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1. Introduction

The results of [1] appeared to be basic to study an existence problem for
continuous selectors of multifunctions with nonconvex decomposable values
[3, 12, 14, 23, 24]. Recently, by using Filippov’s successive approximation
process [25] and selection theorems [3, 12] there were proved the existence
of continuous selectors, that values are solutions of Lipschitzean differential
inclusions [7, 21]. It should be mentioned that in this case we have to do
with multifunctions, that values are non-decomposable and non-convex sets.
Remark finally that the existence of continuous selectors passing through
the fixed points of multivalued contractions depending on a parameter with
non-convex values were obtained in [18].

Our results contain as a special case the selection theorem [15] and supple-
ment the results of [18]. The contents of the present paper can be represented
by the following results.

Let (X,| - ||) be a separable Banach space, M be a separable metric
space, T be a locally compact g-compact metric space with a positive, finite,
nonatomic Radon measure o, Li(T, X) be the Banach space of Bochner-
integrable functions z : T+ X with the norm || v ||z= [ || v(t) || dgo.
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Counsider a function P : M x L1(T,X) — [0, +00),

P(§,2) = [ plt,€o(t))dpo (1)

where p: TX M x X — [0,+00) is a function with the following properties:
i) p(t, &, ) is measurable for every (£,z) € M x X and continuous with
respect to (§,z) a.e. on T
ii) for every £ € M the function p(t,¢, ) is a semi-norm on X a.e. on T}
iii) p(¢, &, ) < c||z||, ¢ > 0 a.e. on T for every ({,z) € M x X.
Assume that for every £ € M, z € Li(T, X)

m(§)l|zz < P(¢,2),

where m : M — (0, +00) is continuous. jFrom the latter and iii) one has

m(&)zllz < P(¢,2) < clle] z. (1.2)

This implies, thanks to ii), that for every £ € M the function P(¢,-) is a
norm in Li(T, X), equivalent to the usual one.

For every pair of nonempty closed sets A,B € Li(T, X) and £ € M we
denote by df(¢)(A, B) the Hausdorff distance between A and B, generated
by the norm P(¢,-).

Let I' : M x Ly(T, X) — Ly(T,X) be a multifunction with non-empty,
closed, decomposable values and FixI'({) be the set of all fixed points of
I'(&, z) for every £ € M.

THEOREM 1.1. LetT' : M x Li(T, X) — L(T, X) be a multifunction with
non-empty, closed, decomposable values. Assume that:

i) the multifunction §¢ — T'(&,z) is lower semicontinuous for every x €
Li(T, X); v

ii) there exists an upper semicontinuous function k : M — [0,1) such that
for every§ € M, z,y € L1(T,X) one has

dg(8) (T(¢,2),T(¢,9)) < k(E)P(€, @ - y). (1.3)

Then the following assertions are true:
a) FixI'(§) # 0 for every € € M and there ezists a continuous function

w: M — Li(T, X) such that
u(€) € FixI(€), V¢ € M; (1.4)

b) if a set D C M is closed and up : D — Ly(T,X) is a continuous
function, up(§) € FixI'(¢), € € D, then there ezists a continuous function
u: M — Ly(T,X) such that (1.4) holds and u(£) = up(€), V€ € D.
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COROLLARY 1.2. Suppose that all the assumptions of Theorem 1.1 are valid.
Then:

a) the multifunction £ — FixT'(¢) is closed-valued and lower semicontinu-
ous;

b) for every £ € M the set FixI'(¢) is an absolute retract and, consequently,
it is arcwise connected;

c) if the multifunction € — T'(€,z) has the closed graph, a retraction can
be chosen which depends continuously on £, namely, there exists a continuous

map g : M x Li(T, X) — Ly(T, X) such that

9(&,z) € FixI'(¢), Vz € Ly(T, X),
o(6,2) = 2, Va € FixT ().

This paper is organized as follows.

Section 2 contains notations and terminology.

The main results are proved in section 3.

As an application of the obtained results, the continuous selectors of mild
solution sets of nonconvex differential inclusions of evolution type, depending
on a parameter, are studied in section 4. In particular, we establish some
topological properties of these solution sets.

In section 5, comments are given.

