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Singular parts of moduli spaces for cubic
~ polynomials and quadratic rational maps

Masayo FUJIMURA
Dept. of Math., College of Sci. and Tech., Nihon Univ.

1. Quadratic rational maps

1.1. Moduli space of quadratic rational maps

Let C be the Riemann sphere and Ratz(C) the space of all quadratic rational maps
from C to itself. The group PSLZ(C) of Mébius transformations acts on the space Raty(C)
by conjugation, : ‘

go f ogte Ratz(C) for ge PSL,(C), f € Ratz(C)

Two maps f1, f2 € Raty(C) are holomorphically conjugate, denoted by f1 ~ fs, if and
only if there exists g € PSLy(C) with go f; 0 g7' = f;. The quotient space of Raty(C)
under this action will be denoted by My(C), and called the moduli space of holomorphic
conjugacy classes (f) of quadratic rational maps f. ‘
Milnor introduced coordinates in Mj(C) as follows; for each f € Raty(C), let z, 2z, 23
be the fixed points of f and u; the multipliers of z;; u; = f/(z) (1 < ¢ < 3). Consider the

elementary symmetric functions of the three multipliers,

o1 = p1 + o+ K3, 02 = Hafle + pops + U3pi, 03 = Hifaf3.

These three multipliers determine f up to holomorphic conjugacy, and are subject only to
the restriction that ' ' (

03 = 01 — 2.
Hence the moduli space M3(C) is canonically isomorphic to C? with coordinates oy and
o2 (Lemma 3.1 in [Mil93]).

For each p € C let Per, () be the set of all conjugacy classes (f) of maps f which having
a periodic point of period n and multiplier p.
Each of Per; (1) and Pera(u) forms a streught lines as follows:

Pery (1) = {{f) € Ms(C)io = (7)o = (2 + 247}
Pery(u) = {{f) € M3(C);02 = —201 + p},
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(Lemmas 3.4 and 3.6 in [Mil93]).

Remark Per;(—1) C Pery(1) by definition. But, in the case of My(C), it is clear that

two families coincide.

| By an automorphism of a quadratic rational map f, we will mean g € PSLy(C) which
commutes with f. ‘The collection Aut(f) of all automorphisms of f forms a finite group.
It is clear that Aut(f) is isomorphic to Aut(f) for any f € (f).
The set
S = {{f); Aut(f) is non-trivial} C M,(C)

is called the symmetry locus.

Proposition 1  The symmetry locus S of quadratic rational maps forms an irreducible

algebraic curve as follows;
S(ay,03) = 202 + 020y — 02 — 403 — 80109 + 1207 + 1205 — 36 = 0. (1)

Proof of Corollary 1. o . : ‘ ,

Aut(f) coincides with the group consisting of all permutations of the fixed points which
preserve the multipliers. In the case of f has the three distinct fixed points, Aut(f) has
order 1, 2, or 6 according as three multipliers are distinct, two are equal, or all the three
are equal, respectively, while, if f has multiple fixed points then Aut(f) is non-trivial if
and only if f has a triple fixed point. The multipliers y; are the roots of the equation:

u3~01ﬂ2+b’2/1—01+2:0. (2)

The equation (2) has multiple roots if and only if its discriminant is equal to zero. Hence

we have
(09 — 201 + 3)(202 + 0209 — 07 — 405 — 80102 + 120, + 1205 — 36) = 0.

The first factor corresponds with Per;(1). Considering the line of the first factor (Per;(1))
tangent to the curve of the second factor (S) with tangency of degree three, the second
factor is the required equation.

|
The following result is obtained immediately by the definition of the envelope of the
family of curves.

Corollary 1 The envelope of {Per;(p)}, coincides with the symmetry locus.

