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Abstract

In this paper we give the notion of a congruence on a linear space
V and prove that it can be identied with the notion of a subspace of
V. And we give some elementary properties of rough sets (the lower
and the upper approximations) of a subset, a subspace and a convex
subset of V' with respect to a subspace.
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1 Introduction

The notion of rough sets was introduced by Z. Pawlak in his paper [2].
Let 1 be a equivalence relation on a given set S. We denote by [a], the
p-equivalence class containing a of S. Then for a nonempty subset A of S,

the sets
p-(A)={2z€eS: [z]. C A}

p(A)={zeS: [2],NnA#0}

is called the lower approximation and the upper approzimation of A, respec-

tively. And
p(A) = (u-(A4), u™(4))
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is called the rough setof A. So the notion of the rough set p1(A) is an extended

notion of the set A.
We shall apply the notion of rough sets to the elementary theory of a

linear space V.
In section 2 we define the notion of a congruence relationon V. Let C(V)

the set of all congruence relations on V, and let S(V') the set of all subspaces
of V. Then we shall prove that there exists a one-to-one mapping from S(V)
onto C(V'). This means that we can identify the notion of a congruence on
a linear space V with the notion of a subspace of V.

We give some properties of the lower and the upper approximations of
subsets of V' in section 3, of subspaces of V' in section 4, and of convex subsets

of V in section 5.

2 Congruences on a linear space

Let R be the set of all real numbers, and V a linear space over R. By a
congruence on V we mean a equivalence relation p such that

(a,b) € p implies (a+ z,b+ ) € p and (ka,kb) € p

forall a, b, x € V and all k € R.
Let u and v be two binary relations on V. Then the product po v of p
and v is defined by

(pov)={(a,b)e VxV: (a,z)€p, (x,b)€v for some z €V}
In this section we shall give some properties of congruences on V.
Theorem 1 Let u and v be congruences on a linear spece V. Then
LoV ="vo .

||

Theorem 2 Let i1 and v be any congruences on a linear space V over R.
Then the product p o v is also a congruence on V.
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Proof. It follows from Theorem 1 that pov is an equivalence relation on
V. In order to see that o v is congruence, let (a,b) € pov, and Vz € V
and Vk € R. Then there exists an element y € V such that (a,y) € p and
(y,b) € v. Since i and v are both congruence, we have
(a+z,y+z)ep and (y+2,b+1z) €
Then we have
(a+z,b+2)€ pov.

And also since
(ka,ky) € u and (ky,kb) € v.

we have
(ka,kb) € pow.

This means that u o v is congruence. m]

Theorem 3 Let W be a subspace ofd linear space V over R. We define a
binary relation p,, on V' as follows:

o ={(a,b) eV xV:a-be W}
Then ., is a congruence on V.

Proof.  As is well-knon, and is easily seen, p., is an equivalence relation
on' V. To see that u, is a congruence, let (a,b) € p,, andz € V, k € R.
Then we have

(a+z)—(b+2)=a-be W,
and so
(@+2,b+1) € .
And, since W is a subspace of V, we have
ka — kb= k(a —b) € W,
and so
(ka, kb) € piyy.

This implies that p, is a congruence on V. This completes the proof.
Remark: [z]., =z + W,.

The following property can be easily seen.
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Theorem 4 Let i be a congruence on a linear space V over R. We define

a subset W, of V as follows: , ;
W,={a€eV: (a,0)€ p}.
Then W, is a Subspace of V.

We denote by C(V) the set of all congruences on a linear space V, and
by S(V) the set of all subspaces of V. Then we have the following:

Theorem 5 Let V be a linear space over R. Then there exists a one-to-one
mapping ¥ from S(V) onto C(V).

Proof. ~We define amapping ¢ : S(V) — C(V) as follows:
V(W) = fiw
for all W € S(V). Then it can easily seen that ¢ is a one-to-one onto map-
ping. &)
Remark: Theorem 5 shows that we can identify the notion of a subspace
with a congruence in a linear space.

Theorem 6 Let W, U be subspaces of a linear space V over R. Then

/J’w m /J'u = Hwﬁu-

Theorem 7 Let W and U be subspaces of a linear space V.. Then

My O [y = Hytu:

Proof. It is clear that fiy © fty C fwiw. Conversely, let (a,b) € putu.
Then a — b € W + U, and so there exist elements £ € W and y € U such
that a —b = z+vy. Then, since a — (b+y) = 2 € W, we have (a,b+y) € p.
Since a — (b+ ) =y € U, we have (b+y,b) = (a — 2,b) € p,. Therefore we
have (a,b) € Ly © [y, and so ,

Hwtu g Hw © s

Therefore we obtain that
Hw O ty = Hwtu-
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3 The lower and upper approximations with
respect to a subspace in a linear spaces

As is proved in Theorem 4 that there exists a one-to-one mapping between
C(V) and S(V). Therefore we can identify the notion of congruences with
subspaces of a linear space V.

