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Abstract: In this paper, we define several relations of two sets with respect to an
ordering convex cone. By using the relations, we define some kinds of criteria of solutions
in set-valued optimization. Moreover, we investigate conditions which guarantee any
solution of local optimal is a solution of global optimal when a set-valued map is convex.
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1. Introduction
How should be criteria of set-valued optimization problems defined? In optimization theory, we
find a lot of set-valued optimization problems, for example, a duality problem of a vector-valued
optimization problem, or a minimax problem of a vector-valued map, see [2, 3, 13, 11, 14].
However, the ordinary criteria of solutions, which is considered in such set-valued problems,
is based on comparisons of two vectors, and we suspect, it may be a defect and it should be
based on comparisons of two sets.

The end of this paper is to answer the question. We define some criteria of solutions of
a set-valued minimization problem with comparisons of two images of the set-valued map in
this paper. The organization of the paper is the following: In Section 2, we consider some
concepts of comparisons of two sets with respect to a vector-ordering, and we give and observe
six kinds of relations between two sets. Using the relations, in Section 3, we introduce some
criteria of solutions, which are based on comparisons of two sets with a vector-ordering; $[8, 9]$ ,
in a set-valued optimization problem. In this reason, they are natural and simple criteria.
Finally, we investigate some conditions which guarantee any.local solution is a global solution
if a set-valued map is convex in Section 4.

2. Relations between Two Sets with a Vector-Ordering

In this section, we discuss and construct concepts of comparisons of two nonempty sets with
respect to a vector ordering. Throughout this paper, let $Y$ be an ordered vector space with
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the vector ordering $\leq_{K}$ induced by a convex cone If: for $x,$ $y\in Y$ ,

$X\leq_{Ky}$ if $y-x\in K$ . (2.1)

First, for each vectors $a,$ $b\in Y$ , we have one of the following:

(i) $a\in b+K$ (equivalently $b\in a-I\mathrm{t}’$); (iii) $b\in a+I\mathrm{f}$ (equivalently $a\in b-K$ );

(ii) $a\not\in b+K$ (equivalently $b\not\in a-K$ ); (iv) $b\not\in a+I\acute{\mathrm{t}}$ (equivalently $a\not\in b-K$ ).

These relationships are summarized as $b\leq_{K}a,$ $b\not\leq_{K}$ $a$ or $a\leq_{K}b,$ $a\not\leq_{K}b$ , that is, one vector is
dominated by the other vector or otherwise. In the case of relationship between a nonempty
set $A\subset Y$ and a vector $b\in Y$ , a different situation is observed; we have two domination
structure

(i) for all $a\in A,$ $a\leq_{K}b$ ;

(ii) there exists $a\in A$ such that $a\leq_{K}b$ .

The first relation means the vector $b$ dominates the whole set $A$ from above with respect to
the vector ordering $\leq_{K}$ . The second relation means the vector $b$ is dominated from below by
an element of the set $A$ . If the set $A$ is singleton, they are coincident with each other. These
relationships are denoted by $b\in A\cap+^{K}$ and $b\in A\omega K$ , respectively, where

$A_{+} \cap K:=\bigcap_{a\in A}(a+I\mathrm{f})$ and $A \omega K:=\bigcup_{a\in A}(a+K)$ . (2.2)

Analogously, we use the following notations for a nonempty set $B\subset Y$ :

$B \cap-K:=\bigcap_{b\in B}(b-K)=B+\cap(-K)$ and $B \cup-K:=\bigcup_{b\in B}(b-K)=B\omega(-I\zeta)$ . (2.3)

It is easy to see that $A\cap+^{K}\subset A\mathfrak{G}K$ and $B\mathrm{O}K\subset B\cup-K$ , and also that $A\Theta B=A+B$ and
$A\cup-B=A-B$ .

Secondly, we consider the relationship between two nonempty sets in $Y$ , which is strongly
concerned with intersection and inclusion in set theory. Given nonempty sets $A,$ $B\subset Y$ ,
exactly one of following conditions holds: (i) $A\cap B=\emptyset;(\mathrm{i}\mathrm{i})A\cap B\neq\emptyset$ . The latter case
includes its special cases $A\subset B$ and $A\supset B$ .

By using above two ideas, we classify the relationship between two nonempty sets $A,$ $B\subset Y$

in the sense that $A$ is (partially) dominated from above by $B$ or $A$ (partially) dominates $B$

from below:
(i) $A\subset B\mathrm{O}K$ ; (v) $A\cap+^{K\supset B;}$

(ii) $A\cap(B\mathrm{O}K)\neq\emptyset$ ; (vi) ( $A\cap+^{K)}\cap B\neq\emptyset$ ;

(iii) A$\mathrm{t}_{\mathit{9}}K\supset B$ ; (vii) $A\subset B\cup K$ ;

(iv) $(A\omega K)\cap B\neq\emptyset$ ; (viii) $A\cap(B\cup K)\neq\emptyset$ .

