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Evaluation of Investment Opportunity
~under Entry and Exit Decisions

=R -

Hiroshi Shirakawal

Department of Industrial Engineering and Management, Tokyo Institute of Technology

Abstract: We study the evaluation of the project which includes the entry and exit decisions to invest
the production plant. We assume that the price process P; of the production goods follows a geometric Brownian
motion. Then we show the explicit evaluation formula for the discounted present value from the project when the
entry-exit is controlled by the trigger prices. Furthermore we prove the optimality of the trigger control strategies
to maximize the discounted present value from the project. Finally we studied the multiple entry-exit model

originally proposed by Dixit and show the analytical closed form solution for the Dixit’s valuation problem.

Keywords: Optimal Stopping Problem, First Passage Time, Net Present Value, Entry-Exit Model.

1 Introduction

We study the evaluation of the project which includes the entry and exit decisions to invest the
production plant. To start the production activity, we héve to pay the initial investment cost which -
amounts to I > 0. Once the production plant is activated, it continues to makes a fixed amount of

* goods by the constant production cost C' > 0 until the investor exit from the project. We assume that

the price process P, of the production goods follows a geometric Brownian motion :

'dﬁ = ;l,dt + O'th,
Py

where W, is a standard Brownian motion. To stop the production, we have to pay the terminal investment
* cost which amounts to I_ > 0. The. basic problem is to derive the optimal entry and exit strategies (t3,7*)

which attain the maximum discounted present value from the project inthment :

T
sup E[—e™"THI, +/ (P,—C)e ™dt —e "™ I_|Py = P).
0<Ty<T— T+ '

This problem is first considered by Brennan and Schwartz (1] and evolutionary studied by Dixit and
Pindyck [2, 3, 4] to the case of multiple entry-exit model. In this paper, we studied the same type of
model proposed by Dixit [2]. Dixit derived a system of differential equations for the project valuation
functions using the no arbitrage argument. Then he derived the semi-closed form solutions for the project

valuation functions. However his approach is not sufficient to get the valuation functions explicitly. To
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avoid the ambiguity of his approach, we used the probabilistic analysis to evaluate the cash flow from
the project. This enables us not only to derive the explicit forms of the valuation functions but also we
can prove the optimélity of the simple entry—exit desision rule by the constant trigger prices.

This paper is 6rganized» as follows. In section 2, we view the exit problem as the stopping time problem
and derive the optimal stopping time which maximize the net present value of the existing project. In
Section 3, wé generalize the formulation to includg the decision for the entry timing and completely
characterize the optimal solution in this situation. Finally in Section 4, we treat the multiple entry-exit
‘model originally proposed by Dixit and show the analytical closed form solution for the Dixit’s valuation

problem.

2 Exit Problem

First we assume that the investor has already activated the project and so he can decide only the
exiting timing from the production activity. At time 0, the project is active and the production state
is +. The problem is to derive the optimal exiting strategy 7* which attains the maximum discounted

present value :
,

sup E[ g(Pt —C)e "dt —e "™ I_|B = P).
o< - 0

To solve this problem, we consider the simple strategy that stops the production activity when the price

process hits the inactivation trigger price P_. For the notational convenience, let
TP .
Vi(P,P) = E[/ (Py —C)e™™dt — e "P-[_|Py = P}, (2.1)
0

where

Tp_ =inf{t > 0; B, < P_}.
Hereafter we assume the following condition.

Assumption 2.1

r>p and g > 1. (2.2)

This condition must be satisfied so that the exit becomes reasonable. That is,

Eplfy e (P.— C)dt] = [Ce "t (Pett —C)dt
= lim; [%(e(u—r)t -1+ g(e-rt _ 1)]
P _C .
e >l i r>y,

00, if r<p.

108



109

Hence if Assumption 2.1 is violated, exit from the investment opportunity is not rational to maximize
the net present value from the project. Under this condition, we can derive the net present value of the
cash flow from the existing project when the stopping time is given by the first hitting time of the fixed

price level.