Remark (Theorem 5.1.of [Mil93]) A quadratic rational map has a non-trivial automor-
phism if and only if it is conjugate to a map in the unique normal form f(z) = k(z + 1)
with k € C\ {0}. ' '
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1.2. Real moduli space

Let Raty(R) be the set of real quadratic rational maps. Then the pa.;rameters o (1<
i < 3) are all real, because the three fixed points and the corresponding multipliers are
either all real or one real and a pair of complex conjugate numbers. According to J. Milnor,
we define the real moduli space My(R) for Ratz(R) to be simply the real (o3, o2)-plane.
This notation needs some care when used: if we put Sp = § N Mz(R), and denote by ( r
the real conjugacy class, then (Raty(R)/PGL2(R)) \{<a(m + %))R, <a(:z: — %)>R}aenx is
canonically isomorphic to R? \ S, whereas there is a canonical two-to-one correspondence
between {<a(a: + %)>}46Rx and Sg.

For map f € Mjy(R), the two critical points of f are two real numbers or a pair of
complex conjugate numbers. If f has a pair of complex conjugate critical points, this map
is two-to-one covering map on S ! = RU{oo}. In this case, 1f f' > 0 then fis ca.lled the
map of degree +2, else f' < 0 then the map of degree —2.

While a map f with real critical points is called monotone (resp. unimodal, blmodal) if
the interval I = int(f(S)) contains no (resp. one, two) critical points ([Mil93]).

AN :
-monotone :

degree -2 o
| X . b - — - - - ..P. e — - e m — — - = ¥ 7
' H degree +2
unimodal i gree +
+-+bimodal i

-+-bimodal

: .

Fig. 1. The topological partition of the M3(R).

Boundary curves of Figure 1

' CD, : o,=2 '
BC;, : o0,=6

Symmetry locus : S(0y,02) =0

where the curves CD; (Per;(0)) and BC; are “center curve” defined in [NN93).

Remark Two curves BC; and CD; are boundary curves of the “unimodal” region.
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2. Cubic polynomials

2 1 Moduh _space of cubic polynomlals o

Let Poly;(C) be the space of all cublc polynomials from C to itself.  The group
Poly,(C) of affine transformations acts on the space Poly,(C) by conjugation, '

gopog™ € Polys(C) for g€ Poly,(C), pe Poly;(C).

Two maps py, py € Poly;(C) are holomorphically conjugate, denoted by p; ~ p,, if and
only if there exists g € Poly,(C) with g op; 0 g7 = p,. The quotient space of Poly,(C)
under this action will be denoted by M3(C), and called the moduli space of holomorphic
conjugacy classes (p) of cublc polynonna.ls p. '

Doing the same as the case of quadratic ratlonal maps we introduce coordinates in
M3(C) as follows; for each p € Poly,(C), let z, 22, 23, z4(= 0o) be the fixed points of p
and u; the multipliers of z;; p; = p'(z;) (1 <@ < v3) and py = 0. Consider the elementary
symmetric functions of the four multipliers,

=N1+M2+M3+N4=M1+N2+#3 ‘

= Hip2 + paps + pife + ot + fofy + fapls = paflz + papa + Hops
03 = Hifiof3 + Hiflofbs + fhy U3fbs + Hofi3fty = [ o pi3
04 = p1piopispis = 0.

These multipliers determine uniquely p up to holomorphic conjugacy, and are subject only
to the restriction that

3 - 20’1 + 0o = 0.
Hence the moduli space M3(C) is canonically isomorphic to C? with coordinates o; and

g3.

Proposition 2 The locus Per;(u) forms a straight lines as follows:

Per;(u) = {(f) € M5(C); 03 = (—p® + 2p)oy + 1® — Bu} )
The locus Pery(p) forms an algebraic curve of degree three as follows:

Pery(n) = {{f) € My(C);03 + (407 — (u + 57)01 +252)a5 — (41 — 16)03
+(61p — 252)07 — (4u? + 246p — 1134)0y — p® + 5142
—99u — 459 = 0} .

Note that this curve is irreducible if and only if p # 1.‘ In the case of p =1,
Per,(1) = Per;(—1) U { ) € M,(C); dg + 40?2 — 610y + 254 = 0} .

Using conjugation described in above, we can define symmetry locus of this moduli space
as one in Mj(C), and we obtain next results.
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Theorem 1 The symmetry locus S of cu bic polynomials forms an irreducible algebraic
curve: '

S(oy,03) = 2703 + (01 — 6)(20, — 3)* =0. . ’, (3)

The following result is obtamed 1mmed1ately by the deﬁnltlon of the envelope of the
family of curves. :

| Corollary 2 The envelope of {Per;(p)}, coincides with the symmetry locus.

