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On Semicontinuity of Marginal Functions

and inf
Sup )f(y) nd i F(x)f(y)
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1. Introduction

O E B OEEEMEICH T BHEP, ZREAVIHRR, RES OWFREITLDE

CXNTETWA. BETIAFIC, Luc [6] %, Tanaka and Seino [11] 23X 27 MIVEBIEL
D, EAHEBERITH T B @ IC DO TEREOEREEZ TE D, X7, Ferro [4] 9,
Tan, Yu, and Yuan [9] 320 & D&% b S ICESETHRITT T 5 RBLHEZR U T
W3 ZOXSI, EAHEERICE T 3 RELMEEHR U S LT, £EHEEHRON-EE
OWEEITETHEETHEEEZIONS. Lo THL T, £EMHEEHICHIT 5 HIMAITE L,
TapEEstED—LTH B cone-semicontinuity UV DNEZE L, €D K D MLk
% LT maximum theorem 2@ %ZDIF3 2 EAHKNET S, £ T, 3BT 2H
@ cone-semicontinuity ORARZAFKDT, T D, FHIERIE LELEERDEREBD
cone-semicontinuity IZDWWTEET S, £ UTHRREIS, ChoDREREHEIZ2DDIA
7@ marginal function (i.e., sup,ep() f(¥), infyer@) f(y)) DYtk ic g AR ES
Z5.

2. Preliminaries

X ANAZERD, Y %2 Y TOMNE C THEF S INIORBAMERET S, ZI2T, UF
BH O D M C 13 pointed (e, CN(=C)={0y}) THEELREL, £/ int C 1T
LHELETIENET S, 727120, 0y Y TOD null vector & U, int C & C T XTOHED
HEHTHD. T, B85 cl C &3, C OHE%EET. Y OFEEDONRY MLy DHZETIED
Y OHES A ~OEMEM dy : Y — R % dy (y,A) = infocad(y,a) TEEKY 5.
FRX DY ~DESEEHRTHEER, X oY OREXES Y ~OEHTH
D, BEF:X~Y TETETS. £AMHEER F: X ~ Y I8 LT, Graph(F) 1ZROD
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(2.1) TEHINS.
Graph(F) := {(z,y) € X x Y|y € F(z)}. (2.1)

F7o, F OEHRREN F(z) DETH D ¢ € X SROES, DD,

DomF := {z € X|F(z) # 0} (2.2)
THy, F O »
ImF := | F(z) (2.3)
zeX

TEZEINS.

X &Y ZBEAMHEZEREL, F 2 X Do Y ~OEAEFEHEUICEE, F 2z T
equally weak upper semicontinuous (ewusc for short) [11] TH B &i3, by € Y TOEE
DB G 1T LT, 2o TOMEEE U BWFAELT,

F(z) C F(zo)+ G for all z € UNDomkF, (2.4)

WRDILDZETHS. 72, F B 2o T equally lower semicontinuous (elsc for short)
[11] TH B &IZ, Oy € Y TOEEDBER G 12 LT, 20 TOEEE U DEAELT,

F(zo) C F(z)+ G for all 2 €U NDomF, (2.5)

AERD LD LR
RIZ, Marginal function 2B 9 3 EH 42T 5. Zhid Maximum theorem [1, Th.1.4.16]
EFEENEEA (1, Chapterl] THXSN TS,

Prop'osition 1. Let X and Y be metric spaces, respectively. For a set-valued map F' :
X ~ Y and a real-valued function f : Graph(F) — R, we have the following statements.

(i) If f and F are lower semicontinuous in the sense of each definition so is the marginal
function g is also a lower semicontinuous function.

(ii) If f and F are upper semicontinuous in the sense of each definition and if F(z) is a
- compact set for each 2 € X, the marginal function g is also an upper semicontinuous
“function.

3. Cone-Semicontinuity for Set-Valued Maps

CITR, BEMEBR F : X ~ Y IZ69 5 cone-semicontinuity ZEZH L, FIZZH 5D
BEGRICDOWTEHR U T D, 1T UDICESEEHR DO EHHIYZS upper semicontinuity DEZR
% Z80¥, IRIZ, upper semicontinuity D¥EFRETdH B cone-upper semicontinuity % EZEd 3.

Definition 1. Let X and Y be topological spaces, respectively. ‘A set-valued map F :
X ~ Y is said to be upper semicontinuous (u.s.c. for short) at z, if for any open set V

with F(zo) C V, there exists a neighborhood U of z, such that

F(z)cV forall zeU. (3.1)
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Definition 2. Let X and Y be a topological space and an ordered topological vector
space with a convex cone C, respectively. A set-valued map F': X ~ Y is said to be:

(ul) C-upper semicontinuous at zo (C-usc) if for any open neighborhood V' of F(zo),
there exists an open neighborhood U of zp such that F(z) C V +C for all z €
U N DomF ([6, Def.7.1(p.33)]);

(u2) C-weak upper semicontinuous at zo (C-wusc) if for any open neighborhood V' of
cl F(zo), there exists an open neighborhood U of o such that F(z) C V + C for
all z € U N DomF