2. Notations and Definitions

Let
— (X,]| - ||) be a separable Banach space,
— M be a separable metric space,
— T be a locally compact o-compact metric space with a positive, finite,
nonatomic Radon measure o and a o-algebra ¥ of pg-measurable subsets of
T,
= Li(T, X) be the Banach space of egiuvalence classes of Bochner-integrable
functions z : T — X with the usual norm.
For a normed space Y let
— cY be the family of all nonempty, closed subsets of Y,
— d(z, K) be the distance of a point z € X to a subset K C X,
—dg(v, Q) be the distance of a point v € Ly(T, X) to asubset Q C Ly(T, X).
If A and D are subsets of X, then d(4, D) = sup{d(a,D);a € A} is the
excess of A over D, and dg(A, D) = max{d(4, D),d(D, A)} is the Hausdorff
distance between A and D.

134



If A, D C Ly(T, X), then dr.(4, D) = sup{dr(a, D);a € A} is the excess of
Aover D and d4(A, D) = max{d(A, D),d(D, A)} is the Hausdorff distance
between A and D. '

For a function P(¢,z), that is a norm in Ly(T, X) for every { € M, we
denote by dr(£)(,+) a metric in Li(T, X), induced by the norm P(¢, ).

Similarly, dz(€)(4, D), d4(&)(A, D) are the excess of A over D and the
Hausdorff distance between A, D C L1(T, X), generated by the metric
dL(f)(" ) :

A set A C L1(T, X) is called decomposable if for any u,v € Aand E € X
the element x(E)u+x(T\ E)v belongs to A, where x(E) is the characteristic
function of E.

We denote by dcLy(T, X) the set of nonempty, decomposable, closed sub-
sets of L1 (T, X).

A sequence z, € Li(T,X), n > 1, is called uniformly integrable if, for any
€ > 0, there exists () > 0 such that

[ llea(®)lldpa < ¢

for every subset E € ¥ with yo(E) < 6-and for all n > 1.

A multifunction F : T — ¢(X) is called measurable if the set {t €
T; F(t)NU # 0} is measurable for any closed subset U C X.

A multifunction F from a topological space Y into a topological space Z
is called lower semicontinuous (l.s.c.) at a point yo € Y if, for any open set
V C Z, F(y) NV # 0, there exists a neighbourhood U(yo) of yo such that
F(y) NV # 0 for every y € U(yo)- ’

If Y, Z are metric spaces then a multifunction F : Y — Z is l.s.c. at a
point yo € Y if and only if for any 29 € F(yo) and every sequence y, € Z,
Yo 2 Yo, T 2 X

7}1»!{010 dz(Z(), F(yn)) = 07

where dz(zo, F(yn)) is the distance of the point zy to the set F(y»).

A subset A of Y is called a retract of YV if there is a continuous map
g : Y — A satisfying g(z) = z for every « € A. Any such map g is called a
retraction of Y onto A.

3. The Proof of main result

We give some results that are applied in the proof of Theorem 1.1.
Let p: T x M x X — [0,+00) be a function, having the following prop-
erties:
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P1) p(t, €, =) is measurable for every (£,z) € M x X and continuous with
respect to ({,z) a.e. on T}

P2) for every £ € M the function p(¢,§,-) is a seminorm on X a.e. on
T
P3) p(t,€,z) < c||z||, ¢ > 0 a.e. on T for every (£,z) € M x X.
Thanks to P1), P3) for every z(-) € Li(T,X), ¢ € M the function
p(t, €, z(t)) is integrable. Then there is defined the function P : M x Ly(T, X) —
[0, +00)

P(&2) = [ p(t, & a(t))dpo.

PROPOSITION 3.1. Suppose Properties P1)-P3) of the function p(t,¢,x)
hold. Then the function P(,x) is continuous with respect to (£,z) and for
every £ € M the function P(¢,-) is a continuous seminorm in Ly (T, X).

Properties of the function P(¢,z) arise directly from Properties P1)-P3)
of the function p(t, ¢, z).

Let the function p(t,¢, ) has Properties P1)-P3). Denote by B(¢) the
open unit ball, generated by the seminorm P(¢,-)

B(¢) = {z € Li(T, X); P(¢,z) < 1}, £ € M.

THEOREM 3.2. LetT : M +— dcLy(T, X) be a l.s.c. multifunction, ¢ : M —
(0,400) be a ls.c. function and g : M — Ly(T, X) be a continuous function.
If for every§E e M

®(¢) =T(&) N (9(€) + S(€)B(E)) # 0,

then the multifunction £ — ®(§) has a continuous selector f : M — L,(T, X).
Furthemore, if D C M is a closed set, fp : D — Li(T, X) is a continuous

function and fp(§) € ®(¢), £ € D, then f can be chosen so that f(¢) = fp(€),
¢EeD.

Theorem 3.2 can be proved analogously to theorem 3.1 in [14].

