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1.Introduction. ~ _
Controllability of linear and nonlinear systemes represented by ordinary differ-
ential equations in finite-dimension space has been extensively studied. Several
authors have extended the concept to infinite-dimension systems represented by
evolution equations with bounded operators in Banach spaces(Ref.[4]) for Volterra
integro differential systems, Park and Kwun(Ref.[3]) studied the approximate con-
trollability for delay Volterra systems with bounded linear operators in Banach
space. Recently, Balachandran, Balasubramaniam and Dauer (Ref.[1]) studied
the Local null controllability of nonlinear functional differential systems with un-
bounded linear operators in Banach space. In this paper, we study the Local null
controllability of nonlinear functional differential systems (1) with unbounded lin-
ear operators in Banach space. The main tools employed in our analysis are based
on the semigroup theory, fractional power operators and Schauder’s fixed point
theorem. The main result is presented in Section 3 and example is given in Section

4.
2.Preliminaries.

Let X be a Banach space with norm ||-|| and let C = C([—r, 0], X) be the Banach
space of continuous functions defined on [—r,0],7 > 0 with supremum norm || - ||.

If z is continuous function from [~r,T],7 > 0 to X and t € [0,T] = J, then z,
denotes the element of C given by z,(6) = z(¢ + 8) for 6 € [—r,0].
We consider the functional Integro-differential systems

%x(t) + A(t)z(t) =(Bu)(t) +/0 (a(t,s)g(s,xs) + h(t,s,:cs)) ds

+ f(t,z0), te[0,T)=1J, (1)
z(t) =4(t), te[-r0] .

where the state z(t¢) takes values in the Banach space X and the control function
u is given in L*(J,U), a Banach space of admissible control function with U a

The present studies were supported by the Basic Science Research Institute Program, Ministry
of Education, 1996, Project No. BSRI-96-1410. .



12

J.Y.PARK, M.J.LEE AND H.K.HAN

Banach space. The family {A(t) : ¢ € J} of unbounded linear operators defined
on domains D(A) C X generates a linear evolution systems, B is a bounded linear
operator from U into X, f, g are continuous nonlinear operator on J x C into X, h
is continuous nonlinear operator from J x J x C into X, and ¢ € C = C([-r, 0]; X).
For the existence of a solution of (1), we need the following assumptions(see Ref.[2]):

(H;) A(t) is a closed linear operator with a domain D(A),t € [0, T}, that is dense
in the Banach space X and independent of t¢.

(H;) For each t € [0,T}, the resolvent R(\, A(t)) = (A — A(t))™! of A(t) exists
for all A with Re)\ <0 and

IR, A < C/(IAl + 1)
(Hs) For any t,s,7 € [0,T], there exist 0 < § < 1 and K > 0 such that
I(A() ~ A(m)AT ()]l < Kt = 7|

(Hy) For any t € J and some ) € p(A(t)), the resolvent set of A(t),
R(), A(t)), is a compact operator.

Conditions (H;) — (H3), imply that for each ¢ € [0, T, the integral
1 o0
A7) = = / s@lemsAM g 2
=175 | @
exists for each a € (0,1]. The operator (2) is bounded linear operator such that
A"()A™P(t) = A~(@*+A)(t). The operator A%(t) = (A~%(t))~! is a closed linear
operator with domain D(A%(#)) dense in X and such that D(A%(t)) C D(AP(t)),
if @ > B. D(A%(t)) is a Banach space with the norm ||z||, = ||A%*(¢)z||, which is
denoted by X _(t). Then, the following estimates hold (Ref.[2]):
1A (AP (7)]] < K (B, v){|AG)A™H(7)II}”

< KB v)Klt—7° + 1)

< K(B,v)K,
where K = [14+2KT%)Y and 0< 7,t < T,0<v < B < 1. Foreach ty € J, coﬁsider
the space C, = C([—r,0]; X, (f0)) with the norm

16llc, = sup {lA%(to)(O)-

—r<6<0
(Hs) Let by,b3 : J — R*,by : J x J — R* be continuous functions such that
lo(t,8) - 9(t, &) < b1 ()6 - Bl
1ty 5,8) — At 5, D) < bat, )16 — Bl
1£(t,8) — 7t D) < bsllé — bl
| 4(,0) =0, h(t,s,0)=0, f(£,0)=0
for t,s € J,6,6 € C,