Theorem 2.2 Under Assumption 2.1,

1
where
vy = H+1,
v = -1
n = "—;#}0

Proof. By definition,
TP_
Vi(P,P_) = Ep| / (P, — C)ertde] — Eple™"""-]I_. (2.4)
0

Each expectation terms are computed as follows. Let §_ = £ — . We can easily check

p-
Tp_ =inf{t; Wy +6_t <z_}, where z_ == log 5 < 0.
Let
. P[t<Tp_<t+A] —x_ 1 2
= - — = —g(z-—0-2)
fz_(t) EEO A me t .
Then

/0 00 e T f,_(t)dt
- \/;_Wzﬂmz_/ e (VTR 0 <% \/m—>d

+ 5 pr _—,/97_+2r-::_/ 6—7 7;—\/(92_4'2" g_(_} /(92 + 2r)t
Vvam 0
— e(9—+\/67_+2r z-

This means that

P )V_+ v++2n

Eple=""-] = (_

B (2.5)

On the other hand,

Esl /0 " (B - e at]

00 TP_
/ Ep[Pe " 1{t < Tp_ }dt — CEP[/ e~ "tdt]
0 0

‘/0*00 EP[Pte""‘].{t < Tp_ }]dt —_ g (]_ _ EP[e—rrp_])

00 ’ vo+y/vi+2n
_ /0 Ep[Pe"1{t < 7p_}]dt - g <1 - (%) * ) . (2.6)
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Let
ST P[IvSIninOSuSth.’*'guSz‘*'Am USWt+9tsy+Ay]
gt,o(:‘: y) = AI-TO Asz
_ -2(2z - y)e_.ih_—g!ﬂﬁ.g_‘zzo,
Vort3
- kO
0. = p + 3"
Since
t< in (W, + 6 )>llo P
TP_#Ogﬁfslt u -u p gP’
we have,

Ep[Pte""l{t < Tp_ }]

= Ep|Pe” "‘1{ rmn (W +6_u)>— log _}]

yAO
/ Pe?v="tg, 0_(z,y)dzdy
T z

oo [yAQ - - (@z-y+o_t)?
/ / Pev-Tt 2(22-':rt3 y) —Cemueot” oz dzdy

oo pryAD :
- %/ / eay—rt+0_y-%?-t—11-;(2::—u)°aa_x (_%‘t_(Qz _ y)2) dxdy
v T~ -

P (%, 2., [V 9 ; / / 0 [ —i(2s—y)?
_ +y—(r+-)t — % (2z—y) v (r+T)i Tl 7 (22=9)° 4o d
Vot )y © /z_ oz (e )d’dyJr oz (e i ) 4

—;'t/ +v— (r+-r)t(e T _ e~ H(23—2-)? )dy + / S+v— (r+T)t(e %—_e % (2z-—p)? )dy
e~ B W7 =204 yt+2u+01)E7) o~ (r—p)t gy, _ ____P ® —%:((23-—y)’—29+ut+(2#+9’_)t’)e~(r—u)tdy

=/ 7=,

ot Jo_ ot

= pe-tremt_ L [ kw0107, _ pe-tr-wts2e-0s_ L [7 ka4
Nor= 4 Vo= 4

—z_ + 04t T +04¢
= Pe—(r-u)t [cp <_f__+> — 28043 (_._i)
e \/i € \/2.

This together with Assumption 2.1 yields

oo _
/ Ep[Pe™t1{t < 7p_}|dt
0

[ () e (32

() o () (=52

0
+ L /ooe—(r—#)t 1 e—%(:’—'vfzﬂ)zi 2ot Ot 4
T—H£Jo Vor

2r Vi
p [® 1 _p(2=%54\2 3 [z_ + 0.t
_ —(r—p.)t+2z-0+ !(ﬁ"t') = <__._+) dt
r—ulo Var ot vt
P __P /°° ~remt ZE=_ 4 (=)’
= - e — d dt
rT—U r—uJg \/2?

= L {1_(E)V++m}. 2.7)

rT—u P
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Here the last equality follows from (2.5) with u := p + 02 and r := r — u. Then we get (2.3) from (2.4)
through (2.7). n]

Equation (2.3) can be derived by the no arbitrage argument when we consider the convenience yield for
the products. Let us fix the exit trigger price P_ and denote the value function by V. (P) = V, (P, P_).
Consider the portfolio of —V| (P;) products’ stock, one unit of project investment in active state V, (P,)

and V| (P;)P; — V. (P,) riskless asset. The total portfolio value X; is 0. The return from the portfolio is :

dX,

]

—Vi(P)(dP; + Py(r — p)dt) + dV4(P,) + (P; — C)dt + (VL(P) P, — Vo (Py))rdt

1
[5VE(P)Ffo® + pVi(P)P:+ P, — C = Vi(P)rldt.