Since conditions (i) and (v) coincide and conditions (iv) and (viii) coincide, we define six
kinds of classification for set-relationship.
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DEFINITION 2.1. For nonempty sets $A,$ $B\subset Y$ , we denote

$\bullet$ $A\cap+^{K}\supset B$ by $A\leq_{K}B(\mathrm{i})$ ; $\bullet$ ( $A+^{K)}\cap\cap B\neq\emptyset$ by $A\leq_{I\mathrm{f}}B(\mathrm{i}\mathrm{V})$ ;

$\bullet$ $A\cap(B\mathrm{O}K)\neq\emptyset$ by $A\leq_{K}B(\mathrm{i}\mathrm{i})$ ; $\bullet$ $A\subset B\cup K$ by $A\leq_{I\mathrm{f}}(\mathrm{v})B$ ;

$\bullet$ $A\oplus K\supset B$ by $A\leq_{Ic^{)}}B(\mathrm{i}\mathrm{i}\mathrm{i}$ ; $\bullet$ (A$\mathrm{b}lK$ ) $\cap B\neq\emptyset$ by $A\leq_{I\zeta}B(\mathrm{v}\mathrm{i})$ .

PROPOSITION 2.1. For nonempty sets $A,$ $B\subset Y$ ,

$A\leq_{\mathrm{A}^{\nearrow}}(p)B$ if and only $\mathrm{i}\mathrm{f}-B\leq_{K}(q)-A$

for $(p, q)=(\mathrm{i},\mathrm{i})$ , (ii,iv), $(\mathrm{i}\mathrm{i}\mathrm{i}, \mathrm{v}),$ $(\mathrm{v}\mathrm{i}, \mathrm{v}\mathrm{i})$ .

PROPOSITION 2.2. For nonempty sets $A,$ $B\subset Y$ , we denote the following statements hold:

$\bullet$
$A\leq_{K}B(\mathrm{i})$ implies $A\leq_{I\mathrm{f}}(\mathrm{i}\mathrm{i})B$ ; $\bullet$

$A\leq_{I\mathrm{f}}(\mathrm{i})B$ implies $A\leq_{I\mathrm{f}}B(\mathrm{i}\mathrm{v})$ ;

$\bullet$

$A\leq_{\mathrm{A}^{\nearrow}}(\mathrm{i}\mathrm{i})B$ implies $A\leq_{I\mathrm{t}}(\mathrm{i},\mathrm{i}\mathrm{i})B$ ; $\bullet$

$A\leq_{I\mathrm{f}}B(\mathrm{i}\mathrm{v})$ implies $A\leq_{I\mathrm{f}}B(\mathrm{v})$ ;

$\bullet$

$A\leq_{\mathrm{A}},B(\mathrm{i}\mathrm{i}\mathrm{i})$ implies $A\leq_{I\{}(\mathrm{v}\mathrm{i})B$ ; $\bullet$

$A\leq_{I\mathrm{f}}(\mathrm{v})_{B}$ implies $A\leq_{I5\mathrm{i}}(\mathrm{V}\mathrm{i})B$.

We investigate some properties about set-relations.

PROPOSITION 2.3. For nonempty sets $A,$ $B\subset Y$ , the following statements hold:

$\bullet$

$A\leq_{K}B(\mathrm{i})$ and $B\leq_{K}(\mathrm{i})$ $A$ implies $A=B=\{x\}$ for some $x$ ;

$\bullet$

$A\leq_{\mathrm{A}’}(\mathrm{i}\mathrm{i})B$ and $B\leq_{I\zeta}$

$A(\mathrm{i}\mathrm{i})$ implies $\mathrm{S}\mathrm{u}\mathrm{p}_{K}A=\mathrm{s}_{\mathrm{u}\mathrm{p}_{K}}B$;

$\bullet$

$A\leq_{I_{1}^{\nearrow B}}(\mathrm{i}\mathrm{i}\mathrm{i})$ and $B\leq_{K}$
$A(\mathrm{i}\mathrm{i}\mathrm{i})$ implies ${\rm Min}_{K}A={\rm Min}_{K}B$ ;

$\bullet$

$A\leq_{I\mathrm{t}}(\mathrm{i},\mathrm{V})_{B}$ and $B\leq_{K}$
$A(\mathrm{i}\mathrm{V})$ implies $\mathrm{I}\mathrm{n}\mathrm{f}_{K}A=\mathrm{I}\mathrm{n}\mathrm{f}_{K}B$ ;

$\bullet$

$A\leq_{\Lambda},B(\mathrm{v})$ and $B\leq_{K}$
$A(\mathrm{v})$ implies ${\rm Max}_{K}A={\rm Max}_{K}B$ .

