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A DE LA VALLEE POUSSIN TYPE THEOREM IN
BANACH SPACES

TOSHIHIKO NISHISHIRAHO (7 FREZ)

1. Introduction

Let (5, denote the Banach space of all 27-periodic, continuous func-

tions f on the real line R with the norm

[1/1loo = max{[f(£)] : |t] < 7}.

Let N be the set of all positive integers, and put Ny = N U {0}. For
each n € Ny, we denote by T,, the set of all trigonometric polynomials of

degree at most n. For a given [ € Cy,, we define

E(Cox; f) = it {]lf ~ gllow : g € Tu},

which is called the best approximation of degree n to f with respect to
({'

T
Let a € Nja > 2 and let {2 # 0 be a non-negative, monotone
decreasing function on [a, 00) satisfying the conditions

lim 2(z) =0 (1)

00

and‘
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Then the classical theorem of de la Vallée Poussin states that: Let f &
Cor and r € Ny. If

2(n)

nr

En((127r; f) =0 < ) (’IL - 00)7

then f is r-times continuously differentiable on R and

a/é 00 oy
w(Cap; f1,8) =0 (é‘ / - Q(x)dx + Q) d:r) (6 — +0),

a 1/6 X

where

w(Con; [, 8) = sup{|lf (- = 1) = FO( Yoo : [t] < 6}

denotes the modulus of continuity of f™ (cf. [5]).
A statement analogous to this result also holds for the Banach space
L%, consisting of all 27-periodic, p-power Lebesgue integrable functions

f on R with the norm

= (o [ @pa) " (<p<oo)

using the integral modulus of continuity (cf. [17]). Furthermore, in [3]
these results were generalized by means of the higher order moduli of
continuity and yielded the inverse theorems of Bernstein-type on the
degree of the best approximation with respect to %, (cf. [2], [9], [10],
20]).

The purpose of this paper is to extend the above-mentioned results to
arbitrary Banach spaces, and in particular, homogeneous Banach spaces
(cf. [8], [11], [18]) which include Cy, and L},,1 < p < oo, as particular
cases. For this purpose, we consider the following setting:

Let X be a complex Banach space with norm || - || x, and let B[X]
denote the Banach algebra of all bounded linear operators of X into
itself with the usual operator norm || - ||g|x]. Let Z denote the set of all
integers, and let {P; : j € Z} be a sequence of projection operators in

B[X] satisfying the following conditions:
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(P-1) The projections P;,j € Z, are mutually orthogonal, i.e., P;F, =
8;n Py for all j,n € Z, where §;,, denotes Kronecker’s symbol.

(P-2) {P;: j € Z} is fundamental, i.e., the linear span of Ujez P;(X) is
dense in X.

(P-3) {P;:j € Z} is total, i.e., if f € X and Py(f) =0 for all j € Z,
then f = 0. ' '

For each n € Ny, let M, be the linear span of {P;(X) : [j] < n},

which is a closed linear subspace of X. For a given f € X, we define

En(X; f) =if{||f — gllx : g € My},

which is called the best approximation of degree n to f with respect to
M,,. Clearly,

Eo(X; ) > Ei(X; f) > 2 Ep( X5 f) 2 B (X3 f) 2 -+ 20,
and Condition (P-2) implies that

lim FE,(X;f)=0  forevery f € X.

n—00

In this paper, we derive certain smoothness properties of an element
f € X from the hypothesis that {E,(X; f) : n € Ng} tends to zero with a
given rapidity. We refer to [16] for detailed treatments and [15] (cf. [13],
[14]) for the study of the direct theorems of J ackson-type (cf. [7]) which
estimates the magnitude of E,(X; f) in terms of the moduli of conti-
nuity of higher orders of f with respect to a strongly continuous group
of multiplier operators on X associated with Fourier series expansions

corresponding to {P; : j € Z}.

2. Moduli of continuity and Bernsteih-type inequality

For any f € X, we associate its (formal) Fourier series expansion



with respect to {F;: j € Z}

An operator T € B[X] is called a multiplier operator on X if there exists
a sequence {7; : j € Z} of complex numbers such that for every f € X,

[ee]

iy o~ > P,
j=—00
and the following notation is used:
T o~ ) TP (3)
j:,—oo

(cf. [4], [11], [12], [21)).