Here we have assumed that the investor gets the convenience yield rate r ~ u > 0 from the products’
stock investment. Under the no arbitrage condition, the riskless return must be 0. Hence we get the

following differential equation for the arbitrage free value function :

L

50 P2V}(P) + uPV}(P) —rVy(P)=C - P. (2.8)

(2.8) is Euler type non-homogeneous differential equation whose general solution is given by :

Vi(P) = Cy P~V o o, p-v-—VViFn P _C (2.9)

rT—p T

By the basic property of the value function V, (P), we have the following boundary conditions.

lim 1@ <00, Vi(P)=~—I_.

P—oo

These conditions mean

C1=0, G;= (% - ,i, - I-) A

Thus we get the function V. (P) given by (2.3).
Next we shall consider the optimal trigger price for the exit problem. From (2.3),
8V, (P,P.)
oP_

1/C > P_\*- —1+/vT 29 1
= ﬁ(:"[_) (V_+ l/++21’]) (?) r—g

P_\"- +y/vi+2n
7)

(v +4/V3 +21) (

<0, if P.> P,

where . .
c vo+4/v3+2n
P =(r—u) (— - I._) —_— _ (2.10)
’ r vy + ‘/V_%_-{-Zr; :



From Assumption 2.1, we have 0 < P* < C —rI_. Also the optimal exit trigger price PX does not

depend on the initial price level. Therefore we can define the optimal value function by

Vi(P) = Vi(PPI)
v++\/V+’+2ﬂ
P C ( €1 ) (r—

u++\/u3_+21; P

From the definition, we can easily check that

'u’ p v_+ u++2n
(v— + /v +2n) (2.11)

r—u T

Vi(PL)=Vy(PX,P)=—I_.
Let us define the optimal value function by Vi(P) = Vi(P*) for P < P*. Then we can show the

following property.

Lemma 2.3 Under Assumption 2.1,
Vi(P)2-I_, V P2>0. (2.12)

Proof. It is clear that (2.12) holds for 0 < P < P*. So we assume that P > P*. From (2.3),

aV+(P1P:)
oP
1 P c\ V- + Vﬁ.+277 P* v-+ v++2r]v
S
1 Pt V++-\/;m;l
= T_#(1—(?') )20, if P>pr. (2.13)

Hence we have

Vi(PPL)2V(PLP)=V*(P])=—-I., V P2P:. O

Now we shall show the optimality of the exit strategy which is given by the first hitting time for P*.

Theorem 2.4 Under Assumption 2.1,

gl<1p Ep[| e (P, -C)dt—eI_| = Ep[/ ) e (P, —C)dt—e P | = Vi(P), (2.14)
<t 0 0

where

* inf{t >0; P, < P},
C vo+[vi+2n

P = ('r—u)(——I_)————-——E(O,C'—rI_).
r vi+4/vi+2n

9
il

112



113

Proof. LetY; 2 e "V}(P, v P*). From (2.8) and Ito’s lemma,

- e "V (P)PwodW, — e~"(P, - C)dt, if P, > P*,
t —t

—rY,dt, if P,<P*.

Then from the generalized Ito’s Lemma {7,

dY; = [e"V} (P)PwodW; — e (P, — C)dt|1{P, > P*}

~rYydtl{P, < P*} + etV (P* +0)dA,(P*),

(2.15)

where A¢(x) denotes the local time of Semi-martingale P;. Rewritting (2.15) in the stochastic integral

form, we have

t ' t
Y=Yy + / e~V (Pu)Pucl{Py > P }dW, — / e~™%(P, — C)L{P, > P"}du
0 ]

Then

t t
- / rYul{P, < P }du + / e~V (P 4+ 0)dAy(P*).
0 0

t
Y; +/ e~™(P, — C)du
0

IA

t t
Yo+ / e~ VY (Pu)Puol{Py > P*}dW, + f e~ (P, ~ C)1{P < P* }du
0 0 .

t t
- / rY,1{P, < P*}du + / eV (P* +0)dAy (P*)
0 0

t t
Yo+ / eV (Py) Pacl{Py > P_}dW, + / e~ (r]_ + P, — C)1{P, < P*}du
o] 0

t t
+ / e~™(P* — C)1{P, = P* }du + / e~V (P* + 0)dA,(P)
0 0

t t
Yo + / eV} (P,) Pyol{P, > P_}dW, + / eV (P + 0)dAy(P)
] 0

t .
Yo+ / eV} (P,)P,01{P, > P_}dW,.
0

Here the inequality follows from P* < C —rI_ and the last equality follows from V;I (P*+0) =0. Thus

for any stopping time T,

T T
Epl[Y; + / e~ (P, - C)dt] < Yo + Ep| / e~V (P)Pol{P, > P*}dW,.
0 0

Furthermore from the uniform integrability of the stochastic integral,

Ep| / eV} (B,) Pol{P, > P_}dW;] = 0.
0

Then the following inequality holds for any stopping time 7.