Proof of Theorem 1.1.
At first we prove that for any continuous function u : M — Ly(T, X) the

multifunction ['(§,u(£)) is Ls.c. Fix & € M. Taking into account (1.2) one
has

AT o) T(E ) < Sl - (o)l
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Fix vy € T'(&, u(&)) and &, — &, n — co. Upper semicontinuity of k(£) and
continuity of m : M — (0, +o00) imply that

d (L (&, u(6n)), T(énr u(§0)) < allulén) — ulo)llz (3.1)
for some a > 0 and all n > 1. Thanks to (3.1) one has '

dL('UOa F(éna u(ﬁn)) S dL('UOa F(f’m u(fﬂ)) + d%{(r(é‘m 'U/(é.n)), F(f’m U(ﬁo))
< dg(v0, T(&n, u(0)) + al|u(én) — w(&o)llz-

;From this, taking into account lower semicontinuity of the multifunction
¢ — T(&,u(&)), it follows that the multifunction I'(§,u(£)) is l.s.c.at point

éo-

Lemma 3.6 [9] implies that there exists a continuous function k; : M — R
such that k(&) < k1(€) < 1, € € M. Now, from (1.3) it follows that for every
"B’yELl(TaX)vm?éy ‘

dg(§)(T(&,2), I'(¢,y)) < kw(§) P(§,z — ). - (32)

Fix any continuous function uy : M — L;(T,X). We shall construct

a Cauchy sequence of successive continuous approximations u, : M —
L,(T, X) such that for every { € M, n > 1,

’u,n(f) € P(‘f)un—-l(g)), (33)
P(€,unp1(8) — ua(€)) < k1(€) P(& un(€) — un—-1(8)). (3.4)

Suppose we have defined the functions u;(&), ..., u,(&) satisfying (3.3), (3.4).
If u,(€) # un-1(€) for every £ € M, then

dr(€)(un(€), T (€, ua(€)) < d5(E)(T(€, un-1(£), T(€, un(€))
< k(€) P(&,un(€) — wn-1(£)) < ka(§) P(§, un(€) — waa(€))-  (3.5)

Proposition 3.1 implies that the function k;(¢) P(, un(€) —u,—1(€)) is contin-
uous. Thanks to (3.5) and Theorem 3.2 one get a continuous selector u,41(§)
of the multifunction I'({, u,(§)) such that

P(&,un+1(€) — ua(§)) < ka(€) P(&, un(§) — un-1(£)), £ € M. (3.6)
If un(€) = un—1(&) for some £ € M, then the set
D= {6 € M, P(g,u'n(g) - un—l(g)) = 0}
is closed and for every £ € D,

un(£) € T(€, un-1(£)) = T(&, un(£))-
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Consider on the open set M \ D the restriction of the multifunction
T'(§,un(£)), that is Ls.c. in M \ D and for every £ € M \ D inequality (3.5)
holds. Repeating above-mentioned arguments we get a continuous selector
uy, 1 M\ D — Li(T, X) of the restriction of I'(¢, u,(£)) on M\ D such that
for every £ € M\ D

P& uni1(£) — ua(§)) < k2(€) P(€,ua(€) — ua-1(§)), € € M. (3.7)
Denote by u, ,(£) the function, defined in the following way:

Un1(§) = uni4(€), £ € M\ D,
un+1(£) = un(£)7 6 €D.

This function is a selector of the multifunction I'(¢,u,(£)) and satisfies in-
equality (3.4). Since the set M \ D is open, then inequality (3.7) implies that
the selector up1(£) is continuous in M. Clearly, u,1(£) satisfies (3.3), (3.4).
From (3.4) we obtain that for every £ € M, [ > n

P(&,un(§) = w(€)) < (1 + ka(€) + ... + k7€) AT(E) P(€, wa(€) — wo(€))

k1 (€)
< mp(fﬂh(f) —up(£)). (3.8)

According to (3.8), (1.2) one has that

[en () — w(é)llz < k7(6)

c

m(@0 =@y 148 ~ wolOllz.

Therefore, (3.9) implies that the sequence {u,(-)} converges uniformly on
every compact subsets of M to a continuous function »(-) and

[u(€) = wo(§)llz <

(3.9)

c

m(€)(1 — ky(€)) l|wa(€) — wo(€)|lz- (3.10)

To see that u(§) € T'(¢,u(€)), € € M, it is enough to take advantage of (3.3)
and (1.3). This ends the proof of statement a) of Theorem 1.1.

