 4.1 (Weak Duality). Let Q € H, (o, A\, U) € K3, and
X(Q, U, —h) 2 0. If any one of the following conditions hold:

(a) F;is (S, p14,0)-convex, i =1,--- ,n,Gj Is (3, p2j,8)-convex, j =

1,---,m, and (@, p1)n + (X, p2)m 2 0,

(b) aTF+ATG is (S, p,8)-convex and p 2 0,

(¢) T F + ATG is Ponstein (S, p, 8)-quasiconvex and p > 0,
then

F(Q) £ FU)+ (A GU))me.

Theorem 4.2 (Strong Duality). In Theorems 3.1 and 4.1, we let the
functions F;,i = 1,2,--- ,n,and G;,j = 1,2,--- ,m, be (3, p,8)-convex.
Assume furtheremore these functions satisfy the other conditions in The-
orems 3.1 and 4.1. Suppose that Q* is a Pareto optimal solution for
(P). Then there exist o* = (of,--- ,ay) with af > 0,0 =1,-- ,n,and
A= (A}, -, AL) with A* 20,5 =1,---,m, such that (o, X", Q%) is a
Pareto optimal solution for (D;) and the optimal values of (P) and (D)

are equal.

Theorem 4.3 (Weak Duality). Let Q € H, (o, A\,U) € K>, and
X(Q, U, —h) 2 0. If any one of the following conditions hold:
(a) o' F is (S, p1,0)-pseudoconvex , ATG is (S5, p2,0)-quasiconvex ,
and p1 + p2 2 0,
(b) o' F is (S, p1,0)-quasioconvex , ATG is strictly

(3, pa, 0)-pseudoconvex , and p; + p2 2 0
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(c) @ F is Ponstein (S, p1,0)-quasioconvex , A\TG is

(3, p2,0)-quasiconvex , and p; + py > 0.

then,
F(Q) £ F(U).

Theorem 4.4 (Strong Duality). In Theorems 3.1 and 4.3, let the func-
tions Fi,v = 1,2,---,n, and Gj,j = 1,2,--- ,m, be (S*, p,0)-convex.
Assume furtheremore these functions satisfy the other conditions in The-
orems 3.1 and 4.3. Suppose that Q* is a Pareto optimal solution for (P).
Then there exist o = (of, -+ ,ak) with of > 0,i = 1,--- ,n, and
A* = (A, A%,) with XY 20,5 =1,--- ,m, such that (a*, \*,Q*) is a
Pareto optimal solution for (D,) and the optimal values of (P) and (D)

are equal.

The complete proof of Theorems 4.1 - 4.4 will appear elsewhere.
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