Eple™™V}(P;) + /0 ’ e~ (P, — C)dt] < Vi(P).

(2.16)



From Lemma 2.3, V{(P) > —I_. This together with (2.16) yields,

.
Epl / (P, — C)dt —e~""I_]
0

IA

Bpl [ 7B~ Ot + eV
0

V:(P) = Epl / T ert(B,— C)dt — e ],
0

IA

Since T is arbitrary, this implies
sup Ep[/(: e Py — C)dt —e™"TI_| < VI(P). - (217)
On the other hand, from the definition,
SI:pEp[ /o T e P —~C)dt—eI_| 2V} (P) = E,;[ /O ~ e P, —C)dt —e " I_]. (2.18)

From (2.17) and (2.18), we arrive at (2.14). a

3 Entry-Exit Problem

Next we shall generalize the flexibility of the investment for the production plant so that the investor
can decide not only the exiting timing but also the entering timing to the production activity. At time
0, the project is ina.ctive and the production state is —. Our problem is to derive the entering-exiting
strategy (74, 7—) which attains:

-
sup El|—e "I, +/ (P, —C)e ™dt —e~ "™ I_|Py = P). (3.1)
0Ly < T4
To solve the problem, we consider the simple strategy that starts (stops, respectively) the production
activity when the price process hits the activation(inactivation) trigger price P, (P_). For the notational

convenience, let

T ,
V_(P,Py,P.) = E[-e~"+ I, + / (P, — C)e="tdt — e~"P- [_| Py = P, (3.2)

Tp+

where
TP+ = mf{tr-Pt 2 P+}:

7p_ =inf{t > 7p ; P, < P_}.

From the strong Markov property and Theorem 2.4, we can rewrite (3.1) as follows.

sup Ele™™+(Vi(Pr,) — I4)|Ro = P),
0<7y .
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where V}(P) is defined by (2.11). Let P < P; and

V2(P,Py) = E[e™™+(Vi(Py) - I)|Po = P,

TP, = inf{t >0; B, > Pi}.
Since
' 1. Py
Tp, = inf{t; Wy +6_t >z}, where z,= ;log? >0,
we get \/1'_
vo—J/vi42
Eple™™P+] = 0-— VI +2)zs (fpt) ¥ ”. (3.3)
Hence from (2.11) and (3.3),
V: (P, P+)
= (Vi(Py) - L1)Eple™"™+]
vyt+y/vi+2n
P, c c _I + r—p v—+y/vi+2n
= -—+ | —T— 'P—(V—‘*‘ v +2n) - It
r—g T V++VV_24_+277 + ‘
P+ V_—Q/;++27’
(%)
v+ 42
(B - ¢-1) P Vit (S e /T
_ i N R vat+ /A +2n pv-+H/viten (3.4)

v_+\/7 +2n  _
x(r=ww_+\3+m) 7 PV

As shown earlier, equation (3.4) can be derived by the no arbitrage argument. Let us fix the entry
trigger prices P, and denote the value function by V_(P) = V*(P, Py). Consider the portfolio of —V' (F;)
products’ stock, one unit of project investment in inactive state V_(P;) and V' (P;) P, — V_(P,) riskless

asset. The total portfolio value X; is 0. The return from the portfolio is :

Xy = —V'(P)(@P:+ Pilr — p)dt) + dV_(Py) + (V.. (P) P, — V_(P)rdt

I

1
[5V2(P)Pfo? + pV (PP, — V_(P)rldt.

Here notice that we can obtain no profit from sales of product since the project’s state is inactive. Then

we get the following differential equation for the arbitrage free value function :
SPPAV!(P) + uPV.(P) ~ V_(B) =0. (3.5)
(3.5) is Euler type homogeneous differential equation whose general solution is given by :
V_(P) = C;P~-+VVi+ | g, p-v-—Vi+m (3.6)
By the basic property of the value function V_(P), we have the following boundary co;lditions. |

Jim [V_(P)| <o, V_(Py) = Vi(P) L4,



where V(-) is given by (2.11). These conditions yield
- Vo —q /u’ +2n
C2=0, Ci=(Vi(Py) - I )P, ¥V H

Thus we get the function V_(P) given by (3.4).

