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SPIRAL CONVERGENCE OF SOR DURAND-KERNER’S METHOD

15 #HM (YAMAGISHI YOSHIKAZU)

EARFETEHRBEFERER
(Department of Applied Mathematics and Informatics, Ryukoku University)

ABSTRACT. It is proved that SOR Durand-Kerner’s method has splral trajectories of
approximants toward multiple roots.

1. INTRODUCTION

Durand-Kerner’s method is an iterative algorithm for finding zeros of a monic com-
plex polynomial p(z) of degree d > 1. It was proposed by Weierstrass[8], Durand[2],
Dochev[1], Kerner[5] and Presi¢[6]. Let £ = (xg,... ,Zq—1) be a point in the complex
Euclidean space C¢. Let I, = {0,1,... ,k — 1}, I = {1,... ,k — 1} be finite sets of
indices. Let ; : q — C m&@ = x;, i € I, be the projection to the i-th coordinate. If f
is a self-map of CZ, we denote the iteration of f by f*: fO(Z) = Z, f*+1(2) = f(f*(@)).

In this paper we consider Durand-Kerner’s method with ‘successive-over-relaxation’.
It can be defined in several ways. SOR Durand-Kerner’s method is:

- the iteration of the rational mapping
of :CEC

where f : C2 — C is the rational function defined by

- p(zo) .
7!',Lf = -’L'O A(zo—ml)...(go_zd_l) , 1= O,
Zi, i Il,i

and o : C2 — C2 is the linear autqmorphism
o(zoy... ,Za=1) = (T1,.-- ,Td—1,T0)-
- the iteration of the mapping
F=fd_1"'f01Cﬁ —+<L‘;

where f; =07 fo?, i € I,.
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- the recursive formula

: p(xi)
(T: — Tig1) -+ (@5 — Tiga_1)

Tiyd =Ti — A

with initial values zo, ... ,z4_; that generates the sequence of complex numbers
{xi}i=o 1,..°

Remarkr 1. The constant A € Ris called the relaxation parameter. The case with A = 1
is especially called Gauss-Seidel Durand-Kerner’s method.

Remark 2. We have F = (0 f)¢ because 0~%*+! = ¢. Each f; leaves x; invariant if j # 4:
7ij,; =T7j.

Let r;, ¢ € I, be the roots of p(z) with multiplicities m;, so that Z;:ol m; =d. Let
R the set of mappings p : I; — I, such that #p7 (@) =m; forie I,. If p € R is given,
let 0; : Iy, — I4, i € I, be the injective mapping such that image(6;) = p~1(i), and
0;(j) < 6;(k) for j < k. ' '

Let '
ta()=01-71-79")---1-7%, ~yeC

Then for each primitive d-th root of unity ¢, there exists a function \ s Y¢(A) defined
for 0 < A < € with € small such that Laye = id, limy—,0 v (A\) = ¢ and

Y(A) =¢— %A +O(IAY) asA—o0.

We will prove the following theorems.

Theorem 1. Let d > 2, 0 < A < € with € small, ¢ a primitive d-th root of unity,
and v¢()) the function defined as above. There exists a complex manifold W ¢ C?
holomorphically isomorphic to the punctured disk D* = {z e C|0< |2| <1} such that
each Ty € W has a backward orbit ¥_, € W, —n < 0, with 0 f(T-(nt1)) = Ten,
lim_,_,_o moZ_, = o0, and

lim  —0T=m ().
—n—=00 ML _ (n41)

Remark. Existence of the spiral trajectory {Wof—nd}_nzo,_l’m of ‘period’ d was ob-
served by Kanno et al. [4].

Theorem 2. Let d > 2,0 < X < € with € small, p € R, ¢; a primitive m;-th root of
unity, 6; and v, ()) the functions defined as above. Denote by Yi(A) = v¢,(A). There is
an open set U C (Cj containing the point 7, = (rp(o), .+ sTp(d—1)) On its boundary, such
that for each initial value ¥ € U we have

. nea =
nli)ngoF (&) =7,
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and, for eachi € I,

ng(j)F"(.’f) -7

lim = =; by , € I,In‘,
n—oo Wei(j—l)Fn(ZU) — 7( ) ] ;
@) Z T )
n—00 Mo, (m,—1) " HE) =15 e

Our argument is based on the Unstable Manifold Theorem and the deformation of
the phase space (C‘i In section 2 we recall the dynamics of of in the simplest but
important case p(z) = x¢ that was studied in [9]. In section 3 we study the dynamics
at infinity and prove Theorem 1. In section 4 we study the dynamics close to the root
7, and prove Theorem 2.

This work is partially supported by The Ryukoku University RIKOU Foundation.

2. THE CASE p(x) = z¢

x
In [9], we proved the Theorems above in the case p(z) = z%. We take the coordinate
change ¥ = x(Z) defined by ‘

Yo = Zo
Y; = a:,-./xi_l, 1€ I{i
The rational map g = xofx~!: (Cz — (Cyl is written by
YoY1, ‘ 1= 0’
(1) Wzg(?:l‘) = Yi+1, ‘ 1 S ) S d— 2,

1 1 ' . L
Y1+ Yd—1 (1 B A(1—91)'_"(1—y1--'yd—1)) ; t=d-1

The origin of C,,f is blowed-up to the hyperplane
(2) a={7eC} |y =0}

which is forward invariant under g. A point § € q is fixed under g if and only if ¥ =
where 7 = (0,7,...,7) € @ and v is a root of the equation A = £4(7).

