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Geometry of 7 lines on the real projective
plane and the root system of type E;

HEs TEAETEZE MRS (Jiro Sekiguchi)

Abstract.  The configuration space of 7 points in the real projective plane is
studied. In particular, the relationship between the space and the root system of
type E7 is established.

1. Introduction and the main reSultS

The main purpose of this article is to clarify the relationship between the geometry of 7
lines on the real projective plane P?(R) and the root system of type Er. ,

We first introduce marked 7 lines (I3,ls,- -+, l7) on P?(R). We give conditions on these
7 lines:

1. The 7 lines Iy, 1y, - - -, l7 are mutually different.
2. No three of I,1s,---,l; intersect at a point.
3. There is no conic tangent to six of Iy, 1z, -, 7.

The totality of marked 7 lines on P?(R) with conditions 1, 2 forms the configuration
space P(3,7): the space P(3,7) is defined by '

P(3,7) = GL(3,R)\M'(3,7) /(R*)",

where M'(3,7) is the set of 3 x 7 real matrices of which no 3-minor vanishes. On the other
hand, the totality of marked 7 lines on P2(R) with conditions 1, 2, 3 forms a subset of
P(3,7) which we denote by Py(3,7). Both P(3,7), Py(3,7) are affine open 'subsets of R®.
Permutations on the 7 lines Iy, I3, - -, 17 induce a biregular S;,-action on P(3,7) (and also
that on Py(3,7)). It is stressed here that the Sr-action on Py(3,7) is naturally extended
to a biregular W(Ey)-action (cf. [3], [4]). Let Pr be the set of connected components of
Py(3,7). The W(E7)-action on Py(3,7) naturally induces that on P;. Then we are in a
position to state one of the main results of this article.

Theorem 1 The W(E7)-action on Py is transitive.

Before entering into the main text, we are going to explain the motivations of this study
briefly. It is an interesting problem to construct a tame compactification of the configura-
tions space Pc(n,k) of marked k hyperplanes on the complex projective space P™1(C).



In the case of n = 2, there is a nice compactification of Pc(2,k), the so called Terada
model. We note here that Pc(2, k) admits Si-action. What happens if we treat P(2,k)
instead of Pc(2, k), where P(2, k) is the configuration space of k-points of P*(R). In [8], it
is shown that the Si-action on the totality of connected components of P(2, k) is transitive
and that each connected component in question is described in terms of “juzu” introduced
there. On the other hand, in the case (n, k) = (3,6), there is a tame compactification of the
configuration space of marked six lines of P?(C) with conditions 1, 2, 3 above constructed
in [2] which is called Naruki’s cross ratio variety and denoted by C. As an application of
the results of [2], [3], already shown is the result which we are going to explain (cf. [7]).
Let Py(3,6) be the space defined similarly to Py(3,7), changing the 7 lines with 6 lines.
We note that .Py(3,6) admits a W(Es)-action (cf. [2], [3]). Then the result for the case
Py(3,6) given in [8] similar to the case of Terada models is that there are 432 connected
components in Py(3,6) and that the W (FEg)-action on the set is transitive. Theorem 1 is
an analogue of these results to the case of 7 lines on the real projective plane.

The second main result is the classification of the S7-orbital structure of P;. This will be
done in terms of tetradiagrams for the root system of type E;. In particular, we conclude
that P; is decomposed into 14 Sr-orbits (cf. Theorem 4).

2. Review on the root system A of type E;

We first recall the definition of the root system of type E;. Let E be an 8-dimensional
Euclidean space with a standard basis {¢;;1 < j < 8}. Let (:,-) be the inner product on
E defined by :

| (ej,€x) = bj
and let E be its linear subspace orthogonal to €7 + €. We define the following sixty-three
vectors of E: ‘

4! = &g —é&r,
Vi = —&j—1+ %0, 1<5<8
Y = —&j-1+ Yo, 1<7<8
Yik = €j-1— k-1, 1<j<_k<8
Tijk = —E€j-1— Ek-1, 1<j<k<$8
Vijk = —&i-1 — €j-1 — €k-1+ Y0, 1<i<j<k<8
where
1.8
Yo =3 Zsj — 7.
j=1
Note that