(He¢) The function a(t, s) is Holder continuous with exponent « i.e., there exists
a positive constant ao such that ‘

la(t1,81) — altz, s2)| < ao(|t1 — t2]* + |s1 — s2|%)
for t1,%2,81,82 € J, O<a<l.
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Let f,g are continuous nonlinear operator on J x C, into X, h is continuous non-
linear operator on J x J x C_ into X. Then, with the conditions (H;)— (Hs ), there
exist a continuous function z : [—r,T] — D(A%(to)) such that

o) =W(t,060) + [ W(t.9)|(Bu)o) + [ (atsmatre)
+h(S,T,$T)>dT+f(5,;cs)] ds, telJ, | ; (3)
z(t) =¢(t), te€[-r0],

where {W(t,s) : 0 < s <t < T} is the linear evolution system generated by A(t).
Note that the solution exists only locally (Ref.[6]). Statements (H;) — (Hs) imply
that there exists a family of bounded linear operators

{Z(t,s):0<s<t<T}
with
1Z(t,s)|| < Clt —s|°~*
and such that the operator-valued function W (¢, 7) can be defned for 0 <7 <t <T
by :

.
W(t, )= e (¢-DAM 4 / e~ (=AC) Z(5,7)ds .

Here, the linear opeators
{e7™4; 7 > 0}

form an analytic semigroup generated by —A(t).
The family of linear operators

{(W(t,7);0<7<t<T}

is strongly jointly continuous in 7, and maps X into D(A4) if t > 7.
Further, it satisfies the following relations;

(0/o)yW(t,7) = —-A)W(t, 1), te(r, T]‘,

W(r,7)=1,
leT 4 < K, t,rel0,T),
|A(r)e ™A < (K/t), t,7€[0,T], (4)

AW (E, Tl < (E/lt =7]), 0s7<t<T,
147 (#)e 4O < (K(B)/7)e™ ", >0, §20, w >0,
A2 OW(t,7)|| < K(B)|t —7|7#,0 < B<1+t, for some t > 0.
Finally, assumption (H,) implies that A=#(¢) is compact for all # > 0 and that

the inclusion X4(t) C Xg(t) is compact for & > 8 > 0. The results given above for
semigroups of linear operators, evolution systems and fractional powers of operators

can be found in Friedman (Ref.[2]) and Pazy (Ref.[5)).

Definition 2.1. The system (1) is said to be locally null controllable on the interval
[0,T], if for every continuous initial function ¢ € C, there exists a control u €
L*([0,T),U) such that the local solution z(t) of system (1) satisfies z(T) =0 .

13
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3. Main Result.

Theorem 3.1. If conditions (H1) ~ (Hg) hold and the linear operator V from U
into X, given by

Vuz/ W (T, s)Bu(s)ds

defines an invertible operator V! on L*([0,T);U)/ker V such that there exist pos-
itive constants Ny, Ny satisfying

IBll < N1, VT < Ne,

then the system (1) is locally null controllable on J.
Proof. Using the hypothesis, define the control

T s
) = =v= [wiz,060) + [ W@ [ (ats,motr20)
0 0
+h(s,7’,:c,-)>.d7' + f(s,ws)}ds] () .
Now, it is shown that, when using this control, the operator defined by

(@m)(t) = ¢(t)7 te [“Ta 0],
(®z)(t) = W(¢,0)¢(0)

- [(wiemsv w060+ [ "wa, of [ (s oo
+h(s, T, :c,-)) dr + f(s, xs)}ds] (n)dn

+/0t W(t,s){/o“ (a(S,T)g(r,x,)+h(3,7,xr))d7_

—}-f(s,:cs)}ds, ted,

has a fixed point. This fixed point is a solution of equation (1). Clearly, (®z)(T) =
0, which means that control u steers the nonlinear functional differential system
from the initial function ¢ to 0 in time T provided we can obtain a fixed point of
the nonlinear operator ®.

Let
B, ={y e C,;l¥lc, <c},

where ¢ is a constant. It is easy to observe from hypotheses (Hs),(Hs) there exists
a constant N3 such that |a(t,s)| < N3, t,s € J.