Let a set D C M be closed and up : D — L(T, X) be a continuous
function such that up(§) € I'(§, up(€)), £ € D. Take any continuous function
g : M — Ly(T, X), ug(§) = up(€), € € D. Then there exists a continuous
function u : M — Ly(T, X) such that u(¢) € T'(¢, u(£)), ¢ € M and inequality
(3.10) holds.

Consider the multifunction IT'™*(¢, ug(£)),
P*(f’ uO(f)) = F(Ea uO({)), E GAM \ D:
P*(fa u0(£)) = uD(f)a 6 €D.
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This multifunction is l.s.c. Then there exists a continuous selector u;(¢) of
the multifunction I'™*(&,uo(£)) [3]. Clearly that ui(¢) € T'(€,uo(§)), € € M
and u1(§) = uo(€)) = up(§), € € M\ D. Now from (3.10) it follows that
u(€) = wo(§)) = up(§), € € D. This completes the proof of Theorem 1.1.

Proof of Corollary 1.2.

The statement a) of Corollary 1.2 directly follows from the statement b)
of Theorem 1.1 and (1.3).

Let us prove the statement b). According to the definition of an absolute
retract [16] we have to prove that for fixed £ € M, for any separable metric
space Y, for any closed set D C Y and for any continuous function vp :
D — FixI'(§p) there exists a continuous function v : Y — FixI'(§) such that
v(y) = vp(y), y € D.

Consider the multifunction I'™ : ¥ x Ly(T, X) — dcLy(T,X) defined in
the following way:

IM(y,z) =T'(é,z), y€Y, z € Li(T, X).

It is clear that the multifunction y — I'*(y, z) is L.s.c. for eifery z € Li(T, X)
and

diz(6)(T*(y,2), T*(y, 2)) < k(&) P(&o, = — 2), @,z € Li(T, X), y € Y.

Therefore, for the multifunction I'*(y, z) all assumptions of Theorem 1.1 hold.
Since vp(y) € FixI'(&), y € D, then vp(y) € I'(&, vn(y)) = T*(y,vp(¥)), y €
D. Taking into account the statement a) of Theorem 1.1 for the multifunction
I'*:Y x Li(T,X) — dcLy(T, X) we obtain that there exists a continuous
function v : Y — Ly(T, X) such that v(y) € I™(y, v(y)) = ['(éo,v(y)), y €Y
and v(y) = vp(y), y € D. It means that v(y) € FixI'(§), y € Y. Hence the
statement b) of Corollary 1.2 is proved.

Now we prove the statement c). Let us show that the multifunction ¢ —
FixI'(¢) has a closed graph grFixI'. Take sequences &, — &, T, — <o,
T, € FixI'(¢,), and €, — 0. Then there exists y, € I'(£,,zq) such that

P(gmmn - yﬂ)) < dL(gn)(me(fme)) + €
< dL(g'n)(mm I‘(Em xn)) + dél(gn)(r(fm xn)) F(gna Lo ) + €,
< k(&) P(&n, Tn — o) + €n.

Thanks to (1.2) the latter implies

k(&) -c
o =l < S o — aulle + o

139



(From this it follows that the sequence y,, y, € ['(&,, o) converges to x.
As the multifunction £ — I'(¢, o) has the closed graph one get that z, €
I'(€o, z0). Hence the multifunction £ — FixI'(¢) has a closed graph D =
gr FixT.

Consider the multifunction I'™ : M x Ly(T, X) x Ly(T, X) — dcLy(T, X),
I*(¢u,z) = T(¢,x), £ € M, v € Li(T,X), z € L:(T, X). Considering
(§,u) as a new parameter one has that for the multifunction (¢, u,z) all
assumptions of Theorem 1.1 hold.

Consider a function gp : D — Ly(T,X), gp(¢,u) = u, (§u) € D.
The function gp(¢,u) is continuous on the closed set D and gp(é,u) €
I'(¢, gp(&,u)) =T*(&,u, gp(&,u)), (& v) € D. Taking into account the state-
ment a) of Theorem 1.1 for the multifunction ™ (¢, u, ) we obtain that there
exists a continuous function g : M x Ly(T, X) — Ly(T, X) such that g(¢,u) €
D*(¢,4,9(¢,u)) = D(€,g(¢,0)), (€,4) € M x Ly(T, X) and g(¢, u) = gp (¢, ),
(§,u) € D. It means that g(¢,u) € FixI'(¢), (¢,4) € M x Ly(T, X) and
9(&,u) = u for all u € FixT'(¢). The statement c) of Corollary 1.2 is proved.

