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1 Introduction

A random algebraic polynomial of degree $n$ is of the form

$F_{n}(X, \omega)=k=0\sum a_{k(\omega}n)X^{k}$ ,

where the $a_{k}(\omega)$ are random variables and $x$ is a complex number. Since Bloch and $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}\mathrm{a}[1]$

initiated the estimate of the number of real roots of a random algebraic polynomial, there
has been a stream of papers on the various estimates of the zeros of random algebraic
polynomials by others, like Littlewood&Offord[S] and $\mathrm{E}_{\mathrm{V}\mathrm{a}\mathrm{n}\mathrm{S}}[2]$ , although they mainly
work with independent and identically distributed coefficients. For dependent coefficients,
$\mathrm{S}\mathrm{a}\mathrm{m}\mathrm{b}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{h}\mathrm{a}\mathrm{m}[4]$ obtained asymptotic formulae for the expectation of the number of real
roots of a random algebraic polynomial in the case of random coefficients are normally
distributed with mean zero, variance 1 and each correlation $\rho_{ij}=\rho\in(0,1)$ or $\rho^{|i-j|},$

$\rho\in$

$(0, \frac{1}{2})$ . Also for the upper bound of the number of real roots of a random algebraic
polynomial, $\mathrm{S}\mathrm{a}\mathrm{m}\mathrm{b}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{h}\mathrm{a}\mathrm{m}[5]$ considered the case of constant correlation $\rho\in(0,1)$ .

We have researched the estimate with respect to the upper and lower bounds of the
number of real roots of a random algebraic polynomial whose coefficients are dependent
normal random variables with varying correlation.

2 Upper Bound of the Number of Real Roots

First we suppose that the coefficients are normally distributed random variables having
mean zero, variance 1 and each correlation $\rho_{ij}=\rho_{|i-}j|$ , where $\{\rho_{k}\}$ is a nonnegative

decreasing sequence satisping $\rho_{1}<\frac{1}{2}$ and $\sum_{k=1}^{\infty}\rho k<\infty$ . That is to say that we consider

the random coefficients $a_{k}(\omega)k=0,1,$ $\cdots,$ $n$ have joint density function

$|M|^{\frac{1}{2}}(2 \pi)-\frac{n+1}{2}\exp(-\frac{1}{2}aM/a)$ ,
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where $M^{-1}$ is the moment matrix with

$\rho_{\mathrm{i}j}=\{$

1 $(i=j)$

$\rho_{|ij|}-$ $(i\neq j)$

where $\{\rho_{j}\}$ is a nonegative decreasing sequence satisfying $\rho_{1}<\frac{1}{2}$ and $\sum_{j=1}^{\infty}\rho j<\infty$ . $a’$ is

the transpose of the column vector $a$ .

THEOREM 1 ([6]). There exists an integer $n_{0}$ such that for each $n>n_{0_{f}}$ the number of
real roots of the equations $F_{n}(z, \omega)=0$ is at most

$C(\log\log n)^{2}\log n$

except for a set of measure at most

$\underline{C’}$ ,
$\log n_{0}-\log\log\log$ no

where $C$ and $C’$ are constants.

Proof. We indicate a brief outline of the proofs. We must remark that the transfor-
mation $x arrow\frac{1}{x}$ makes the equation $F_{n}(x, \omega)=0$ transformed to $\sum_{r=0}^{n}an-r(\omega)_{X^{r}}=0$ and
$(a0(\omega))a1(\omega),$

$\cdots,$
$a_{n}(\omega))$ and $(a_{n}(\omega), an-1(\omega),$ $\cdots)a_{0}(\omega))$ have the same joint density func-

tion. Therefore the number of roots and the measure of the exceptional set in the range
$[-\infty, \infty]$ are twice the corresponding estimates for the range [-1, 1]. But we consider the
range $[$ -1, $0]$ only. Because it can be shown that the upper bound in $[0,1]$ is the same as
in $[$ -1, $0]$ by using the same procedure. Thus the number of roots in the range $[-\infty, \infty]$

and the measure of the exceptional set are each four times the corresponding estimates
for the range $[$ -1, $0]$ .