Since by(t),bz(t,s) and bs(t) are continuous on their compact domains, there
exist constants P; > 0, (1=1,2,3) such that |b,(¢)| < Py, |by(t,s)| < P, and |b3(2)| <
P;. By virtue of the continuity of functions g, &, f, there exist constants K;, K
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and Kj such that ||g(r,z.)|| < Ki,|h(s,7,z.)]| < K2 and ||f(s,z,)|| < K; for
7,5 € J, 2, € B,. Define the function ¢ € C([—r,T]; X _(to)) by

(;_30 = ¢ 9
é(t) = W(t,0)¢(0), teJ .
Choose d < ¢ so that

K(B,a)KK(B)(T/1 - B)(Ns K1 + K2)T + Ks)
x {N1 N2 K (8, )R K(B)(T/1 - B) + 1}
S d7

where ~
lge]| <e—d, ted .

Define
Yo = {z € C([-r,T}; X, (t0)); 20 = 0, ”xt”ca <dteJ}

Then for any z € Yp, we get lg(, b7 + z-)|| < K, ||h(s,T,ér + 2+)|| < K2 and
lf(s, s +25)|| < K3, for 7,5 € J and z,,z, € B,, because

o + 6l < llzrll + 16| S d +e—d=c .
Consider the transformation
S+ Yy = O(l-r, T}; X, (1))
defined by |
(Sz)o =0,

(Sz)(t) / W(t,n)BV~ [/ W (T, s){/ (a(s,'r)g(’r, & +z,)

Fh(s, T, r + :cr)> dr + f(s,6a + m}ds] (n)dn

w s Vg(r,¢r +z.) + h(s, 7, - +z,) |d
+/0 (t,s){/o (a(s, )g(T, br + T2) + B(s, T, $r + )> -
+ f(sa&s +$s)}ds, ted.

Finding a fixed point of S, and thus proving the theorem, is equivalent to finding
a fixed point of ®, and hence the solution (3) for the system (1). It is claimed that
S:Y, =Y, Slnce (Sz)o =0 and

I(5)®). < / 4w ey [ ' wir{ [ (a<s,r)
xg(T,¢r + z+) + h(s, 7,6, + m)) dr

(5,80 + xs)}ds} (m)ldn

15



16

J.Y.PARK, M.J.LEE AND H.K.HAN

+ [ uA%to)W(t,s){ / s(a<s,r>g<~r, 3 + )

(5,74 20) )ar o+ F(o, B+ 2 s
< N\N, / | A%(to) AP (£) AP (1) W (2, )]

T

x [ | 1w as @it @w, o)

X ((NgI(] + I'(2)T + IXrg)dS} (T])dn

+ [ 1A AT @AW, (Vs K+ KT + Ko s
< NN:K(3, KK (D) [ =l [K(a, W EK(B)

T
X ((N;;Iirl +K2)T+I&’3)/ |T—3|_ﬂds] (n)dn

+ K(p, a)R’I((B)((NaIﬁ’l + K)T + Kg)/ It —s|™Pds
0

< K(B,0)KK(B)(T/1 - B)(Ns K1 + K2)T + K3)
x {N1N,K(B,) KK (B)(T/1 - B) + 1}
<d

)

we obtain

I(Sz)ellc, <d .

The family {(Sz)(t) : z € Yy} is an equicontinuous. To show this, let 0 < t; < ¢, <
T. Then,

1(S2)(t1) = (Sz)(t2)lla

t1

< [ et - Wiy | | W)
< [ (atssmr.60 4 20) 7,50+ 20))dr + 5,61+ 2.) s )l

+ : 1A%(t0)W (ta, ) BV ! [ /0 "W
x{ / s (( P)9(r,Fe + 1) + h(s, 7, B + Icr))dr + (s, B0+ xs)}ds] (m)lldn

t

+ [ A%(80)[W (22, s) — W(t1, s)]
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x { | (a<s,r)g<r, Bo 4 20) + h(s 7 Br + m) dr + (5,60 + ms)}uds
0
w [ HAa(tO)W(tz,S){ / <a(3,7)g(f, 3 +2,)
0

t1

h(s,r e 20) ) 4 £+ 0) s

ty—e
< / ' ”Aa(to)[e—(tz—n)A(n) _ e—(h—n)A(ﬂ)]BV—l
0

T T
y U Aa(t0)<e—(T—s>A(s>+/ e—(T~u)A(#)Z(#7s)du>
0

L

x{ | <a(s,f)g(w_ﬁr b an) 4 h(s,r @ + m) dr + (s, 2+ m}ds} (m)lldn
v [ o | " a0 50, gy — [ oA 20, )|

n

T T
« BV-1 [/ Aa(t0)<e—(T—s)A(s)+/ e—(T—u)A(M)Z(p’s)du)
0

L]

o [ (atsrtotro 20+ o + 20))dr + fs. e+ 2.) | ol

s [ AR - )

x { [ (o06,7207 80 201 7)Y+ 0, s

+ /0 o HA"(tO)[ / ? AW 7y, )y / ’ e_(t‘_")A(")Z(z/,s)du]
[ (o526 200+ hsm ) ) s, 20 s