4. Application

Throughout T' = [0, a] is a segment with the Lebesgue o-algebra; X1
is a separable Banach space whose null element is denoted by Ox; A is a
separable metric space; F is a multifunction from 7' x X x A into X with
non-empty closed values.

Consider the evolution inclusion

z(t) € A(t)z(t) + F(t,z(t),)), (H)

z(0) = ¢,
where {A(t); t € T} is a family of densely defined, closed, linear operators,
that. generates an evolution operator

S:A={(t,s)eT xT: 0<s<t<a}l— L(X).

Recall if S(t,s) is an evolution operator (or fundamental solutions), then
S 1 A — L(X) is strongly continuous, S(¢,7)S(7,s) = S(t,s) for 0 < s <
7 <t < a (semigroup property), and S(t,t) = I for all t € T'.

By a solution of (H) for fixed { € X, A € A we understand a mild solution
z(-) € C(T, X) of the form

o(t) = 5(t,0)¢ + [ "S(t, 5)f(s)ds, t € T,
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where f(-) € Li(T, X) and a.e. on T f(t) € F(t,z(t), A).

Let H(£, ) be the set of all mild solutions of (H). Our purpose is to study
the existence of continuous selectors of the multifunction (§,X) — H(,A)
and properties of this multifunction.

We denote by C*(T, X') the space of all continuous functions z : T' —» X
represented in the following way:

a(t) = S(t,0)¢ + | "S(t,9)f(s)ds, t€ T, € € X, f() € Ly(T, X). (4.1)

Consider on C*(T, X) a function

lzllox.x) = lzlle@x) + | fllzaa.x)- (4.2)

PROPOSITION 4.1. Function (4.2) is a norm and C*(T, X) with the norm,
given by (4.2) is a separable Banach space. The map T : X X Li(T,X) —
C*(T, X) defined by (4.1), is a one-to-one linear operator. Moreover, T is a
topological isomorphism.

Proof. Clearly T is linear. To prove that 7 is one-to-one suppose that
T (&1, f1) = T (&2, f2) for some (&1, f1), (&2, f2) € X x Ly(T, X). This implies
that & = & and setting f(s) = fi(s) — f2(s)

/ "S(t,5)f(s)ds = 0, fort € T. (4.3)
Since for h > 0
/Ot S(t+ h, s)f(s)ds = S(t + h, 1) /Ot S(t, 8)f(s)ds = s,
then for each k> 0

/0 " S(t+ b, 8)f(s)ds = 6, fort € T. (4.4)

Let 0 < t < a be arbitrary. By virtue of (4.3), (4.4), for h > 0 sufficiently
small, we have

/0 Sl + by ) F(5)ds = /0 "S(t + hy 5)f(s)ds + /t " St + b, 5)f(s)ds = 6,

from which, dividing by A,

L[ st ) f()ds = 6. (43)
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Let J be the set of all ¢ € (0, a) such that

t+h
tm o [, 198 = F(e)de =0 (46)

and observe that T'\ J has zero Lebesque measure ([8], p. 217). Let t € J be
arbitrary. We have

1 pt+h

- S(t,

h / )

h./ S(t, 5)[f(s) ]ds+h/ S(t,s)f(t)ds
Whence, in view of (4.5)

[ st swds = 1 [T st 010 - #(s))as

Since for fixed ¢, A > 0, the function s — S(¢t + h,s)f(t), 0 < s <t+his
continuous, there exists ¢ < ¢(h) < t + h such that

Stt+hem)f@) =7 [ St IO - F(s))ds. (47)
h
Let M > 0 be such that
S(t,s)llc <M, 0<s<t<a.

Taking into account (4.7) one has

15(t + A, e(R)) F(B)I| < 2M - Hf( ) = F(s)llds.
(From this and (4.6) it follows that
@I = Lim [IS(t + b, c(R)) £(2)]] = 0.

Ast € J is arbitrary and T\ J has zero Lebesgue measure, we have f; = f,.
Hence (&1, f1) = (&2, f2), and 7 is one-to-one. This means that the function
|z|lc+(r,x), defined by (4.2), is a norm. ;From the estimate

e+ I fllzax) < Nzllos@,xy < ME+ 1| Fllzar,x))

it follows that 7 : X x Ly(T,X) — C*(T, X) is a topological isomorphism,
and C*(T, X) is the separable Banach space. This completes the proof.
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To study the problem (H) we introduce the following hypothesis:

(H1) the multifunction ¢ — F(t,z,)) is measurable for every z € X,
A EA;

(H2) there exists a continuous function L : A — Ly(T, R") such that for
every z,y € X, A € A, and for almost every ¢t € T one has

dg (F(t,z,2), F(t,9,)) < L))z - yll;

(H3) the multifunction A — F(t,z,)) is lower semicontinuous for every
z € X and for almost every t € T

(H4) for each convergent sequence {\,} in A the sequence
{d(6., F(t,0.,,)} is uniformly integrable.