3. Criteria of a Set-Valued Minimization Problem

Now, we consider some criteria of solutions of a set-valued minimization problem. We set our
set-valued minimization problem as follows:

(P) Minimize $F(x)$

subject to $x\in S$ ,

where $F$ is a set-valued map from a nonempty set $X$ to $Y$ and $S$ is a nonempty subset of $X$

satisfying $F(x)\neq\emptyset$ for each $x\in S$ .
First, to consider criteria of the solutions, we recall some concept, which are well known

and play important roles in vector-valued optimization, as follows:
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$\bullet$ Minimal or Maximal;
Let $A$ be a nonempty subset of $Y$ . An element $a$ of $A$ is said to be minimal in $A$ (with
ordering cone $K$ ) if any element $x$ of $A$ with $x\leq_{K}$ $a$ satisfies $x=a$ . The set of all
minimal elements in $A$ is called minimal set of $A$ , which is written by ${\rm Min}_{K}A$ . Concept
of maximal is considered as minimal with ordering $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{e}-K$ , and the maximal set of $A$

is written by ${\rm Max}_{I\{’}A$ .

$\bullet$ Minimum or Maximum;
Let $A$ be a nonempty subset of $Y$ . An element $a$ of $A$ is said to be minimum in $A$ (with
ordering cone $K$ ) if $a\leq_{K^{X}}$ for each element $x$ of $A$ . Such an element does not always
exist, however, if it exists, it is unique and it is the only ${\rm Min}_{I\mathrm{e}’}A$ element. Concept of
maximum is considered as minimum with ordering $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{e}-K$ .

$\bullet$ Infimum or Supremum (see, [4, 9]);
Let $A$ be a nonempty subset of $Y$ . An element $a$ of $A$ is said to be infimum in $A$ (with
ordering cone $K$ ) when $a$ is a maximum element of $\bigcap_{a\in A}(a-I\iota)’(=A\cap-I\zeta)$ , and the set
of all infimum element in $A$ is written by $\mathrm{I}\mathrm{n}\mathrm{f}_{K}A$ . Such an element of $\mathrm{I}\mathrm{n}\mathrm{f}_{K}A$ does exist
under some weak conditions, see [9], and if it exists, it is also unique. An element $a$ of
$A$ is said to be supremum in $A$ (with ordering cone $K$ ), if $a$ is a minimum element of
$\bigcap_{a\in A}(a+l\mathrm{i}’)(=A\cap+^{K)}$ , and the set of all supremum element in $A$ is written by $\mathrm{S}\mathrm{u}\mathrm{p}_{K}A$ .

In a vector-valued optimization problem, a criterion of solutions is presented by one of the
above six concepts and to find such solutions is the end of the problem. For example, $x_{0}\in S$

is a minimal solution on $S$ of a map from $X$ to $Y$ if $f(x\mathrm{o})$ is an element of ${\rm Min}_{K}f(S)$ . In
almost literatures concerned with set-valued optimization, a criterion of solutions is defined
the following: $x_{0}\in S$ is a (minimal) solution of (P) if there exists $y_{0}\in F(x\mathrm{o})$ such that $y_{0}$

is an element of ${\rm Min}_{K}f(S)$ , or $y_{0}\leq_{K}y$ for each $y\in F(x)$ with $y\leq_{K}y_{0}$ , and $x\in \mathrm{D}\mathrm{o}\mathrm{m}(F)$ .
From this, we can see the criterion of solutions is based on comparison of a vector $y_{0}$ and a set
$f(S)$ , or comparison of two vectors $y_{0}$ and $y$ . In set-valued optimization, criterion of solutions
should be based on comparisons of two sets!

Now, we introduce some criteria of solutions in set-valued optimization. These criteria of
solutions are based on comparisons of two images of $F$ with the ordering cone $K$ . Though we
can define various types of such concepts, we define only four as follows:

DEFINITION 3.2. Let $k=\mathrm{i},$ $\mathrm{i}\mathrm{i},$

$\ldots,$
$\mathrm{i}\mathrm{v}$ . A vector $x_{0}\in S$ is said to be

$\bullet$ a type $(k)$ minimum solution of (P) if for each $x\in S$ which satisfies $F(x_{0})\neq F(x)$ ,
$F(x)\leq_{\mathrm{A}^{\prime F}}(X_{0})(k))$.