Next we shall consider the optimal trigger price for the entry-exit problem.

Theorem 3.1 Under Assumption 2.1 and Condition

—L
o2 C-ri_ 2 ’ 1 vy A At A
oo b —-rl- — 2 +2 - = , 3.7
5% Ctrl, (u++27] vi+ 17)<(2( ,_—u_z}_+2n (3.7)

then
V*P) 2 max V*(P,P.)
- PySP 1 —
L il ,
=.ﬁkfﬁu+/ e~ (P, — C)dt — eI
g
V*(P,Py), if P< Pj,
— —( ] +) f + (3.8)
Vi(P) -1, if P2P], '
where
7y = inf{t>0; P> P},
' = inf{t>7}; B <P},
[ 2 : [ 2
* * - 1 V++ V++2T] *V+"\/;,_+_2_’7- C v-+ V++217 wxv_—y/vi+2n
VAP,PL) = prreVAR _ (2 ) — Y = pre-mViE
T—u 2\/Vi+2n T 2,/v3 + 21

x Pv-+y/viten (3.9)

P* is given by (2.14) and Py is the larger solution of the following equation :

>

f(=)

—1 » v. 2: / C v 2
o #( V3 420 —vy)z Y iy (vvi+2n- u_)(? + I )zv- Vvt (3.10)

/ -1
l/_|..+ U++21]

1 +2n

v/ bt
) ((r Y - 2n))

= 0,
which always ezists in (C +rly,00) under Condition (8.7). If (3.7) is not satisfied, V2(P) = Vi(P)-1I,.

Proof. From (3.4), we have

dV*(P, Py)
3P,
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l v+ +2n ) v+ +2
prve T || s~ A P (o [ (8 4 1,) PV
P — vi+y/vi+2n vo+4/vi4+2n
1+2‘/u+! +2n [ 2 eI ( _ 2 ) ¥
P+ —2 V++2T] Wm ('I‘ ﬂ)(l/_‘l' I/++2T])

>P-—v- + u++2n

1+2\/;2++_271 f(P+)7
P+

where f(z) is defined by (3.10). Since

u++\/u+2 +2n
c —I_ . v_+ V++27]
@ = /3oy —r = ((r TR 3 zn)) <0,
vy +4/1A +2n

9 >0, f0<z<C+rly,
fllz) = -—22:”"'1"'\/ "++2”(C’+1'I+ —-zx) +
7 , <0, if z>C+rly,

f(-) attains its maximum value at z* = C + rI which is given by
+

f(=*)

1 \ s viryiTmm_ (C v+ /7T TR
r—p (u+ -+ 2") VR - (7 + f+) (W= — [V} + 2m)e* Y= HVEAET 1 £(0)

02(1/1/_2,_ + 20 —v_)(4/v3 + 20— vy)

2r(r — )

' 2/ + 29 2
X [(C’ + ItV _ Sk e (f_ (g -1

VA +2n— vy 2 \r

Therefore f(x*) > 0 if and only if Condition (3.8) holds. In this case, maxp, >p VX(P, Py) is attained at

v+ /viH2n
) (ve+2n- u_2,_+217)) .

P, = P* or‘P+ = P. Now we need the following property to show the optimality of Py
Lemmé 3.2  Under Assumption 2.1 and Condition (3.7),

Vi(P)-I,<VX(P), VO 5 P< P}, (3.11)
Proof. Let G(P)=V}(P)-1I + '— Vv ‘(P, P}). Then G(P4) =0 and

G'(P)

V' (P) - V*'(P,PY)

=\ vyt +2n -\ —2,/¥2 ¥2n
| e )T (- ()
TR R Lchn) @+ (%)"'J””*H"%(u(%i)‘z "++2”)
1

2

>0, for P<P].

T—p
Hence we have

G(P)<G(P})=0, VP<P},
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which is equivalent to (3.11). O

On the other hand, if Condition (3.8) is not satisfied, maxp, >p V*(P, P4) is attained at P, = P since

V= (P,Py)

5 <0 forall P, >P. O

Now we shall show the optimality of the entry strategy which is given by the first hitting time for Pj}.