Yi L Yiks i L Yigks Vi Lk, Vi L Yigks Yii L Yeims Yigk L Yitme
The totality A of £y;, £7jx, £7¥ijx forms a root system of type E7. It is clear that

Y12, - V123, V23, Y34, V45, V56, V67 . (1)



can serve as a system of positive simple roots; its extended Dynkin diagram is given as

M1 —— Y12 —— Y23 —— Y34 ——""/4.5 —— Y6 —— Yer
| (2)

Y123

The set {7v:;Yjx, Viji} is the totality of positive roots of A.
Let s, s;j, i1 be the reflections on E with respect to Yis Yijs Vijk- These reflections act
on A as

Sit Ve Yy Yk < Yiky  ViE < Ymaps  dy ko Lm,m,p} = {1,2,...,7},
sij © permutation of the indices ¢ and j,
$123 1 M1 Y1y Va7 Yser, V12 T V120 V14 7 V234, Va5 < Va5, - Y145 < V145
modulo signs. We define two reflection groups
G, = (512, 523, 834, 545, 556, 367) 5 S7,

- G = (G, s123) = W(Er),

where S7 is the symmetric group on seven numerals {1,2;...,7}, W(E;) the Weyl group
of type F7 and (a,b,...) denotes the group generated by a,b,... Note that G acts on A
transitively on A.

3. Connected components of Ci(A, Dy)

We start with introducing a 3 x 7 matrix
o/t 000 1 |
X=|1101 -2 5 6
1011 4 -1 -6

Then by taking the entries of the vector (1 z y)- X, we obtain seven lines of the real

projective plane regarding z,y as inhomogeneous coordinates:

Ly : z4+y+t=0

Ly : =0

Ly : y=0

Ly : z+y+1=0 - (3)
Ly : —2z4+4y+1=0 |

Lg : 5z —y+1=0
L; : 6z—6y+1=0

We assume that ¢ is real and sufficiently large.



By the seven lines above, we obtain ten triangles (T};) (j = 1,2, -, 10) surrounded by

the three lines

LiLyLe Y126
L3Le¢Lr | v3e7
LyLsLs Ya56
LoL3Ly Y237
LoL3Ls Y235
LyLyLy Y124
LyL3L4 Y134
LyL3Ls Y135
LyLsLy | a7
LyLsLy Y157
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Corresponding to these ten triangles, there is a 6-polytope P of Cx(A, Dy) which we are

going to define.

Theorem 2 There is a simply connected and connected component P of Cx(A, Dy) sur-

rounded by the following hypersurfaces:

A

1/1267 Y367) }/4567 }/2357 }/1347 }/1577

Az

)/2377 leZéh )/135, }/:157’

Az

Z26,1457 2237,45& Z45,267: Z37,2467 Z126,457a Zl4,236a
Z57,1467 Z12,4677 Z67,1237 Z46,3577 Z23,567a Z124,367’ (5)

Ay

W1,37,45a W3,26,57a W3,12,457 Wl.,23,46, W5,14,67a W5,12,37’

As

W1,23,457 W5,14,37a W3,12,57a

As

X1231 X145a X357

Let H(P) be the totality of these hypersurfaces. Then, for each w € W(E,), w- P is
surrounded by the hypersurfaces contained in w - H(P).

We consider automorphisms of P in W(E7). Let s;, si5, Sijk be the reflections with respect

~ to the roots ;, 7ij, Vijk, respectively. Using this notation, we put

01 = 81283455756,

02 = 83582455652-

Then it is easy to show that

Ul'P:UQ'P:P.

Let Gp be the group generated by oy, 02. Then Gp is isomorphic to Sy, the symmetric

group on four letters. This is proved as follows. First we note that

Putting

o2=1, oi=1, (o102)*=1.

_ -1 — — -1
T1 = 020105, T2 =01, T3 = 0105 010207,



we find that the correspondence

— (12), 71— (23), 73— (34)

mduces the isomorphism between < 7, 73, 73 > and .5'4 On the other hand since 7T ToT3 =
02 , 1t follows that Gp =< T1,To, T3 >.