Remark A cubic polynomial has non-trivial automorphism 1f and only if it is conJugate
to a map in the unique normal form p(z) = 23 +az.

2.2. Real moduli space

Let Poly;(R) be the set of real cubic polynomi;ﬂs. By the same reason for the case of
M., we define the real moduli space M3(R) for Poly;(R) to be simply the real (o1, 03)-
plane. This notétion needs some care when used: if we put Sg =S n M;(R), and denote by
( )g the real conjugacy class, then (Poly,(R )/Poly1(R)\{(z® + az)y, (—2° + ax)R}aegx is
canonically isomorphic to R*\ Sg, whereas there is a canonical two-to- -one correspondence
between {(+£z® + az)},ecrx and Sg. '

For map p € M3(R)), if the real filled-in Julia set of p is a single point then it is said that
p in the class Ry. Let J be the smallest closed interval which contains the real filled-in
Julia set of p. For p € Ry, it is said that p belongs to the class R, if the graph of p
intersected with J x J has n distinct components ([Mil92]).

Fig. 2. The topological partition of the M3(R).

Boundary curves of Figure 2
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Peri(l) : 01—03—2=0

Preper;)1 : —407+4570; — 03 —198=10
Symmetry locus : S(oq,03) =0
Pery(1) —801 + 18007 — 18090, — 2703 + 6966 = 0

Preper;;,2 : 6408 — 11520% + 777604 + (43203 — 25056)03
(1) 1 1 1 1
+(—388803 + 41796)07 + (874803 — 34992)01 + 72902
—4519803 + 543105 =0

3. Polynomials of degree n

3.1. Moduli space of polynomials of degree n
Now we discuss about the moduli space M,,(C) for the space, Polyn(C), of polynomials

of degree n.
Doing the same as the case of cubic polynomials, we try introducing coordinates in
M,,(C) as follows; for each p(z) € Poly,(C), let 21, ---, zn, znp1(= 00) be the fixed points

of p and y; the multipliers of z;; u; = p'(2;) (1 < ¢ < n), and p,y; = 0. Consider the
elementary symmetric functions of the n multipliers,

On1 = M1+ -+ Uy,
On2 = Pape + -+ fp_1fn = ?:_11 i ?>z' Mg,

Onmn = H1H2 " - Un,
Onntl = 0.

Example 1  For example, we assume p(z) € Poly,(C);

e fixed points: z;, 2, 23, 24, 00
e multiplier: uy, po, u3, f14,0
¢ elementary symmetric functions:

(

Oa1 = 1+ po + pz + g

O42 = Mipo + a3 + Hafe + Hofts + Hofty + Hafiy
 Oa3 = phafiopts + fafiafis + pafiafis + Hofiafle

044 = H1Mo/i3 /44

{ 045 =0

Applying Fatou-index theorem to these fixed points;
CHEPUNE SR SR S S (4)
l—py l1—pp 1—pg 1—pg 1-0 7

where y; #1 (1 < ¢ < n). Arranging this equation for the form of elementary symmetric

functions;

4 — 3(p1 + po + ps + ) + 2(pape + aps + s + Bops + pofis + Hapa)
—(papaps + papopis + p1pispha + popizpts) = 0.
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Hence we have
4 — 30’471 + 20'4’2 — 043 = 0. (5)

For the equation (5), the cases y; = 1 are also allowable.

Now we consider a polynomial p(z) = ag2*+ a3z + d222 + a;z+ ag € Poly,(C) that has
at least two fixed points. After affine conjugation, we can assume they are 0 and 1. Then,
we will solve the following question: “Do the four multipliers