Theorem 3.3 Under Assumption 2.1,

Tl ,
_sup Ep[—e T+ + / (P,—C)etdt —e ™= 1_]
o< <12 T+

-

= Ep[-e "I, + / T e (P~ C)dt — e~ I_| = VX(P), (3.12)

3

where 73, 7' and V*(P) are given by (3.9).

Proof. From the strong Markov property of diffusion processes, we have

Tl ,
sup Ep|—e "I+ / (P,— C)e~tdt — ™™™~ I_] = sup Eple "™ (Vi (Pr,) — I4)]-
o< <1 T+ 0<14

Then equation (3.12) is satisfied if
osélp Eple™"™(Vi(Pr,) — I4)] = V2(P). (3.13)
<4

We assume that Condition (3.7) is satisfied. Even if this condition is not satisfied, we can prove the result
by mimicking the argument below for V*(P) = V;(P) — I;. Let Y; 2 ortyr (P;). From (3.5) and Ito’s

lemma,

ive e—”V:I(Pt)]DtO'th, if P< P_T_,
t —
eV} (P) PiodW, — e~ (P, — C)dt + re "1, dt, if P> P}

Then from the generalized Ito’s lemma (7],

dY; = [e7"V}'(P)PwdW; — e P, — C)dt]1{P > Pi} (3.14)

+e~ TtV (P)PiodW1{P, > Py} + e (VI (Py) — V2'(P}))dAy(PY).
Rewritting (3.14) in the stochastic integral form, we get
t t
Y, = Yo+ / e~V (P,) P,o1{P; > P}}dW, — / e~™(P, — C)1{P, > P}}du
0 0

t t
+ / e~ "V*(P,)P,01{P, < P{}dW,, + / e T4V} (P + 0) — V2 (Py = 0))dA,(P})
0 ' 4]
t t
< Yot [ eVIRIRMP > PlaW.+ [ TV (PIRMP > PiJaW,
(¢} (4]

t
+ [ TV P 0) = V(P = 0P

' t t .
Yo + / e‘"‘V;_’(P,,)Pul{Pu > P W, + / e~V (P,)P,1{P, > P} }aw,.
0 ‘ 0 :
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Here the inequality follows from P} > C + rl; and the last equality follows from Vi(Py) = V(P

Thus for any stopping time 7,
EplY:] <Yo + Ep[/DT e "V (Py)Py1{Py > Py}dW, + /; e'"‘V:"(Pu)Pul{Pu > Py}dW,).
Furthermore from the uniform integrability of stochastic integrals,
Ep| /0 T eV (P PP, > PyYdW, + /D T eyt ()PP, > PL}dW,] = 0.
Then the following inequality holds for any stopping time 7.
Eple™V2(P,)] < V2(P). (3.15)
From Lemma 3.2, V}(P) — I < VZ(P) for 0 < P < P}. This together with (3.8) and (3.15) yields
Eple™™ (Vi(P;) = I4)] < Eple™ V2(P;)] S V2(P). (3.16)
Since T is arbitrary, we get
sup Eple™™(Vi(Pr,) — I1)] S VI(P). (3.17)
On the other hand, from the definition,
sup Eple™ ™™+ (Vi(Pr,) — I4)] 2 Eple™+(Vi(Pr;) - I4)] = V2 (j’)- (3.18)

0<4

From (3.13), (3.17) and (3.18), we arrive at (3.12). O

4 Multiple Entry-Exit Problem

In this section, we consider the evaluation of the project when the investor can activate / inactivate the
project many times under the constant entry and exit costs. At time 0, the project is active or inactive
and the production state is z € {+,~}. Our problem is to evaluate the sequential entering-exiting

strategy {Tik), 7® ; k = 1} which attains the maximum discounted present value :

) ' (k)
() TR —pr®
sup EP[E —e L l{zx=—-o0r k>2}+ e (P -C)dt—e P-1_1}].
0g-grMgr gt G U

(4.1)
Especially we consider the sequential simple strategy that starts (stops, respectively) the production
activity when the price process hit the activation (inactivation) trigger price Py (P-). For the notational

convenience, let

5 " D
V+(P; P+, P_) = Ep[/ e " (Pg - C)dt —€ P-T_
. 0
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X L7 S By
+2 e ("**/ o eTTRI(P, — Ot — T TR,
k=2 TPy

k)’
Py

= ;rr(k)l Tg‘—)l . —rr®’
VABPLP) = Bplye T (<l [ e R- O - TR L)
k=1 L

where

® inf{t > &Y, B>P}, if k22,
TP+ =

0, if k=1,
Tgi) = inf{t 2 r,‘,’f s BB< P}, for k>1,
T:‘a’fl = inf{t>rFY; B> P}, for k>1,

. k)’ .
W inf{t >l ; R<P}, if k21,

0, if k=0.