Lemma 1 By the G p-action, the hypersurfaces in A are transitive (j = 1,2,3,4,5,6).

On the other hand, the center of W(E7) which is isomorphic to Z, acts on the 6-polytope
P as the identity transformation. Noting that A, consists of four hypersurfaces, we obtain

the following.

Proposition 1 The isotropy subgroup of P in W(E7) is isomorphic to the group Sy X Z,.

4. 6-polytopes adjacent to P

To study the 6-polytopes adjacent to P, it is better to treat P’ = s345235236516557 - P
instead of P. Then P’ is surrounded by the hypersurfaces in TABLE I below:

TABLE 1

- Al

Y127 Y127; Y77 Yv56a Y347 YT5671

Ag

Y67) Y23a Y:LSa }fla

As

Z67.,34‘5>‘Z67’ Z345a Z45,1237 Z127 ZZ34.,5671 Z5677 Z4567 Z177;Z123a Z2347 Z23,456’

Ay

~ (6)
W12.,345a W34,567> W127’ W5677 W56,234a W123,456a

As

W167a Wl,23,67) W123a

As

XO) X1671 X123

Lemma 2 The following hold.
H(Pl)nH(Slz'P,) {HEHP’,S;[H:H}

(P)
(P)
H(PYNH(ser- P') = {H € H(P');s7-H=H}
| (P)
H(P)NH(s1i3- P) = {H € H(P)

(P")

H(PI) N H(S47$56 . PI)

H(P')NH(s14523- P') = {H € H(P'); 514823 - H=H}
= {H € H(P'); HN W # 0}
= {H € H(P'); sarss6 - H = H}
= {H € H(P'); H N Wz # 0}
H(P)YNH(us;- P') = {He€H(P)us,-H=H}
{H € H(P"); HN X, # 0}

where u = (1765432) € W(E7)



As a consequence of Lemma 2, we find the following.

Theorem 3 The following statements hold:
(i) The 6-polytopes P' and s, - P' are adjacent to each other and P' N sy5 - P' C Y.
(ii) The 6-polytopes P' and sg7 - P' are adjacent to each other and P' N sg; - P’ C Y.
(111) The 6-polytopes P' and s;3 - P' are adjacent to each other and P' N s13- P' C Zy03.
- (tv) The 6-polytopes P' and s14523-P' are adjacent to each other and P'Nsy4823-P' C Wagr.
(v) The 6-polytopes P’ and s47s56-P' are adjacent to each other and P'Nsy78s- P C Wias.
(vi) The 6-polytopes P' and us; - P' are adjacent to each other and P' Nus, - P' C X,.

Theorem 1 is a consequence of the theorem above.

5. Diagrams corresponding to 6-polytopes

Let P’ be the 6-polytope introduced in the previous section. From TABLE I, we find
that there are 10 hypersurfaces in A, Az corresponding to positive roots of type E; below:

TABLE I1
A1 | M2, M27, Y75 V56, V34, V567 (7)
Az | Y67, V23, Y45, N1

From these 10 roots, it is possible to construct a diagram similar to Dynkin diagrams.
Namely, the diagram in question consists of 10 circles attached with the 10 roots in TABLE
II. Two circles are connected by a segment if and only if the roots attached to them are
not orthogonal each other. Then we find that there are 12 segments in this diagram.

In the same way, to each 6-polytope in Pz, there associates a diagram which is called a
tetradiagram for the reason that in the case of P/, the 4 circles corresponding to the roots in
Az of TABLE II are regarded as 4 vertices of a tetrahedron and the 6 circles corresponding
to the roots in A; of TABLE II are regarded as 6 middle points of the sides of the referred
tetrahedron. _

To avoid the complexity, we neglect the + signs of tetradiagrams. In this manner, we
finally obtain a tetra-diagram corresponding to each P” € P;. We denote by 7P the set
of tetra-diagrams. ,

We here note that the classification of the arrangements of 7 lines ({1, /5, - - -, {7) on the real
projective plane with conditions 1, 2, 3 is acComplished if we determine the decomposition
of TP7 into Sy-orbits. This will be done in the next section.