The proof consists of defining circles to cover the interval $[0,1]$ and estimating the
number of zeros in each circle by the inequality proved by Jensen’s theorem. Let $N(|z-$

$z_{0}|<r)$ be the number of zeros of a regular function $\phi(z)$ in the circle with center $z_{0}$ and
of radius $r$ . The $\mathrm{f}_{\mathrm{o}\mathrm{l}1_{0}}\mathrm{W}\mathrm{i}\mathrm{n}\mathrm{g}$ is the inequality essential in order to get the theorem,

$N(|z-z_{0}|<r) \leq\frac{\log(\frac{\sup_{||}z-z_{0}<R|\phi(z)|}{|\phi(z\mathrm{o})|})}{\log(R/r)}$

where $R(>r)$ .
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3Lower Bound of the Number of Real Roots

Consider
$f_{n}(_{X}, \omega)=\sum_{k=0}a_{k}(\omega)bkX^{k}n$ ,

where the $b_{k}$ are positive numbers and the coefficients be $m$-dependent stationary Gaussian
random variables with mean zero and variance 1. In other words, we assume the random
coefficients $a_{k}(\omega)k=0,1,$ $\cdots,$ $n$ have joint density function

$|M|^{\frac{1}{2}}(2 \pi)-\frac{n+1}{2}\exp(-\frac{1}{2}a’Ma)$ ,

where $M^{-1}$ is the moment matrix with

$\rho_{ij}=$

’

1 $(i=j)$

$\rho|i-j|\in[0,1)$ $(1 \leq|i-j|\leq m)$

$\sim 0$ $(|i-j|>m)$ $i,j=0,1,$ $\cdots,$ $n$

Under the above condition we get the following results.

THEOREM 2 ([7]). Let $b_{k},$ $k=0,1,$ $\cdots$ , $n$ be positive numbers such that

$\frac{k_{n}}{t_{n}}=o(\log n)$ , where $k_{n}=0^{\max b_{k}}\leq k\leq n$ and $t_{n}= \min_{0\leq k\leq n}b_{k}$ .

Then for $n>n_{0}$ , the number of real roots of the equations $f_{n}(x, \omega)=0$ is at least

$\frac{C\log n}{\log(\frac{k_{n}}{t_{n}}\log n)}$

except for a set of measure at most

$\underline{C’\log(_{t_{n}}^{k_{\Delta}}-\log n)}$

$\log n$

where $C,$ $C’$ are positive constants.

Proof. The method of the proof consists mainly of counting the number of crossing in

each interval of length $\delta$ .
As the improvement of theorem 2, we get the following estimate.

THEOREM 3. Let $b_{k},$ $k=0,1,$ $\cdots,$ $n$ be positive numbers such that $\lim_{narrow\infty_{t_{n}}}k_{\mathrm{L}}\lrcorner i_{\mathit{8}}finite_{J}$

where
$k_{n}=0^{\max b_{k}}\leq k\leq n$ and $t_{n}= \min_{0\leq k\leq n}b_{k}$ .

Then for $n>n_{0f}$ the number of real $root_{\mathit{8}}$ of most of the equations $f_{n}(x, \omega)=0$ is at least

$\epsilon_{n}\log n$
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except for a set of measure at most

$\frac{C}{\epsilon_{n}\log n}+(\frac{k_{n}}{t_{n}}\mathrm{I}^{\beta}\exp(-\frac{C’\beta}{\epsilon_{n}}\mathrm{I}^{\beta},>0$ ,

provided $\epsilon_{n}$ tends to zero but $\epsilon_{n}\log n$ tends to infinity as $n$ tends to infinity, where $C$ and
$C’$ are positive constants.

Proof. We borrow the method of the proof of theorem 2.
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