Then we have the following value functions for this multiple entry-exit model.

Theorem 4.1 Under Assumption 2.1,

Vi(P; Py, P_) ,
P C ( P C> (P_>V.-+ V++2"7
= —_—— - +I_—-—= —
r—u T T— U T P
. v_—/v3 42
P_. v—+ l/++27l (-}I;f-) + P+ C P_ C P_ v_+ V++27I
3 o (- 9) (3)
P pA\2VVitm \Tr—pn T r—u T Py
1- (%)
V- /vy +2n
= P _ _C_ + (— P -I_+ —C- + V_(P_;P+,P_)) (5) , (4.2)
r—p T rT—Uu T P
V_(P; Py, P_)
P\~ VT —
B (_I_‘,h) P, g L P ol g P \*~ vi+2n
- 1 p\VAFm \r—p T + r—p . r P,
- (%)
) P v_+ ++2ﬂ .
= (e -1 (2) . (43)

Proof. By the definition,

V+(Pv P+1 P—)
)
TP (D
- Ep| / e (P, — C)dt— e P[]
0
i (0 % —r(t—r{)) —r(r () _ )y
+ZEP[3 P+]E[—I++/ e P (Py—-C)dt —e PPy I_IPT(k)]. (4.4)
k=2 T Py

(k)
Py

From the strong Markov property and (2.3),

()
TP (g ) () (k)
E[-I, + / e ") (B - C)dt — TP " _|P ]
+

(k)
VT
Py
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TP_
= Ep+[—I++/ e_"t(Pt—C)dt—e_”P-I_] (45)
o
P, C P_ C\ [ P_\"- Vvt
et (e (5)
T—p T T—Uu r Py
= A~

Also from (2.3),

e v_+\/E 420
-~ ) +
Ep[/ T e (P, — C)dt— e L] = Lﬂ _c_ ( LI 9) (E) . (46)
0

Using (2.5), (3.3) and the strong Markov property,

. K X k) |, (k-1 k-1 2 1 1
Ep[e_"‘(":] — Ep{e_r(f‘("-:—f‘(:’—+1-‘(’- )_1-‘(,+ )"'"'M‘(’-:_T‘(’—)Hl(’-))]

—rT, —rT, —rT, —rT, k-2
Eple™™™"-|Ep_[e"™"+]| (Ep,[e” "~ |Ep_[e7"+])

P \v-H/vitm P, v-+43,/vT 2 P 2k\/vT 2
- () & &) | (“n
Substituting (4.5) through (4.7) into (4.4), we get
(4.4)

P C (P C\ [P\~ V¥t
- EE (e f) (3)

r—p T T—U T Py

+<P_)V..+ ++2Tl (P+)ll—+3 ++2nA*i(P—)2k U++27]

P P_ =~ \P;
P v—+ v++2n P\~ ++2n

R TR AN il O i

r—u T T—Uu T oor P p_\2VVi+2n ’

- (%)

which implies the first equality of (4.2). By the same way,

V—(P; P+)P—)
iy R Tg‘_)’ ol (R B (k)
= Y Bl R IE L+ [ TR - 0t DL P ) )
k=1 . Tp+ a8

Using (2.5), (3.3) and the strong Markov property,

(R (Y (=) (k=1)(k-1) (1)
Eple ™™+ = Eple TP TP FTel T TRy bl -

(D
Eple” "+ |(Ep, [e "™~ |Ep_[e TP+ ])k-1

ETTETT

‘ Substituting (4.5) and (4.9) into (4.8), we get

(e’
B (g ® (Y R
E[-I, + / e TP (g O)dt — e TP TR P ]
*r}(,")’ ey



(P v- —‘/;’++én P -2 u++271 00 P 2k\/u+’ +2n
— i+ = A* -
2 () (%)

ko \ P+

*

- ()

which implies the first equality of (4.3). The second equalities of (4.2) and (4.3) can be derived from the

first equalities. O

Corollary 4.2 V_(P; Py, P_) and V,.(P; Py, P_) has the following relationship.

