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Continuity of e-Approximate Solution Set

Kazunori Yokoyama (BRIL—3&) *

Abstract

In this note, we present the continuity of e-approximate solutions set for the nonlinear progrm-
ming problems. In [1], the similar continuity for the unconstrained problem was shown. We show
another result. The ocntinuity of the approximate solution set is estimated by using the p-distance.

1 Preliminaries
In this note, we consider the following nonlinear programming problem:
(P) minimize f(z)
subject to g(z) <0
where g = (g1,...,gm), f and g;(i=1,...,m) : R" — R.
We denote the feasible set {z € R™ | g(z) < 0} by K.
We suppose that the following assumption is satisfied.

Assumption. Let f and g;(i = 1,...,m) be convex and f be bounded from below. Let K # 0. The
parameter ¢ is positive. '

For the problem (P), the £ -approximate sulution is well known as follows.

Definition 1.1. An element Z € K is said to be an e-approximate solution for (P) if and only if Z
satisfies that f(z) +¢& > f(Z) for any z € K.

Weset infx f = inf{f(z) | z € K} and denote thes-approximate solution set {Z € K | f(z)+¢& > f(Z)
for any = € K} by A(e). |

Clearly, we have A(e) # @ under the above assumption.
To estimate the approximate solution set, we define the p-distance and the Hausdorff distance:
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Definition 1.2. For C c R",
d(z,C) =inf{llz -y |y € C}

denotes the distance from z to C. For any C,D c R™,p > 0, we set
C,=CnpB '

where B = {zr € R ||| z ||< 1}:unit ball.
For, p > 0, the p-distance is defined to be

dP(C? D) = maz{e(C’,,, D)1 e(D1 CP)}
where e(C, D) = supyccd(z, D), and the Hausdorff distance between C and D is
haus(C, D) = maz{e(C, D),e(D,C)}.

2 The unconstrained case

In this section we introduce the result of [1]. In [1], Attouch and Wets investigated the Lipschitz
continuity of the approximate solution set for the unconstrained programming problems. The problem
is as follows:

minimize F'(x) where F': R® — R.

For this problem, the approximate solution set is defined to be °
e—argminF = {Z | infF+¢> F(Z)}

where infF = inf{F(z) | z € R}. Also, we denote level set of a function f by
levy,F = {z € R" | F(z) < o}.

To show the Lipschitz continuity, the important lemma was proved in [1].

Lemma 2.1. [1, Lemmad.1.] Suppose that there exists p, > 0 such that
(e — argminF),, # 0 for all € > 0.
" Then, for all a > infF and n > 0,

. . | £ 1l +eo
for all levi A Jevo  F) £ no—m——r——
or all £ € levigynF, d(&,lev F)“n(n+a)—zan
which in turn implies that for all p > po,
po+p

d,((oc + 1) — argminF, o. — argminF) < nm—p—.



3 The constrained case

We apply lemma 2.1. to the constrained programming problems (P).

Lemma 3.1. Suppose that there exists p, > 0 such that
A(€)po # O for all € > 0.

Then, for all infx f +& > infxf,

for all £ € A(e2),d(2,A(e1)) < (€2 — 81)”_:E—I6L-lﬂ
1

which in turn implies that for all p > po,

po+p

dp(A(€2),A(81)) S (52 - 81) 1

However the above assumption does not hold in the following easy example.

Example 3.1. Let f(z1,22) = 21*®2:convex and g(z1,%2) = (x1,22) :convex .
Then, we have

A(0) =0 and A(e) = {z | £ < 0 and 21122 < ¢},
So, it holds ‘

| Z |[— 400 where T € A(e) as ¢ — 0.

We would like to change the assumption and show the similar result.

Proposition 3.1. We suppose that the strong Slater condition is satisfied.i.e. there are z, € R™,§ > 0
such that

§B c H(z,) + R{™HY.
where H(z) = (9(z), f(z) — infx f — 1), B C RS:"H) : unitball.
Also, suppose there exists C > 0 such that

SuPzoeAEaNAEy) | o — Ts || C.
Then, we have

(62 — 81)0.

(Alez2), A1) < 3
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Remark.The assumption of proposition 3.1. is satisfied in example 3.1. Let g2 = 0.5,&; = 0.25.
So, there exist z, = (—2,—2) and § = 0.125 such that the strong Slater condition is satisfied. Since
Alg2) ={z |2 < 0,22 < —21 — 1}, A(e1) = {z | 2 £ 0,22 < —x1 — 2}, we have ;

SubzpeaENAE | 20— 24 <1 (-1,0) = (~2,-2) [|= V5 and haus(A(0.5), A(0.25)) < O3RN,

The above strong Slater condition is equivalent to the ordinary one.

Proposition 3.2. [9]The strong Slater condition is satisfied if and only if the Slater condition be done.
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