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On the Bound of the Number of the Real Roots
of a Random Algebraic Polynomial
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1 Introduction

A random algebraic polynomial of degree n is of the form
Fn(xv w) = Z ak(w)xk,
k=0

where the a(w) are random variables and z is a complex number. Since Bloch and Polyal1]
initiated the estimate of the number of real roots of a random algebraic polynomial, there
has been a stream of papers on the various estimates of the zeros of random algebraic
polynomials by others, like Littlewood & Offord[3] and Evans[2], although they mainly
work with independent and identically distributed coefficients. For dependent coefficients,
Sambandham|4] obtained asymptotic formulae for the expectation of the number of real
roots of a random algebraic polynomial in the case of random coefficients are normally
distributed with mean zero, variance 1 and each correlation p;; = p € (0,1) or pl*=9 p €
(0, %) Also for the upper bound of the number of real roots of a random algebraic
polynomial, Sambandham|[5] considered the case of constant correlation p € (0, 1).

We have researched the estimate with respect to the upper and lower bounds of the
number of real roots of a random algebraic polynomial whose coefficients are dependent

normal random variables with varying correlation.

2 Upper Bound of the Number of Real Roots

First we suppose that the coefficients are normally distributed random variables having
mean zero, variance 1 and each correlation p;; = pji—j, where {pz} is a nonnegative
decreasing sequence satisfying p; < % and Z pr < 00. That is to say that we consider

k=1
the random coefficients ax(w) £ = 0,1, - -, n have joint density function

IM|% (27r)“nTJrl exp (—%a'Ma) ,
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where M ! is the moment matrix with

[e o]

where {p;} is a nonegative decreasing sequence satisfying p; < % and ij < 0. ais
=1

the transpose of the column vector a.

TueoreM 1 ([6]). There exists an integer ng such that for each n > ng,the number of
real roots of the equations Fy,(z,w) = 0 is at most

C(loglogn)?logn

except for a set of measure at most

Cl
log ng — logloglogng’

where C and C' are constants.

Proof. We indicate a brief outline of the proofs. We must remark that the transfor-

mation  — % makes the equation F,(z,w) = 0 transformed to ian_r(w)xr = 0 and
(ao(w),a1(w), - - -, an(w)) and (an(w), @n-1(w), - - -, ao(w)) have the S;;I(;e joint density func-
tion. Therefore the number of roots and the measure of the exceptional set in the range
[—00, 00] are twice the corresponding estimates for the range [—1, 1]. But we consider the
range [—1,0] only. Because it can be shown that the upper bound in [0, 1] is the same as
in [-1,0] by using the same procedure. Thus the number of roots in the range [—o0, 00]
and the measure of the exceptional set are each four times the corresponding estimates
for the range [—1,0].

The proof consists of defining circles to cover the interval [0,1] and estimating the
number of zeros in each circle by the inequality proved by Jensen’s theorem. Let N (lz —
20| < ) be the number of zeros of a regular function ¢(z) in the circle with center 2y and
of radius r. The following is the inequality essential in order to get the theorem,

[$(z0)]
log(R/T)

IOg (Sup]z—z9|<R |¢(Z)|>
N(lz— 2| <r) <

where R(>r) .
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3 Lower Bound of the Number of Real Roots

Consider

falz,w) = i ax(w)bpz®,
k=0

where the by, are positive numbers and the coefficients be m-dependent stationary Gaussian
random variables with mean zero and variance 1. In other words, we assume the random

coefficients ax(w) k = 0,1, ---,n have joint density function
1 n 1
(M} 27)"F exp (—-éa’Ma> ,

where M ! is the moment matrix with

1 (i=37)
pij =9 P € [0,1) (1<]i—=jl<m)

Under the above condition we get the following results.

TueoreM 2 ([7]). Let by, k=0,1,---,n be positive numbers such that

. = o(logn), where k, = o%?é% by and t,= Oggn by.

Then for n > ng, the number of real Toots of the equations f,(x,w) =0 is at least
Clogn
log (’ff log n)
except for a set of measure at most

C'log (% log n)

logn

where C, C' are positive constants.

Proof. The method of the proof consists mainly of counting the number of crossing in
each interval of length 6.
As the improvement of theorem 2, we get the following estimate.

THEOREM 3. Let by, k = 0,1,---,n be positive numbers such that lim,_, o 1;—3 is finite,

where
k,= max by and t,= min bg.
" o<k<n " 0<k<n F

Then for n > ng, the number of real roots of most of the equations fn(z,w) = 0 is at least

€, logn
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except for a set of measure at most

C ko \? C'B
e logn + <E) exp <— . ) 0 >0,

provided €, tends to zero but ¢, logn tends to infinity as n tends to infinity, where C' and

C'" are positive constants.

Proof. We borrow the method of the proof of theorem 2.
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