+ [ tow ey [ [ aaw.s

o [ (ato,m0t 8+ 0)+ sy 20 )+ S0, 4-22) s )l
b |

A [ (007100580 +-22) s ) Yar 4 55,6+ ) lds

o[ aswmsv | [T awe

o [ (ot 6 +20) 415,76+ )) i+ 105,81+ 22) s o)l

17
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ty s ~
t [ amowend [ (oo + 20
t1—e¢ 0
+h(s, 7, ¢r + a:,.)) dr + f(s, b + xs)}Hds
_ tl—E
< K(a,1)K((N3 K1 + K2)T + Kg)/ || A(to )[e~(t2—mAM)
0
T
— e—(tl—n)A(n)]N1N2K(a’ 1)}{' [/ A(to) (e—(T—s)A(s)
0

T
+C’/ e~ (T-WAW)|, _ 3|5_1du)dSJ (m)lldn

_ 11 —¢
+ K(a,1)K((Ns Ky + K)T + K3)C’/
0

{[IIA(to)/ntl [e=(t2=0)AW)

t2
_e"(t1—u)A(u)]'V _ 77|6_1dVHN1N2 + ) / 6~(t2—u)A(u)|U _ 77|6—-1dyllJ
t1
_ T
X K(a,1)K|| / A(t0)<e—(T—s)A(s)
0

T
0 [Tt o o

+ K(a, )K((Ns Ky + K,)T + K3)

tl—'E
x / HA(tO)[e—(tz—s)A(s) - 6_(t1—3)A(8)]”ds
0

+ K(a, )R (N5 Ky + K2)T + K) / T / " Alto)

% [6—(t2—-s)A(s) _ e—(tz—s)A(s)HV _ s|60_1d1/||ds |

+ K(o, 1)K K(a)N1 No(N3 Ky + Ko)T + Ks)(Jt2 — t + €' 7%/1 — @)
x (K(a, 1)K K(a)(T/1 - a))

+ K(a, 1) KK(a)((N3 Ky + K2)T + K3)(Jtz — t1 + ' /1 — a)

+ K(, 1)K K(a)N1 Na((N3 Ky + E)T + K3)(e'™%/1 - a)

X (K(a,1)KK(a)(T/1 - a))

+ K(a, )KK(a)((Ns K + K2)T + K3)(e'™%/1 — a)

The operator-valued function A(t)e~"4(*) is uniformly continuous in (t,n,s) for

0<t<T,0<s<Tandm<n<T, where m is any positive number(see Ref.[2])
Hence, the set

Yi={(S2)(t) : z € Yo}

is equicontinuous. Further, since A™#(¢y) is compact for all 8 € (0,1} and
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(Ha), A=1(ty) is compact. Also,
14 ()(S)D.
<t [ wemsv={ [ atwms{ [ (000,50 420
+h(s, 7, ¢r + :m) dr + f(s,ds + xs)}dsJ (n)dn||
# [ 2w [ (ats o562+ b7 +20) )
#1(s, 8o+ 20) s
< K(8,1)KK(B)N, N, /0 t(‘t — )P [Ix (8, 1)K K(B)
X (NsKy + K3)T + K3) /OT T — s|-/’43] (n)dn

+ K(8, DEK(B)(Ns K + K2)T + Ks) / (t — )Pds
’ 0

< K(B,1)KK(B)(Ns K, + K;)T + K3)(T/1 - B)
X (N1 No KK (a)(T/1 - 8) +1)

for any S with 0 < o < 8 < 1,t € [—r, T). Thus, the set {AP(t,)(Sz)(t)} is bounded
in X. Now, since the mapping A™? : X — X_(to) is compact for each 8 > a, it

follows that the set Y7 is precompact. Therefore, by the Arzela-Ascoli theorem, Y;
is a precompact set of C,,.