Let W be a subspace of a linear space V. Let A be a nonempty subset of V.
Then the sets
W_(A)={zeV: a4+ W C A},

W (A)={zeV: @+W)nA+#0B)

is called respectively the lower and the upper approzimations of the set A
with respect to the subspace W.
The following properties can be easily seen:

Theorem 8 Let W and U be subspaces of a linear space V. Let A and B
be any nonempty subsets of V. Then,
(1) W_(A) S AC W-(A),

(2) W=(AUB)=W-(A)UuW~(B);
(3) W_(ANB)=W_(A)NW_(B);
(4) AC B implies W_(A) C W_(B);
(5) AC B implies W~(A) C W~(B);
(6) W_(AUB) 2 W_(A)UW_(B);

(7) W=(ANB) C W~(A)nW~(B);
(8) UCW implies W_(A) C U_(A),
(9) W CU implies W=(A) CU(A).

O

Theorem 9 Let W be « subspace of a linear space V. Let A and B be
nonempty subsets of V. Then

(1) W=(A)+W~-(B)=W-(A+ B).

(2) W_(A)+W_(B) C W_(A+ B).

Proof. (1) Let c e any element of W~(A+B). Then (c+W)N(A+B) #
§. Thus there exists an element z € (c+ W)N(A+ B),andsoz € c+ W
andz € A+ B. Then z =a+ b witha € A and b € B, and

ceEx+W=(@a+b)+W=(a+W)+ (b+W).
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Thusc=y+zwithy€a+W and 2€ b+ W. Then a € (y + W) N A and
be (z+ W)n B. Therefore y € W=(A) and z € W~(B). Thus we have

c=y+zeW (A)+W(B),
and so
W= (A+B) C W~ (A)+ W~ (B).

Conversely, let ¢ be any element of W~(A) + W~(B). Thenc =a+b
with a € W~(A) and b € W—(B). Thus there exist elements z and y in V
such that

z€(a+W)NA and y€ b+ W)NB,

and so -
r€at+W, z€A yeb+W and ye B.
Then
z+y€@+W)+(b+W)=(a+b+W=c+W,
and

zr+ye A+ B.

Thus we have
z+y€ (c+W)N(A+ B).

Thus
W=(A)+W~(B)CW~(A+ B).

Therefore we obtain that
W~ (A)+W~(B) =W~ (A+ B).

(2) Let ¢ be any element of W_(A) + W_(B). Then ¢ = a + b with
a € W_(A) and b € W_(B). Thus

a+WCA and b+ W C B,

and so
c+tW=(a+b)+W=(a+W)+Ob+W)CA+B.

Thus ¢ € W_(A + B), and so
W_(A)+W_(B) C W_(A + B),

which completes the proof. O
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Theorem 10 Let W and U be subspaces of a linear space V. Let A be a

nonempty subset of V. Then
(1) WNnU)~(A) S W(A)nU-(A).
(2) WnU)_(A)=W_(A)NU_(A).

Proof. (1) Let ce (WNU) (A). Then (c+ (W NU))NA # §. Thus
there exists an element a € (c+ (W NU)) N A, and so

a€c+(WnNU) and a€ A
This implies that
acc+W, a€ A and a€c+ U, ac A

This means that
ce W (A) and ce U™ (A),

and so we have
ce W (A)NU(A).

Thus we obtain that
(WNU) (A) S W (A)NU(A).

(2)

ce(WNU)-(A) & c+(WnNU)CA
& c+WCA and c+UCA
& ceW_(A) and ce U_(A)
& ce W_(A)NU_(A).
Therefore we obtain that
(WNnU)_(A) = W_(A)NU_(A).

a

Theorem 11 Let W be a subspace of a linear space V over R, and k €
R(k #0). If A is a nonempty subset of V, then

W=(kA) = kW~ (A).
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Proof. Let c be any element of W~(kA). Then (c + W) NkA # 0, and
so there exists an element a € (c+ W) NkA. Thena € c+ W and a € A.
Thus a = kb for some b € A. Then we have

c € a+W=kb+W =kb+k(1/k)W
C kb+ kW =k(b+W).

Then ¢ = kb for some y € b+ W, and so b € (y+ W)N A. Thusy € W—(4),
and so ¢ = ky € kW~ (A). Therefore we have

W= (kA) C kW~ (A).

Conversely, let ¢ be any element of kW ~(A). Then ¢ = ka for some a €
W~(A). Thus there exists an element z € (a+ W) N A, andsoz € a+ W
and £ € A. Then

kz € k(a+ W) = ka + kW C ka+ W,

and kz € kA. Thus kz € (ka+W)NkA, andso ¢ = ka € W~ (kA). Therefore
we have
kW~ (A) C W-(kA).