Remark 4.2. Since for every A € A the function
d(8., F(t,0,, ) is measurable, condition (H4) holds, if there exists a contin-
uous function B : A — Li(T, R*) such that for every A € A

d(8,, F(t,04,A) < B(A)(t) ae.inT.

THEOREM 4.3. Let (H1)-(H4) be satisfied. Then
a) there exists a continuous function u : X X A — C*(T, X) such that for
every (,A) € X x A

u(é, A) € H(E, N); (4.8)
b) if D € X X A is a closed set, up : D — C*(T,X) is a continuous
function such that for every (§,A) € D,

uD(£> A) € H(§> ’\)7

then there ezxists a continuous function u : X X A — C*(T, X) such that for
every (§,A) € X x A inclusions (4.8) is true and

u(¢,A) = up(¢, ), (§,A) €D

c) for every (&,1) € X X A the set H(E, A) is a closed absolute retract;

d) if the multifunction A\ — F(t,z,)) has a closed graph a.e. on T, a
retraction can be chosen which depends continuously on (£, ), namely, there
exists a continuous map h: X X A-x C*(T, X) —» C*(T, X) such that

h(¢, A, ) € H(E,X), Yu e CY(T, X),
h(&, A u) =u, Yu e H(EN).
COROLLARY 4.4. Suppose that (H1)-(H4) hold. Then for every (£,)) € X X

A the set H(E, N) is the closed, arcwise connected subset of C*(T, X) and the
maultifunction (§,X) — H(E,A) is lower semicontinuous.
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Proof of Theorem 4.2. For every (§,\) € X X A, ¢ € Li(T, X) put

8¢ ¥) = {p € Lu(T, X); o(t) € F(t,n(,9)(t),\)}

a.e. in T', where

ME V) = S0+ [ S(t,syb(s)ds.

Using well-known arguments we obtain that ®(¢, A, ¢) € dcLy(T, X).

Now, we prove that for every fixed A € A the multifunction ®(¢&, ), )
is Lipschitzian from X X Ly(T, X) into dcL;(T, X) with Lipschitz constant
7(A), continuously depending on A. .

Fix A € A’ '¢15,‘/)2 € Ll(T’X)1 (f17g1)7(f2)g2) € Xa a € (I)(£17 A7")111) and
€ > 0. Using properties of measurable multifunctions we get that there exists
a measurable function 8 : T — X such that

ﬂ(t) € F(tan(£2a¢2)(t)ﬂ ’\)

and
lle(®) = B < d(a(t), F(t,n(é2, %2)(2), X)) + e
a.e. in T. Thanks to (H2) one has
t lle®) — Bl
<L) (15,006 = S0l + [ 1506 )l (s) — valo)lds) +
< LO(®) - M (&1 — &l + 1 — 2llz) +64.9)
iFrom (4.9) it follows
lee = Bl
<) (1 = &ll + 1 — dllz) + € a. (4.10)
Therefore (4.10) implies that
dr (B(&1, A, 91), B(€2, A, 92))
< () (16 = &l + ll91 — ¥2llz) (4.11)

and, interchanging the roles of &3, and &, 1,

dr (B(&2, A, ¥2), 8(€1, A, 1))
<r(A) (1 = &l + |91 — ¢allz) - (4.12)
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iFrom (4.11), (4.12) it follows that

di (B(€1, X, 91), B(2, A, ¥2))
< (A (1€ — &l + Nl — #2llz) - (4.13)

So, our claim is proved.

Let us show that for every fixed { € X, ¥ € Ly(T, X) the multifunction
A— B(E, N\, 9) is Ls.c. Fix A* € A, ¢* € ®(&,)\*, 1) and a sequence{),} in A
converging to A\*.