Lemma. Let d > 2, p(x) = x4, and 0 < \ < € with € small. A point § € (CZ is a stable
fixed point under g if and only if § = 5¢(X) € o where ( is a primitive d-th root of unity
and ‘
'7((/\) = (0’7C()‘), e ’74()‘))-
The multipliers of 7¢(\) under gla are written by ty, k € I;, where -
ok
ty = Ck - 5

= A+O0(A?)  as A—0.

Proof. [9].
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3. DYNAMICS AT INFINITY

Here we prove Theorem 1. Let p(x,z’) = o’ dp(a:/ z') be the homogeneous polynomial
of degree d of two variables z, ’. We take the coordinate change z = x (&) defined by

zZ20 = 1/330

ZiZIi/.’L‘i_l, ’LEI&
The rational map h = xofx ! : (Czi — Czi is written by

ZO/zla Z:O’
ﬁzh(é') = Zi41s 1<1 < d— 2’

1 1,z .
21+ 2d—1 (1 - /\(l—zl)-?él—gz...zd_l)) y 1= d-—1.

The hyperplane g C @j defined by zg = 0 corresponds to the set of ‘points at infinity’
of C¢, and is forward invariant under h.

Since p(1,0) = 1, we have h|8 = gl if we identify 8 ¢ C with o ¢ CZ. For each
primitive d-th root of unity ¢, the point ¥¢(A) € § is a stable fixed point of h|3, but is
a saddle of h with a multiplier 1/v,()\) and the eigenvector tangent to the complex line

Le = {7 )., W) [y € G

Thus it has a holomorphic unstable manifold V' of complex dimension 1 tangent to L¢
(by an argument of Hirsch-Pugh-Shub [3] adapted to the holomorphic category). We
take W = x~1(V — {¥;(\)}) and all the assertions in Theorem 1 follows.

4. DYNAMICS AROUND THE ROOT

Here we prove Theorem 2. We denote the rational map g defined in (1) by g4, and
the hyperplane « defined in (2) by ag.

Let o; : C© — C2, i € I, be the linear automorphism defined by
Wkai(f) = T, k € I with p(k);'é 1,

and :
By To;(j+1), 0<j7<m;—2
To.(j)0i(Z) = { G

Lg,(0)s _7 =m; — 1.
Let f; = fo,(0) for i € I,. It is easily seen that

s ot =1d,

: fGi(j) = O‘z—jf,ta’;z fori e I,,, .7 € Im,-a

+ oifk = froi if 1 # p(k),

- 0ifj = fio it # .
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Thus we can re-factor F' = f4_1 - fo by the composite of o; f;, 1€ l,, as

@ | F = 0,5a-1)fpa-1)"** 9p(0) fo(0)-

Denote by (z,-,o, .v+ yZi,m;—1) a point in Cz':‘, t€1l,,and let M = C;’;“ X +oe X C;':"’_—ll.
Let m;; : M — C m;;(2) = 24, i € I, j € I, be the projection to the (i, )-th
component. Let x; : C¢ — CJ, i € I,,, be the rational map

= { Zo,(0) — Tis i=0,
" (xg,¢j) — i)/ (®o,(j—1) — Ti), J € I},,.

We take the coordinate change
X=X0X" "X Xpy-1 :C’;—}M.
The rational mapping h; = xo; f, x~!: M — M is written by

ﬂ'k,jhi(z_f) = Zk,j, "kel,,j EImk, with k # 1

and
2i,02i,1, J=0,
mijhi(2) = { i+l 1< <mi -2,
ﬁ (1 — AH;(2)/ Tl (A = 21 - 'Zi,k)> , j=mi—1
where

Mker, gi(ri — T + 2i,0)™
erI,,,k;éi ;:B_l(ri ~Th+ 2,0 = Zk,0 " " Zk,1)

Hi(Z) =

By (3) we have
XEXT! = Ro(a—1) "+ hp(o)-
Let 3; C C;':i be the hyperplane defined by z; 0 = 0. The product B = Gy X - -+ X

B,-1 C M corresponds under x to the point 7, € (Cﬁ, and is forward invariant under
every h;, i € I,. Since H;(Z) =1 on B, i € I,,, we have

hi|B=1d X -+ X (gm;|0m;) X - -+ X id, i€ 1,

if we identily 8; ¢ C* with a,,, C CZ‘ Note that h;’s are commutative on B:
h',,hJIB = hjhiIB, 1,7 € 1,.

A point Z € B is fixed under every h;|B if and only if Z = Fy X --+ X ¥,_; where
¥ = (0,%,...,%) € B; and ~; is a root of the equation A = £,,,(7). A point Z € B
is a stable fixed point of every h;|B, i € I,,, if and only if Z = ¢, X --+ X J,_, where
G, i € I, is a primitive m;-th root of unity. Such fixed point ¥, X --- X ¥, _, is also
a stable fixed point of every h;, ¢ € I,, with a multiplier ., (\) and the eigenvector
tangent to the complex line ¥, X --+ X L¢; X -+ X 4, _,. Thus it has an attracting
region V. We take U = x 1 (V = {F¢, X +++ X ¥¢,_, }) and all the assertions in Theorem
2 follows. :
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5. DiscussioN

In section 4, we only studied the points Z' € B that is fixed under ‘every’ h;|B, i € I,,.
It is desirable that our argument be extended to the stable fixed points of the mapping
hy,“T' -+~ hg|B which will also have the spiral trajectories in the space CZ.
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