6. Tetradiagrams

We have already introduced tetradiagrams in the previous section. In this section, we
treat them in the language of root systems systematic manner.



Definition 1 Leta;(i = 1,2,3,4), b;; (1 < i < j < 4) be roots of A. (Assume that b = bj;
for alli,j.) Then the set

A={a;i=1,2,3,4}U{b;;1<i<j<< 4}

is called a tetrahedral set if the following conditions hold:
(i) (asya) =0 (i # 7).
(ii) (bigyber) =0 ({5} # {1 77)).
(i) | (@, bj)| = O if and only if i & {j, k}.

Example 1 The set

U= {’7345, Y123, Y1365 Y2565 Y135, V1675 V3475 V1245 2369 ’7257}

1s a tetrahedral set. In particular, the cbrrespondence

Yaas — Ag T35 — B Yi24 — Bas
T2z — Ag Y67 — Bis Yoze — Bog
Yae — Az Y347 — B Yas7 — Bag

Y256 Ay
induces a tetradiagram for U.

For a tetrahedral set A = {a;} U {b;;}, we put
A = {:}:a,’} U {:i:b”}

and call it an extended tetrahedral set. Let A’ be also a tetrahedral set. Then A and A’
are equivalent if and only if A = A’. In this case, we confuse a tetradiagram for A and that
for A/, for simplicity.

The Gi-orbit structure will be also important. For this purpose, we will introduce
fourteen extended tetrahedral sets in TABLE III. If A is a tetrahedral set whose extended
tetrahedral set has the name X in TABLE III, we denote by Ox the S7-orbit of A IfBisa
tetrahedral set such that B € Ox, we call B a tetrahedral set of type X. Similarly, we call
a tetradiagram for B that of type X.

We are going to give a classification of Sr-orbital structure of extended tetrahedral sets.
For this purpose, we define

L={A,B1,...,B5Cl,..,C4,Dl,..D4}.

Theorem 4 The set T of extended tetrahedral sets is decomposed into fourteen S7-orbits
Ox (X € L).

It is clear from the definition that 7 and 7 P are isomorphic. Therefore the classification
of Sy-orbits of T is accomplished by Theorem 4.



- TABLE III
Name I Extended tetrahedral set ‘ Isotropy

A :*:{’73457 Y123, V1465 Y2565 Y135, Y167, V3475 V124, Y236, 7257} Z;
B1 :*:{"/345, Y123, Y1465 7256, V25, V167, V347, V34, Y16, 7257} Z;
B2 21:{’7345, Y123, V1465 V256, V14, V2, V57, Y124, V236, 7257} 1
B3 ﬂ:{’714, Y25, V146, Y256, Y135, Y167, Y3475 Y1245 Y236 ’)’257} 1
B4 i{7345, Y123, V146, V256, V65> Y167, V23, V17, V236 745} 1
1
1
1

B5 i{’Yz; Y123, Y47, Y2565 V135, V167 Y347, V124, Y236, 7257}

C1 i{’hs, Y24, Y36, V75 V25, V167, V17, V34, V346, ’76}

C2 i{’)’zs, Y14, Y146, Y256, Y345, V5, Y27, V34, Y165 ’7257}

C3 i{’Yss, Y73 7V15; Y24, Y246, V167, V347, V3565 V145: 7257} Z3

C4 i{’}’e, Y37, Y146, Y2565 V157, V26, Y347, V34, Y267, ’715} 1

D1 i{’)’ss, Y1235 V13, Y256, Y136, Y157, V57, V124> V24, ’71} 1

D2 2}:{’)’47, Y123, V25 V256, Y14, V146, V575 V6, Y236, ’)’23} |1
1
1

D3 i{%e, Y123, Y1465 Y23, Y145 Y147, V367, V75 V25,5 ’7257}
D4 i{’)’37, Y6, Y146, Y256, Y157, V136, V57, Y124, V1, 724}

(Here :t{’)/345, Y1235 Y146, - - } is an abbreviation of {:{:’7345, :l:’)/123, :i:')/146, . })
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