Put a,(t) = d(¢*(t), F(t,n(€,¢)(t),A\n)) for all t € T, n > 1. From prop-
erties of measurable multifunctions it follows that each a,(t) is measurable.
Moreover, thanks to (H3), one has lim,,_,, a,(t) = 0 a.e.in T'. Now, observe
that for almost every ¢t € T' one has

an(t) < d(9*(2), F(t,02, M) + du(F(t, 00, M), F(,0(€,9)(2), An))
< l@* (@ + d(ba, F (2,62, An)) + L(Aa)(t) - M (JIE]l + 1I41l2) -

iFrom this, taking into account (H4), it follows that the sequence {a,,} is uni-
formly integrable. Hence lim,_,o @, = 0 in L;(T, R). For every n > 1 there
exists a measurable function ¢, : T — X such that ¢,(t) € F(t,n(§, ¥)(t), An)
and ||pa(t) — ¢*(t)|| < an(t)+1/n a.ein T. So ¢, € ®(£, A\, ¥) foralln > 1
and {p,} converges to ¢* in L;(T, X), as desired.

Fix X* € A, & € X, ¢* € (¢*,X*,¢) and a sequence {{,,A\,} in X X A
converging to (£*, A*). Thanks to (4.13) one has

dL((p*: q)(gfn )‘na 1/))) S dL(QO*7 (I)(f*, A'n) ";L')) + d};{(@(é-m An) ¢)) Q(E*a A'na ’l,b))
< dp(@", (€7, An, ¥)) + ()€ = &all.

Hence lim, .o dr(¢*, (s, An, %)) = 0. It means that for every ¥ € L;(T, X)
the multifunction (£, A) — ®(&, A, ¥) is lower semicontinuous.
Consider for every A € A the function

POVY) = [ brmO g d (419

It is clear that the function p(),t,z) = exp(— fy 2M - L()\)(s)ds)||z|| has the
properties, indicated in Introduction, and function P(\, ) (4.14) satisfies an
inequality similar to (1.2). Of course, the function P(],-) for every A € Aisa
norm in L;(T, X), equivalent to the usual one. For every A, 4, B C L;(T, X)
we denote by dp(A)(z, A), dr(A)(4, B), d4(X)(A, B) the distance of a point
z to the set A, the excess of A over B and the Hausdorff distance between
A and B, where di(-)(+,) is a metric, induced by norm (4.14).

145



Now, we prove that

di (M) (B(€, 2\, %), 8(¢,\,w)) <

DN =

P\ Y —w) (4.15)
forevery A € A, £ € X.

Fix A€ A, € X, p,we€ Li(T,X), a € (&, %) and € > 0. Then there
exists a measurable function 3 : T — X such that

B(t) € F(t,n(& w)(t),A)

and
lle®) = BN < d(a(t), F(2,n(&, w)(t),A)) + e
a.e.in T'. Thanks to (H2) one has

le(®) = BON < Z)@) - M- [ [(s) = w(s)lds + ¢
a.e.in T'. Then
| / e Ja PMEONN | (1) — (1)
< /T (e-f:zM'L(A)(s)ds. M- f I1(s) s)||ds) dt + - a(4.16)

Integrating by parts one can estimate the right-hand side of (4. 16) in the
following way:

/T ( o Jo 2M-L(\)(s)ds | M- / (s (s)lld s) dt
< —ge-fo 0N [ (5) — ) s
+% /T e Jo IO |ty _y()|lds. (4.17)
By adding (4.16), (4.17) we obtain that
POya—g) < %P(A,qp —w)te-a
(From this it follows that

di(X) (26,9, ), 2(6,w,))) < SP(\ ¥ - w)

D |
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and, interchanging the roles of ¢ and w

a2 () (2(6, 0, NB(6,9,3)) < PO ).

So, inequality (4.15) is proved.

If the multifunction A — F(¢,z, ) has a closed graph a.e. on T, then it is

easy to prove that the multifunction A — ®(¢, A, %) has a closed graph.

Let us show that the multifunction (¢, A) — ®(&, A, %) has a closed graph.
To this end, fix sequences {{,, A} in X X A converging to (£*, A*), a sequence
{an}, an € ®(&s, As, 9), converging to o* a sequence {e,}, converging to 0.
Then there exist a sequence {3,}, 8, € ®(£*, \,,v) such that

”an - ﬂn”L S dL(a‘n: Q(g*’ An”l/})) + €n
< di(®(&ny Ay %), B(E", An, ) + €.

The latter and (4.13) imply

llom = Balle < r(Aa)llén — €Iz + €n

(From this it follows that lim, .. 8, = o*. Since the multifunction A —
®(£*, A, %) has a closed graph, we obtain that a* € ®(¢*,1*,¢). Hence the
multifunction (£, A) — ®(, A, ¥) has a closed graph.