Therefore we obtain that

W-(kA) = kW™ (A),

which completes the proof. ]

4 Rough subspaces in a linear space

Let W be a subspace of a linear space V over R. Let A be a nonempty
subset of V. Then
W(A) = (W_(4),W~(4))

is called a rough set of A with respect to the subspace W. A nonempty
subset A of V is called a W~-rough subspace of V' if the upper approximation
W~=(A) of A is a subspace of V. Similarly, A is called a W_-rough subspace
of V if W_(A) is a subspace of V.
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Theorem 12 Let W be a subspace of a linear space V over R. If A is a
subspace of V', then it is a W~ -rough subspace of V

Proof. Since W and A are subspaces of V,0 € W and 0 € A, and so
0e(0+W)NnA.
Thus 0 € W~(A). Let a, b€ W~(A). Then
(a+W)NA#D and b+W)NA#£0.
Then there exist elements z, y € V such that
r€(a+W)NA and ye (b+W)NA.
Thus we have
rc€a+W, z€A, yeb+W and ye A.

Since A is a subspace of V, we have z +y € A. And since W is a subspace
of V, .
z+y€(a+W)+(b+W)=(a+b)+W.
Therefore we have

t+ye((a+b)+W)NA,

and so
a+beW=(A).

Let a € W~=(A) and k € R. Then there exists an element z € V such that
z € (a+W)NA,

and so

zea+W and z€ A
Since A is a subspace of V, kx € A. And also W is a spbspace of of V,
kr € k(a + W) =ka + kW C ka + W,
and so
kr € (ka+ W)nN A.

Thus we have
ka € W~ (A).

Therefore we have W~(A) is a subspace of V, and A is a W ~-rough subspace
of V. O



Theorem 13 Let W be a subspace of a linear space V over R. If Ais a
sibspace of V such that W C A, then A is a W_-rough subspace of V.

Proof. Since 0+ W =W C A, we have 0 € W_(A). Let a, b € W_(A).

Then. '
a+WCA and b+W§A.

Then, since A is a subspace of V, we have
(@a+b)+W=(a+W)+(b+W)CTA+ACA,

and so
a+be W_(A).

Let a € W_(A) and k € R. If k = 0, then, as is stated above,
ka =0a=0¢€ W_(A).

If k # 0, then k(1/k) = 1. Since a + W C A and since A is a subspace of V,
we have :

ka+W =ka+ k(1/k)W Cka+ kW =k(a+W) CkAC A,

and so
ka € W_(A).

Therefore W_(A) is a subspace of V, and A is a W_-rough subspace of V. O

Theorem 14 Let W and U be subspaces of a linear space V over R. If A
is a subspace of V, then _

(1) W=(A)+U-(A) C (W +U) (A).

(2) W_(A)+U-(A) € (W +U)-(A).

Proof. (1) Let ¢ be any element of W~(A) + U~ (A). Thenc=a+b
with a € W= (A) and b € U~ (A). Then

(a+W)NA#D and (b+U)NA,
and so there exist elements z, y € V such that

z€(a+W)NA and ye (b+U)NA.
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Thus we have
re€at+W, reA yeb+W and ye A
Since W is a subspace of V/,

T+y € (a+W)+(b+0)

= (a+W+b)+U
(a+(b+W)+U
((a+0)+W)+U
= (a+b)+(W+U)
= ¢+ (W+U0).

fi

Since A is a subspace of V, z+y € A. Thus we have
z4+y€(c+(W+U))NA,

and so
ce(W+ U)_(A)

Therefore we obtain that
W=(A)+ U (A) C (W + U)~(A).

(2) Let c be any element of W_(A) + U_(A). Then ¢ = a + b with
a € W_(A) and b € U_(A). Thus

a+WCA and b+ UCB.
Then, since W and A are subspaces of V, we have

(a+d)+ (W+U) = (a+(B+W))+U
(a+(W+b)+U
((a+W)+B)+U
(a+ W)+ (b+U)
A+ A

A,

NNl
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and so
c=a+be (W+U)-(A).

Thus we obtain that
W_(A) + U_(A) C (W +U)-(A).
O

Theorem 15 Let W and U be subspaces of a linecar space V over R. If A
is a subspace of V, then

(W+U)"(4) € W (A)+U)n (U (4) +W).

Proof. Let ¢ be any element of (W +U)~(A). Then (c+(W+U))NA # 0.
Then there exists an element € V such that

z € (c+ (W+U)NA.
Thus we have ‘
z€c+(W+U) and z€A

Thenz=c+a+b for somea € W and b € U. Note that, since W and U
are subspaces of V, —a € W and —b € U. Then we have

r=ct+a+bec+W+b=c+b+ W,

and so
r€(c+b+W)NA.