Now, we will show the continuity of the mapping S from Y} into C([-r,T]; X ),

we suppose that

sup ||z(s) — Z(s)ll. <6
0<s<T :

then, for any 0 < ¢ < T

1(S=)(®) — ($2)®)I.
< /0 A (o) W (e, ) BY [ /0 " AW (T, )
x H/O (a(s,r)g(T, ¢r + )+ h(s, 7, 6r + z,)) dr
+£(s, ¢s + xs)} - {/0 (a(s,r)g(T, $r + 1)
+h(s, T, ¢r + m)) dr + f(s,ds + i)}] ds] (m)lldn

19
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{/os (a(S’T)g(Ta ér +z,) |

#is,mi 8, +20) Jar o+ S, Bt 2 ) = { [ (a6 420

+ / A (t) W, 5)

+h(s, 7,0, + i,.)>d7' + f(s, b + a‘:s)}] |lds
< K(a,1)KK(a)N1 N, /t [t —n|™¢ [K(a, DK K(a)((Nse +¢€)T +¢€)

x /0 T(T - s)_"ds] (n)dn + K (a, DEK()(Nse + )T +¢)

t
X / [t —s|™%ds
0

< K(a,)KK(a)(T'"*/1 - a)(Nze + )T + ¢)(N1 N2 K (o, ) K K ()
X (T/1—a)+1).
Sinceg: JxC, - X,h:JxJxC, - X and f:J x C, — X are continuous

and there exists a constant N3 such that |a(t,s)] < N3 for t,s € J. Hence, by the
Schauder’s fixed point theorem, the mapping S has a fixed point.

4.Example .
Consider the parabolic integro-differential equation of the form

yt(zat) = a(z, )Yz + b(z, t)u(t)

’ / [c(n $)9(s,y(s = r,2)) + h(t, 5,y(s — r,2))|ds

+ f(t,y(t —r,z)), z€l0,1]]=1,t€[0,T]=J, (5)
y(t,0) =y(t,1) =0, teJ,
where y; — a(z,t)yzz, is a uniformly parabolic differential operator. Here, a(z,t)
and b(z,t) are continuous on I and uniformly Holder continuous in ¢. The functions
c,g,h and f in (5) satisfy the following conditions;

(i) ¢: J x J — R is Holder continuous with exponent «,
(i1) The functions g, f : J X R — R,h: J x J x R — R are continuous such that

lg(t,z) — g(t,2)| < Li|z — 2,
|h(t,s,2) — h(t,s,%)| < Lylz — Z|,
|f(t,z) = f(t,2)] < Ls|z — |,
lg(t,0)] = |A(t,5,0)| = |£(2,0)] =0

for t,s € J and z,Z € R, where L;, Ly, L3 are nonnegative constants. Let X =
L*[0,1] and U be subset of X. Under the assumtions, A : X — X defined by

A(t)y = —a(z,t)y"



NULL CONTROLLABILLITY

with domain D(A) = {y € L?[0,1];y,y" are absolutely continuous, y" € X,y(0) =
y(1) = 0} generates an evolution system W(t, s) satisfying conditions (H1) — (Hs)
(see Ref. [2]). Assume that there exists a linear operator V from U into X defined
by

T
Vu=/(; W(T, s)b(z, s)u(s)ds,

such that invertible operator V ! exists in L2(J,U)/ker V and is uniformly bounded
and the W (%, s) is compact operator for ¢, s € J. Then, for some tq € J, the operator
Al/2(ty) can be defined by

AY2(to)y = a(te, z)'/?y', y € D(A*(t)) ,

on D(AY?%(ty)) = {y € X;y is absolutely continuous, y' € X,y(0) = y(1) = 0}.
Define the mapping G, F' : JxCyj; » X and H : JxJxCyjy — X by G(t, ¢)(z) =
g(t,¢(=r)z), H(t,s,6)(z) = h(t,s,¢(—r)z) and F(t,¢)(z) = f(t,6(—r)z). Then

the equation (5) can be formulated abstractly as

@)+ A0 = (Bu)) + [ [cu,s)G(s, 2)

+H(t,8,ys)}ds+F(t,yt), telJ, (6)

y(t) =¢(t), -r<t<0.

Thus by hypotheses and using of Theorem 3.1, the system (6) is null controllable
with respect to the operator A'/%(ty) for some to € J.
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