V_(Py; Py, P_)+ 14 = Vi(Py;Py,P),
Vi(P-; Py, P_)+I- = V_(P_;P4,P).
Proof. From (4.2),
Vi (Py; Py, P_)
P+ c ( P C) (P_)v_-l'- ll++21]
= —_——— +I_ - — —_—
T—p T r—u T Py
v_—,/;’ +2n
P_ v_+\/Vi+2n (;f—) + P, C I ( P_ I C)(P_)"-+ 2 +2n
+ P, p_\2VVi+2n r—p r T \r=p T ¥ Py
1-(5)
P 24/vit2n P 2/vi+en
= |1- —:> V_(Py; Py, P )+ 14 + (-":) V_(P4; Py, P-)
Py » P,

V_ (P+; P+, P_) + I+.

The last equality follows from (4.3). By the same way from (4.3) and (4.2),

V_(P-;Py,P_)
P, \¥-~ VAt : '
(ﬁ'—) P+ —Q—I —( P ol _g) (E:)V_-i- V++2'n
1 (P_)2\/V1+2n rT—p T * T— U T P,
yory

Vi(P-; P, PY+I_. O

Next we shall show the optimal trigger prices to activate or inactivate the project. Here we study
the value function for the active project, that is V., (P; Py, P_). From the first order condition for the

optimality of Py,

oVy(P; Py, P_)
3P,
B E u_+\/u+’ +2n 6V.(P.;P+, P_)
- P OP,

P=P_
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> (P_)wr o P, C P
_ PH\F 2 + _C _ 1 \_o/i2vrom v(PuPLP —*)
- b \2VA+2n ((V‘+ V++217> (T—u - I+> vi+2n V( +i Py —)+T_#
1- (%)
= 0.

Also from the optimality of P_,

OV4(P; Py, P_)
oP_

(o PR 1~ 8) -+ PTT)
P_\2¢/v4 43
-(7) vV

P v+ u++2n - <
- (%) (52"~ (Bt (Z-8) () V)
+ 7
(-Geyv™)

1 P v u++211
# (%)

Then we arrive at the following necessary conditions for the optimal trigger prices P} and P=.

P. P c '
J2 +2n Vo (Pu +* (=4 - J2 + =
24/v3 +2n —(P,+’P+’P_)_r—u (r—u I, r)(u_+ vi 217) 0, (4.10)
P_ P_ C
2 . - = 2 =
24/v3 +2n V_(P_,P+,P_)—r_p—(1__p+l_ r)(u_+\/u++2n) = 0. (4.11)

Here notice that the optimality conditions of Py and P_ for V_(P; Py, P_) are also result in (4.10) and

(4.11). Thxs property is consistent with the optimality of the entry-exit strategy which is expressed by
the constant trigger prices P}, P*. In fact, we can prove the optimality of this stopping strategy by
mimicking the argument shown in Sections 2 and 3, iteratively.

Finally we sketch how to get equations (4.2), (4.3) a;nd the optimal trigger price conditions (4.10),
(4.11) from the no arbitrage and smooth pasting conditions [3]. Let us fix the entry and exit trigger
prices P, P_ and denote the value function by V4.(P) = V,(P; Py, P_) and V_(P) = V_(P; Py, P_).
From the arbitrage free condition for the active or inactive project, V. (P) and V_(P) must satisfy the
differential equations (2.8) and (3.4). By the basic property of the value function V,.(P), we have the

following boundary conditions.

lim @ <o, Vi(P.)=V_(P))-1I_.

P—oo

VSubstituting this condition into the general solution (2.9), the we get (4.2) in the second form. The

boundary conditions for V_(P) are given by

lim |V (P)| < 00, V_(Py) = Vi(Py) - Ly.

N . p. P_ 2 P_ c
- 2,/vT+2n (2 vi+2n V—(P—-rP+aP—)—m—(V_+ V++2n)(r—_#+1_—7

)



124

This together with (3.6) yields (4.3) in the second form. Furthermore the smooth pasting conditions for

the optimal trigger prices are :

Vi(Py) VL(Py), (4.12)

VI(P) = V.(P.). (4.13)

From equations (4.2) and (4.3), we can easily check that conditions (4.12) and (4.13) are actually corre-
sponding to (4.10) and (4.11). Thus equations (4.2), (4.3), (4.10) and (4.11) give the analytical solution

form for the valuation problem of entry-exit model which is solved by Dixit [2] numerically.
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