po = P'(0), p1 = P'(1), p2 = p'(22), pusz = p'(23),

where 21, 23 are fired points of p(z), determine the five coefficients a4, a3, az, a;,ag of p(z) #”
In fact, the following equations hold; _ .
ag =0 , because of f(0) =0,
a; = Ko because of f'(0) = wy,
az = ag + 3 — 2up — 1 because of f'(1) = pq,
a3 =1—ay—ay—po because of f(1) =1,
and a4 is a common root of the following two equations;
=(p3 — 2papz + p§ — pg + 2pap0 — p3)ag + (=443 + (4p1 +8) g + (—4pd — 8)uo +4uf — 8p3 +
8u1)ad + (—6uf + (—4p1 +28)ud + (4pF +4p1 — 44)pd + (—4pd + 4uf — 81 +32)po ~ 6uf +
283 — 44pf + 321 — 16)af + (—4pg + (—12p1 + 32)pf + (=83 + 64p1 — 96)ud + (8uf —
961 +128)u? + (12pF — 6443 + 9647 — 64) po + 445 —32ut + 9643 — 12812 + 6441)as — ug +
(—6p1 +12)pg + (=1543 + 60u; — 60)ug + (—20#1 + 120#1 — 24047 + 160) 3 + (— 15u1
12043 — 36047 + 48041 — 240) g + (—64 + 60§ — 2403 + 48047 — 48041 +192)po — p§ +
1245 — 60ut 4+ 16043 — 24042 + 1924, — 64 = 0,

Az =(pg + pa + po + p1 — 4)ag + (2pF — dpo — 243 + 4p1)as + p + (Bp1 — 6)uf + (3 — 12p1 +
12)po + p3 — 6u2 + 121 — 8 =0.

Above two equations have common roots if and only if g, p1, 2, s satisfy the equation
(5). Since fig, ti1, H2, p3 are the four multipliers of p(z) and they should satisfy the equation
(5), the two equations always have common roots. Hence five coefficients of p(z) are
calculated by its four multipliers, however, this calculation is not decisive when they have

distinct two common roots.

For the case of Poly, (C), it is clear from (4) that the equation corresponds to (5) cannot

have the term of 0, ,. Hence we can put
Co + Clo-n,l + CZUn,Z + -4+ c?l—lan,n—l : 0

where ¢, (0 < k < n — 1) are functions of n variable. ‘
Paying attention to the form of elementary symmetric functions, we obtam the followmg

%:¢4y<”‘1)w( )—n%h

equation;
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where ( L ) means binomial coefficient. For convenience, put 0,0 = 1. we have

n—1 . )

> (-1 - Boax=0. (6)

k=0

Question Is the moduli space M,,(C) for polynomials of degree n canbnicg,lly isomorphic
to C"! with coordinates o1, 02, - - -, On_2, and o,? ‘ '
3.2. Symmetry locus

Proposition 3 A polynomial of degree four has a non-trivial automorphism if and only
if it is conjugate to a map in the unique normal form

{z*+az}, a€C.
For a map p(z) in this normal form, Aut(p) is a cyclic group of order three.
Outline of proof. Let p(z) € Poly,(C).

1. In the case of a map p(z) with multiple fixed points.
a) The case of p(z) with a fixed point of order four: Aut(p) is non-trivial.

(
(c) The case of p(z) with two fixed points of order two: there is not such p(z).
(d) The case of p(z) with a fixed point of order two: Aut(p) is trivial.

2. In the case of a map p(z) with four distinct fixed points.

(

(b) The case of p(z) with a fixed point of order three: Aut(p) is trivial.
(
(

(a) The case of four distinct multipliers: Aut(p) is trivial.

(b) The case that only two of multipliers are coincide: Aut(p) is trivial.

(c) The case of two pair of same multipliers: there is not such p(z).

(d) The case of three same multipliers: By an affine conjugation, if three fixed points
(whose multipliers are same) are mapped on the vertices of a regular triangle whose
barycenter is the origin and the other fixed point on the origin, then Aut(p) is
non-trivial. Otherwise Aut(p) is trivial.

(e) The case of four same multipliers: there is not such p(z).

Therefore a map p(z) has non-trivial automorphisms if and only if p(z) is in the case 1-(a)
and the first part of 2-(d). We can check easily that these maps coincide with the normal
form {z* + az}. i

Conjecture A polynomial of degree n has a non-trivial automorphism if and only if it

is conjugate to a map in the unique normal form

{z" + Z A(k)zk}

kl(n—1),k#n—1

where A(k) are parameters in C.
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