(u3) C-equally weak upper semicontinuous at zo (C-ewusc) if for any open neigh-
borhood G of 8y € Y, there exists an open neighborhood U of z, such that
F(z) C F(z9) + G+ C for all z € U N DomF. ‘

EiRD 3 O DEAIEEMIZI T B cone-upper semicontinuities 1F, [11] THEXSNT
W B HEAEBE D upper semicontinuity %, weak upper semicontinuity, equally upper
semicontinuity D—HLTH 5. bbb S A, d#HI7L upper semicontinuity T3HUL cone-
upper semicontinuity T3 ¥, %7z cone-upper semicontinuity {3EHIEBE DD T
s, Fiz, N7 M IVERIED FEREOIGRICE - T3 [10, Def.2.1].

Remark 1. In [4], Ferro denote condition (ul) above the terminology “upper C-continuity
. When C = {0y} in Definition 2., a set-valued map F': X ~ Y is C-usc at zq if and

onlylfFlsusc at .

Proposition 1. Let X and Y be a topological space and an ordered topologlcal vector
space with a convex cone C, respectively. A set-valued map F : X ~ Y satisfies the
condition (u3) at zo if and only if F satisfies the following condition:

(u3)’ For any d € int C, there exists an open neighborhood U of o such that F(z) C
F(zo) —d+int C forall z € U.

(ul), (u2), Z LT (u3) OBARIZ DUV TKR®D Proposition 2. VALY 5.

Proposition 2. Let X and Y be a topological space and an ordered topological vector
space with a convex cone C, respectively. In the above definition, we have (ul) = (u2)

= (u3).

Example 1. ( (u2) TH 5D (ul) TiZEWH| ) Let X =Y = Rand C = Ry. We
consider the following set-valued map F from R to R defined by

={y€Rl—-w2<y§-1}. | v (3.2)

We can verify that F' is Ry-wusc at z = 0 but not R -usc at the point, where R, =
{r € R|r > 0}.

Example 2. ( (u3) TH 3 (u2) TRV ) Let X =R, Y = R®and C = R:.
We consider the following set-valued map F' from R to R defined by

Flz) = {(21,z2) c R? L —m20} (3.3)

We can verify that F'is 'Ri—ewusc at z = 0 but not Ri-wusc at the point. -

29 >
v 21
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Proposition 3. Let X and Y be a topological space and an ordered topological vector
space with a convex cone C, respectively. A set-valued map F : X ~» Y satisfies the
condition (ul) z, if and only if F' satisfies the following condition:

(ul)’ For any open set V with F(zo) C V + C, there exists.an open neighborhood U of
zo such that F(z) CV 4 C for all z € U N DomF;

Also, a set-valued map F' : X ~» Y satisfies the condition (u2) at z¢ if and only if F'
satisfies the following condition:

u2)’ For any open set V' with cl F(z¢) C V + C, there exists an open neighborhood U
g
of zo such that F(z) CV + C for all z € U N DomF}

Proposition 4. Let X and Y be a topological space and an ordered metric and vector
space with a convex cone C, respectively, where the metric of Y is denoted by dy. A
set-valued map F': X ~ Y satisfies the condition (u3) at o if and only if F satisfies the
following condition:

(u3)” For any € > 0, there exists an open neighborhood U of z¢ such that
F(z) C By (F(z0),¢) + C, Vr € U N DomF,
where By (A,¢) :={y €Y |dy(y,A4) <e}.

Proposition 5. Let X and Y be a topological space and an ordered topological vector
space with a convex cone C, respectively. In the above definition, if F'(zp) is closed then
(u2) = (ul). Also, cl F(zo) is compact in Y, then (u3) = (u2).

RIZ, BEMELITH T 5 d LAY 7L lower semicontinuity D EFH A IS, FEiZ cone-lower
semicontinuity ZRIZEZFRET 5.

Definition 3. Let X and Y be topological spaces. A set-valued map F : X ~ Y is said
to be lower semicontinuous (l.s.c. for short) at z¢ if for any open set V with F/(zo)NV # 0,
there exists an open neighborhood U of z4 such that

Flz)yNV#0 forall zeU. (3.4)

Definition 4. Let X and Y be a topological space and an ordered topological vector
space with a convex cone C, respectively. A set-valued map F': X ~ Y is said to be:

(11) C-equally lower semicontinuous at z¢ (C-elsc) if for any neighborhobd Gofby eV,
there exists a neighborhood U of zg such that F(zo) C F(z)+ G —C for all z €
U N DomF/

(12) C-lower semicontinuous at zo (C-lsc) if for any yo € F(zo) and any neighborhood
G of Oy €Y, there exists a neighborhood U of zq with F(z) N (yo + G + C) # § for
any z € U NDomF.

Z D2 DDEESMEEBRITHIT S cone-lower semicontinuities i3, [11] THNSN T B4
EMEBEMBD equally lower semicontinuity %, lower semicontinuity D—f#ftTH 5. v H
A A, HTHEYE lower semicontinuity TH X, C-lower semicontinuity T 5.
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Remark 2. In [4], Ferro denote condition (I11) above by the terminology "lower C-
semicontinuity”. When C = {6y} in Definition def-C-lsc, a set-valued map F': X ~ Y is
C-lsc at z¢ if and only if F is Ls.c. at zo.