As the final result we obtain that the mutifunction ® : X x AX L(T, X) —
Ly(T, X) satisfies all assumptions of Theorem 1.1 and Corollary 1.2.

For all (£,A) € E x A we put

Fix®(£,)) = {p € Li(T, X); p € ®(£, ), 0)}.

Taking into account Theorem 1.1 and Corollary 1.2 we have:
a’) For all (§,)) € E x A the set Fix®(¢, A) is non-empty and there exists
a continuous function v : X X A — L;(T, X) such that

u(€,A) € Fix®(£, \); (4.18)

b’) if D C X x A is a closed subset of X X A and vp : D — Ly(T, X)
is a continuous function, vp(&, A) € Fix®(&, A), (€,)) € D, then there exists
a continuous function v : X x A — L{(T, X) such that (4.18) is true and
’U(f) A) = vD(§7 /\)’ (E) A) € D’

c¢’) (§,A) — Fix®(¢, A) is the closed-valued lower semicontinuous multi-
function and for every (¢, A\) € X x A the set Fix®(¢, )) is an absolute retract
in space L1(T, X) and, consequently, arcwise connected.
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d’) if the multifunction A — F(¢,z, \) has a closed graph a.e. on T', then a
retraction can be chosen which depends continuously on (¢, A), namely, there
exists a continuous map v : X x A x Ly(T, X) — Ly(T, X) such that

v(€, A, 2) € Fix®(€,A), Vz e Ly(T, X),
v(€, A, 2) = 2, Vz € Fix®(¢, ).

Now, consider the operator 7 : X x Li(T,X) — C*(T,X) defined by
putting

T(6,¢)(0) = (4.0 + [ S(t,9)o(s)ds, €T
for all ¢ € Li(T, X) and all £ € X. Observe that
H(EA) =T (¢, Fix®(¢, 1)) - (4.19)

Thanks to Proposition 4.1 the operator 7 : X x L(T, X) — C*(T, X)
is a topological isomorphism. Now, Theorem 4.2 and Corollary 4.3 follows

directly from (4.19) and a’)-d’). This ends the proof of Theorem 4.2 and
Corollary 4.3.

COROLLARY 4.5. Let (H1)-(H4) be satisfied and the multifunction A —
F(t,z,\) has a closed graph a.e. onT. Fori=1,2 letu; : X xA — C*(T, X)
be a continuous map such that u;({,\) € H(E, ) for every (€,)) € X x A.
Then there ezists a continuous map g : X x A X [0,1] —» C*(T, X) satisfying

9(§,2,0) = u1(§,X), 9(&, A1) = ua(E,X), for every (§,1) € X x A,

g(&, A7) € H(E,X), for every (€,),7) € X x A x [0,1].
Proof. Thanks to Theorem 4.2 d) there exists a continuous map h : X x
A x C*T,X) — C*(T, X) such that

h(€, A, u) € H(E,N), Vu € CHT,X), (4.20)
h(€, M) =u, Yue H(E N

Define g : X x A x [0,1] — C*(T, X) by
9(& A7) = A€, A, (1 = T)us(€, A) + Tua(€, X)) (4.21)

Clearly g is well defined, since (1 — 7)uy(§, ) + Tug(é,A) € C*(T, X) for
every (§,A,7) € X X A X [0,1] and continuous as composition of continuous
functions. Furthermore, from (4.19), (4.20) it follows that g is desired. This
completes the proof.
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Corollary 4.4 means that any two continuous selections of the multifunc-
tion (£,A) — H(, A) can be joined by a homotopy with values in H(E, A).

5. Comments

(1) Theorem 3.2 is proved by using some ideas of [14].

(2) Theorem 1.1 is obtained in the standart way by using Theorem 3.2.

(3) Continuous selectors of fixed point sets of multifunctions with noncon-
vex values were studied in [15, 18]. Our result contains as a special case the
selection theorem in [15] and supplements the result in [18].

(4) Proposition 4.1 is proved analogously to Proposition 2.1 in [10].

(5) The absolute retractness of fixed point sets for multivalued contraction
with closed decomposable values were proved in [2] under severe constraints
then ours.

(6) The problem (H) under severe constraints were studied in [10]. The-
orem 4.2 contains more information about properties of the multifunction

(€, 2) — H(E,A).

(7) It should be mentioned that the continuous selections and properties
of solution sets for different classes of Lipschitzean differential inclusions were
studied in [4, 5, 6, 7, 10, 11, 13, 19, 20, 21, 22]. The majority of these results
can be obtained easily by using Theorem 1.1 and Corollary 1.2.
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