$\bullet$ a type $(k)$ minimal solution of (P) if for each $x\in S$ which satisfies $F(x)\leq_{I_{\mathrm{k}}’}(k)F(x_{0})$ ,
$F(X_{0})\leq_{K}(k)F(x)$ ;

$\bullet$ a type $(k)$ maximum solution of (P) if for each $x\in S$ which satisfies $F(x)\neq F(x_{0})$ ,
$F(X_{0})\leq_{K}(k)F(x)$ ;

$\bullet$ a type $(k)$ maximal solution of (P) if for each $x\in S$ which satisfies $F(x\mathrm{o})\leq_{K}(k)F(x)$ ,
$F(x)\leq_{I\mathrm{i}}(k,)F(X_{0})$ .
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In this paper, concepts of infimum and supremum in set-valued version are omitted since they
are more complicated.

REMARK 3.1. When $F$ is a single-valued map, that is $F(x)$ is a singleton for all $x\in \mathrm{D}\mathrm{o}\mathrm{m}(F)$ ,
these concepts in Definition 3.2. are equivalent to vector-valued version each other.

PROPOSITION 3.4. For each $k=,$ $\mathrm{i},$ $\mathrm{i}\mathrm{i},$

$\ldots,$
$\mathrm{v}\mathrm{i}$ , if $x_{0}$ is a type $(k)$ minimum solution of (P)

then $x_{0}$ is a type $(k)$ minimal solution of (P).

4. Convexity of Set-Valued Maps and Optimality

In this section, we investigate some conditions which guarantee each local solution is a global
solution when a set-valued map is convex. We begin to define concepts of convexity of set-
valued maps. The rest of this paper, let $F$ be a set-valued maps from a topological vector
space $X$ to the ordered space $Y$ .

DEFINITION 4.3. Let $k=\mathrm{i},$ $\mathrm{i}\mathrm{i},$

$\ldots,$

$\mathrm{i}\mathrm{v}$ . $F$ is said to be

$\bullet$ type $(k)$ convex if for each $x_{1},$ $x_{2}\in \mathrm{D}\mathrm{o}\mathrm{m}(F)$ and $\lambda\in(0,1)$ ,

$F((1-\lambda)X_{1}+\lambda x_{2})\leq_{R^{r}}(k)(1-\lambda)F(x1)+\lambda F(X_{2})$;

$\bullet$ type $(k)$ concave if for each $x_{1},$ $x_{2}\in \mathrm{D}\mathrm{o}\mathrm{m}(F)$ and $\lambda\in(0,1)$ ,

$(1-\lambda)F(x1)+\lambda F(x_{2})\leq_{I\zeta}F(k)((1-\lambda)X_{1}+\lambda x_{2})$ ,

where $\mathrm{D}\mathrm{o}\mathrm{m}(F)=\{x\in X|F(x)\neq\emptyset\}$.

PROPOSITION 4.5. For $(p, q)=(\mathrm{i},\mathrm{i})$ , (ii,iv), $(\mathrm{i}\mathrm{i}\mathrm{i}, \mathrm{v}),$ $(\mathrm{v}\mathrm{i}, \mathrm{v}\mathrm{i}),$ $F$ is type $(p)$ convex and $-F$ is
type $(q)$ concave are equivalent.

DEFINITION 4.4. An element $x_{0}$ is a type $(k)$ local minimal (resp. minimum, maximal, max-
imum) solution of (P) if there exists a neighborhood of $x_{0}$ such that $x_{0}$ is a type (k) minimal
(resp. minimum, maximal, maximum) solution on the neighborhood.

From the definitions, we have the following results.

THEOREM 4.1. The following statements hold:

(i) if $F$ is a type $(k)$ convex set-valued map then each solution of type $(k)$ local minimum
becomes a solution of type $(k)$ global minimum, for $k=\mathrm{i},$

$\mathrm{i}\mathrm{i}$ ;

(ii) if $F$ is a type (iii) convex set-valued map and $F(x)+K$ is closed convex for each $x\in X$

then each solution of type (iii) local minimum becomes a solution of type (iii) global
minimum.

THEOREM 4.2. The following statements hold:
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(i) if $F$ is a type $(k)$ convex set-valued map then each solution of type $(k)$ local minimal
becomes a solution of type $(k)$ global minimal, for $k=\mathrm{i},$

$\mathrm{i}\mathrm{i}$ ;

(ii) if $F$ is a type (iii) convex set-valued map and $F(x)+I\mathrm{f}$ is a closed convex for each
$x\in X$ then each solution of type (iii) local minimal become a solution of type (iii)
global minimal.

COROLLARY 4.1. The following statements hold:

(i) if $F$ is a type $(k)$ concave set-valued map then each solution of type $(k)$ local maximum
(resp. maximal) become a solution of type $(k)$ global maximum (resp. maximal) for
$k=\mathrm{i},$

$\mathrm{i}\mathrm{v}$ ;

(ii) if $F$ is a type (v) concave set-valued map and $F(x)-K$ is a closed convex for each
$x\in X$ then each solution of type (v) local maximum (resp. maximal) become a solution
of type (v) global maximum (resp. maximal).
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