Proposition 6. Let X and Y be a topological space and an ordered topological vector
space with a convex cone C, respectively. In the above definition, (11) = (12). If ¢l F'(zo)
is compact, the converse is true. See Ferro [4] in detail.

4. Cone-Semicontinuity of Composite Maps and
Marginal Functions

FHERER f : Y —» R 2 2o € Y T upper semicontinuous (u.s.c. for short) T¥H S
L3, FEOEDEHE ¢ > 0 I LT, 2o TOEE U BFLEL, $XTD 2z U T
f(z) = f(mo) < e BERDIDIEEND. f Y ETusc THEIDHOMLENLTFE
13, EEOEH ac RIZHLT, Y TOFES {vcY | f(z)<a} PEHELEEREBT
EThHB. £, —f D2 Tus.c. ThHBEX fidzo T lower semicontinuous (l.s.c. for
short) &9,

R®D Theorem 1. &3 729HIZ, EHERIEICH T 5 LD upper semlcontlnulty “?3
lower semicontinuity & » HROBEEEFEAT 5.

Definition 1. Let Y be a topological vector space. A real-valued function f:Y — R
is called monotonically u.s.c. (resp., monotonically ls.c.) if for any & > 0, there exists a
neighborhood G of 8y € Y such that f~!(V + (—¢,¢e) + R_) is open and f7(V)+ G C
fY(V 4 (—¢,6) + R_) for all V C R (resp., by replacing R, by R_, where R_ = {r €
R|r <0}).

MBI & S A BRI D AT ¢ : DomF ~ R 2L T TEHT 5.
p(z):=foF(x)= U {f() (4.1).

yGF(w)
Fl, UM C I3 C =R, 7213 C=R. TEZS.

Theorem 1. Let X and Y be a topological space and an ordered topological vector space
with a convex cone C, respectively. For F': X ~» Y with DomF #  and f:Y — R, we
have the following:

(1a) if F is u.s.c. and f is u.s.c. then ¢ is R_-ewusc;

(1b) if F'is ewusc and f is monotonically u.s.c. then ¢ is R_-ewusc;
(2a) if F is u.s.c. and f is Ls.c. then ¢ is R-ewusc;

(2b) if F is ewusc and f is monotonically Ls.c. then ¢ is R -ewusc;
(8) if F is elsc and f is monotonically u.s.c. then ¢ is R, -elsc;

(4) if F is elsc and f is monotonically L.s.c. then ¢ is R_-elsc;
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(5) if F is ls.c. and f is u.s.c. then ¢ is R_-Isc;

(6) if F'is ls.c. and f is Ls.c. then ¢ is R -elsc.

ZIZT,RD2DDH A T D marginal function % EFKT 5.

sup () = Zl;?)f(y), (4.2)
inf ¢(z) := yeig{x)f(y), , (4.3)

U, F: X ~Y BESEEBHRTHY f: YV - R ITEHMEBEKTH 3.

Lemma 1. Let X be a topological space For a set-valued map ¢ : X ~ R is R_-ewusc
( resp. R_-elsc, R_-lsc ) if and only if —¢ is Ry-ewusc ( resp. Ri-elsc, R -Isc ).

Theorem 2. Let X be a topological space. For a set-valued map ¢ : X ~ R, we have
the following:

1) if ¢ is R_-ewusc then supy 1s u.s.c.;
)

(2) if ¢ is R -ewusc then inf ¢ is Ls.c.;

(3) if ¢ is Ry-elsc then sup ¢ is L.s.c.;

(4) if p is R_-elsc then inf ¢ is u.s.c;

(5) if ¢ is R_-lIsc then inf ¢ is us.c;

(6) if ¢ is Ry-1sc then supyp is Ls.c..

Theorem 1., Theorem 2. 5K ®D Corollary 1. D& 5N 5.

Corollary 1. Let X and Y be a topological space and an ordered topological vector space
with a convex cone C, respectively. Let F': X ~» Y be a set-valued map with DomF # {)
and f : Y — R. For the marginal function is defined by (4.2) and (4.3), we have the

following;:

(1a) if F is u.s.c. and f is u.s.c. then sup ¢ is u.s.c,;

(1b) if F' is ewusc and f is monotonically u.s.c. then sup ¢ is u.s.c,;
(2a) if F'is u.s.c. and f 1s Ls.c. then inf ¢ is Ls.c.;

(2b) if F' is ewusc and f is monotonically l.s.c. then inf ¢ is l.s.c,;
(3) if F' is elsc and f is monotonically u.s.c. then sup ¢ is Ls.c.;

(4) if F is elsc and f is monotonically l.s.c. then inf ¢ is u.s.c.;

(5) if F is l.s.c. and f is u.s.c. then infp is us.c;

(6) if F'is l.s.c. and f is Ls.c. then supp is Ls.c..
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