Let M[X] denote the set of all multiplier operators on X, which is a
commutative closed subalgebra of B[X] containing the identity operator
1. Let {T; : t € R} be a family of operators in M[X] satisfying

s al
T

Bx] <1 forallteR (4)

and having the expansions
T, ~ Y 9P, (LeR).
Jj=—o00

Then {7} : t € R} becomes a strongly continuous group of operators in
B[X] and we have

G'(Pi(9)) = (-ij)"Pi(9) (j€Z,ge X, reN) (5)
and
G'(f) ~ _Z (i)' Bi(f) ([ € D(G"),r eN),

where (7 is the infinitesimal generator of {7} : ¢ € R} with domain D(G)
(cf. [11; Proposition 2]). For the basic theory of semigroups of operators

on Banach spaces we refer to [1] and [6].
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For each r € Ny and t € R, we define

A=1 A =(T,—1I) Z( 1) m( ) (r>1),

m=0
which stands for the r-th iteration of 7; — /. Then A! belongs to M|[X]

and -

A I Bx < 27, Ay o~ Z (e77 = 1)"P;.
j==o00

If re Ny, f € X and 6 > 0, then we define
wp (X f,6) = sup{|A7(f)llx - lt| < 6},

which is called the r-th modulus of continuity of f with respect to {7} :
{ € R}. This quantity has the following properties ([15; Lemma 1]):

Lemma 1. Letr e N and f € X

(a)

(b) wr(X;[,+) is a non-decreasing function defined on [0,00) and
wr(X; f,0) =

(c)
wris(X5 [,8) < 2w, (X; £,8) (s €Ny, §20).

In particular, we have
bl_ig_lowr(X; [ 6) = 0.
(d)
wi( X5 [,66) < 1+ 8w (X5 £,6)  (§,6=0).
(e) If0 <6 <&, then
we(X; £,8)/€" < 2w (X f,6) /87
(f) If f € D(GT), then
wris(X; [,6) S 8w (X;G7(f),8) (s €Np, 6 20).

(9) we(X;-,8) is a seminorm on X.



If k is a function in L) having the Fourier series expansion
KO o~ 3 k()
j=—00
with its Fourier coefficients
i) = 5 [ KO a (G ez)

and if T' € B[X], then we define the convolution operator & * T by

(k=)0 = o [ KOTEUN A (f e X),

which exists as a Bochner integral (cf. [11]). Obviously, k * 1" belongs to
B[X] and

1+ Tl pxy < [1EI T | 1x) (6)
because of (4). In particular, if 7' is an operator in M[X] having the
expansion (3), then k* T € M[X] and there holds

BT~ Y BG)nP, (7)

j::'—oo
which is an immediate consequence of [15; Lemma 2].
Now we need the following Bernstein-type inequality in order to

prove the main theorem.
Lemma 2. Letn € Ny and r € N. Then
IG"(Nllx < @n)" 1l x (8)
for all f € M,.
Proof. By (5), (8) is trivial for n = 0. Let n € N, and let k,(t) =

2n k(1) sin nt, where

Fn(t):l—l—.‘ZZn:(l—l)cosjt:l(%2—7/72)))
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(5) implies f € D(G") and

)= Y GEW) = X RN (9

j=-n j=—n
Since '
“ha(t) = Fa(t)e™ — Fa(t)e™™,
we obtain _ . ;
i~ j )
“k(G) =~ < n).
“hG)=2  (i<w

/

Therefore, in view of (7), (9) and (10), we have

(s D) = 3 Bllhax DN = 3 KuIPAS)

j=—n j=-n

n

= 3" (=ij)Pi(f) = G(f),

j=—n

and so (6) yields
IG(Hllx = (kn x D(N)lIx < Meallillfllx < 20l lx.

Thus (8) follows from induction on 7. O

3. The main theorem

Recall that M, is the closed linear subspace of X spanned by {Pi(X) :
|| < n}. Here we suppose that for each given f € X and each n € Ny,
there exists an element f, € M, of the best approximation of f with

respect to M,,, i.e.,
En(X5 1) = [If = fallx- (11)
Remark 1. If the dimension of M, is finite, then for any f € X there

exists an element of the best approximation of f with respect to M,,. In
particular, if {@;, ¥} }jez is a fundamental, total, biorthogonal system (cf.
[11; Remark 8]) and if M, is the linear span of {¢; : |j| < n}, then for
every f € X there exists an element of the best approrimation of f with
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respect to M,,. Also, if X is a Hilbert space, then for each f € X there
exists a unique element of the best approrimation of f with respect to
M,,. For the general theory of the best approzimation in normed linear
spaces, we refer to [19].

Theorem 1. Let §2 be as in Section 1. Let f € X andr € N,. If

mm> (n — o0), (12)

n

mwm=0(

then f € D(G") and for every k € N,

a/
a

r Y[ = 0(z) |
we(X: G (), 6) =0 [ 6 / 2 Q@)de+ [ ZZdz) (5 10).
| (13)
Proof. Let f, be an element of the best approximation of f with
respect to M,,. Then by (11) and (12), we have
If = farllx < Cra™™R(a”)  (n>1), (14)
where (| is a positive constant independent of n. Put
g2 = f(ﬁa gn = fa" - fu,"'_l (" > 3) (15)
Then it follows from (14) that
(1 +a")2(a™ 1)

anr

”gn”X < Hfa" - f“X + ”f - fa"“] “X < }1 (n > 3)>
and so Lemma 2 yields
16 (ga)lx <27Ci(1+a")R2(a™")  (n>3). (16)

By (2), we have

kad 1 a [ )
<
> 2(a )*a—-l/a . dz < oo,

n=3
which together with (16) implies that there exists an element g € X such
that