Thus we have
c+be W (A),

and so -
ce W (A)+ (-b) C W (A)+ U.

Similarly, it can be seen that
ce U (A)+ W,

and so
ce (W (A)+U)N{U(A) +W).
Ther_efore we obtain that

(W+U)"(A)C W (A)+U)N{U(A) +W).
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5 Convex subsets

Let S be a nonempty subset of a linear space V over R. Then S is called
to be convex if for any a, b€ Sand 0 < A < 1,

Aa+(1—=AbeS.

In this section we give some properties of the upper approximation of
convex subsets of a linear space V.

Theorem 16 Let W be a subspace of a linear space V over R. If S is a
convex subset of V., Then W~(S) is convex.

Proof. Let a, b€ S, and 0 < A <1. Then
(@a+W)NS#0 and (b+W)NS #0,
Theu there exist elements x, y € S such that
zT€Ea+W yeEb+ W.
Then, since W is a subspace of V,
AT EANa+W)=Xa+ AW Cha+W

and

A=Ay ed=Nb+W)=0Q-Ny+ (1= AW C(1-Ny+W.
Thus we have

A+ (1=NyeAa+W)+ (1 -=Nb+W)=(a+(1-Ib)+W.
Since S is convex, we hace

A+ (1-XNy€eS.

Thus we have

A+ (1=Aye((Aa+ (1=Nb)+W)NS.
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and so
Aa+ (1= A)be W (S).

This means that W~(S) is convex, which completes the proof.

A nonemply subset C of V is called a cone if for all a,€ C and for all
A>0, da€eC. :

Theorem 17 Let W be a subspace of V over R. If C is a cone, then W~ (C)
s a cone.

Proof. Let a be any element of W~(C) and A > 0. Then
(a—l-W)ﬂC;é(Z)._
Thus there exists an element z € C such that = € a + W. Then we have '
A ENz+ W)= x+ W C Az + W.
Since C is a cone, Az € C. Thus we have
Az € (Aa+W)NC.
This implies that Aa € W~(C), which means that W~ (C) is a cone. o

Theorem 18 Let W be a subspace of a linear space V over R and C a
convez cone of V. Then W=(C) is a convex cone.

6 The kernel of a linear mapping

Let V and V'’ be two linear spaces over R, and f : V — V'a lihear
mapping. We denote by 0’ the zero of V'. Then the set

Ker(f)={z€V: f(zx)=07}

is called the kernel of f. J
As is easily seen, Ker(f) is a subspace of V. The following can be easily
seen. ‘



Lemma 1 Let f:V — V' be a linear mapping. Then

per(ry = {(a,0) €V X V : f(a) = f(b)}.
O

Lemma 2 Let f: V — V' be a linear mapping. Then for a nonempty subset
A of V,
| f(A) = f(A+ Ker(f)).

Proof. Let y be any element of f(A). Then f(a) =y for some a € A. We
note that 0 € Ker(f). Thus we have

y=fla) = fla+0) € f(A+ Ker(f)),

and so

f(A) € f(A+ Ker(f)).

Conversely, let y be any element of f(A+ Ker(f)). Then f(a) = y for some
a€ A+ Ker(f). Thusa =b+c with b € A and ¢ € Ker(f). Then

y=f(a)=flb+c)=f(b) + flc) = f(b) + 0' = f(b) € f(A),
and so
f(A+ Ker(f)) C f(A).
Therefore we obtain that
f(A) = f(A+ Ker(f)),

which completes the proof. O

Theorem 19 Let f: V — V' be a linear mapping, and W a subspace of V.
Then for a nonempty subset A of V,

f(A) S fW™(A)) € f(A+N).

Proof. By Theorem 8(1), A € W~(A), and so f(A) C f(W~(A)). To see
f(W=(A) € f(A+ W), let y be any element of f(W~(A)). Then f(a) =y
for some a € W~(A). Then there exists an element € V such that z €
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(a+W)NA. Thusz €a+ W and z € A. Then z =a + b for some b€ W,
that is, a = £ — b. Since W is a spbspace of V, —b € W. Then we have

y=f(a) = flz—-b) € f(A+ W),

and so
fW=(4)) C f(A+ W),

which completes the proof. 0O

Theorem 20 Let f : V — V' be a linear mapping. Then for a nonempty
subset A of V,
f(A) = f(Ker(f)~(4)).

Proof. By Lemma 1 and Theorem 19 we have
F(A) C f(Ker(f)™(A) € f(A+ Ker(f)) = f(A).
Therefore we obtain that
F(A) = f(Ker(f)™(A)),

which completes the proof.
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