0=3 " (gm). (17)
n=2
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Also, (1), (14) and (15) imply that

f= Zgn- (18)

n=2
Since (" is a closed linear operator, it follows from (17) and (18) that
J € D(G™) and

) = G (an). (19)

n=2

Therefore, by Lemma 1 (a) and (g), we have that for each m > 2,

(X G (1),8) < wi (X;icr'(gnw)wk (X; 3 G"(gn),é)

n-—2 n=m+1
m . ‘ 0
< S WX G (ga), )+ 28 Y (IGT(ga)llx =T+ Iz,
n=2 n=m+1

say. By (10), Lemma 1 (f), Lemma 2 and (16), we have

wn(X: G (), 8) < SFICH(GT(9)) 1 x
< EF2aF G (g)lix (0 >2)
< VX 1+ aNa) (0> 3).

Thus we obtain that for each m > 2,

[1 < (Sk(2a‘2)k”(;r(92)ux + 2k+7'(’71(1 + a'r')(sk Z almg(an—])

n=3

m )
< (/VQ(Sk Z (ak(n—l) _ ak(@—l)—l) Q(an-1)7
n=2

where (V5 is a positive constant independent of ¢ and m.
Now let 0 < § < 1/a, and we choose m € N,m > 3 such that

am—Q S é’—l < um—l.

First, we consider the case of £2(a?) = 0. Then (14) implies [ = gs € M2,
and so (10), Lemma 1 (f) and Lemma 2 yield that

wp(X;G7(f),0) < 2a)1GT(f)lIx8". (20)
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Also, we have

' el a?
/a/ 210 () da >/ ]"_1!2(:1;)(11'2/ () dz > 0,
which together with (20) clearly implies (13).
Next, let £2(a?) > 0. Then we have
m
Z (ak(n—l) k(w 1) ){2( n— 1) < ((1,2k . (L%_]).Q((L)

n=2
™m (Lk(" -1) ( 2k

17k “ 1/k
+Z/W_1H Q6 e < 0 /lez(.l, ) do

n=3 @

)
ak(m— 1) k(m—l) 1 ”
la
+/ By do < (,(2 a2) ) ) dx
2(x

£2(a) (a/8)*
= (Q(a‘z) + 1) .lk

Therefore putting u = z'/*, we get

-(2(&) " a’d 1
<Oy | == o . ) du.
L <Gy ( ot 1) k6 / U1 0(w) du
Also, by (16) we have

LR d.

Iy < 2M7CH (1 +a") Z 200"

n=m-+1

o0
<281+ a”) ° / ) da
a’ €T
T

a—1 Jgm-1
a o Q2x)

a—1Jis x

dux.

< MO 1+ dh)

Hence, we arrive at

wk(X:C7(1),8) < Gy («s’“ [+ [T zr)

a /6 X

where (3 is a positive constant independent of 8. This implies (13) and
the proof of the theorem is now complete. O

Applying Theorem 1 to the case where
1
2z)=—, a>0,

x(l’

we have the following corollary.
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Corollary 1. Leta >0, f € X andr € Ny. If

EX:N=0(=%) oo,

n"'+0[

then [ € D(G") and for every k € N,

o)  (a<k, é— +0)
wr(X;G7(£),6) = { O(65|log8]) (e =k, § — +0)
O*)  (a>k, &§ — +0).

In the remaining part of this section, we restrict ourselves to the case
where X is a homogeneous Banach space, i.e., X satisfies the following
properties:

(H-1) X is a linear subspace of Lj, with a norm || - || x under which it is
a Banach space. | ’

(H-2) X is continuously embedded in Lj,, i.e., there exists a constant
C' > 0 such that ||f||; < C||fl|x for all f € X.

(H-3) The translation operator 7; defined by

TN =J(—-1)  (JeX),

is isometric on X for each ¢ € R.
(H-4) For each f € X, the mapping ¢ — Ti(f) is strongly continuous on
R.

Typical examples of homogeneous Banach spaces are Cg,? and I5,,1 <
p < 00. For other examples see [11] (cf. [8], [18]).
Now we define the sequence {P; : j € Z} of projection operators in
B[X] by
PN = fG)e”  (f e X),
which satisfies Conditions (P-1), (P-2) and (P-3) just as Section 1 (cf.
[8], [11]). Notice that M, = T, and for all f € X we have

'

B(N=1 BN =501 )lm)  (eRren)

m=0



Consequently, in the above setting all the results obtained in this
paper hold, and so by Theorem 1, we have the inverse theorem of the
generalized de la Vallée Poussin type (cf. [3], [5], [17]) in arbitrary homo-
geneous Banach spaces. Furthermore, for r = 0 and 0 < a < 1, Corollary
1 gives a generalization of [18; Theorem 9.4.5.1] in the context of the use
of the k-th modulus of continuity wi(X; f,6). Also. for & = 2, Corol-
lary 1 establishes the theorem of Zygmund type (cf. [22]) in arbitrary

homogeneous Banach spaces.
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