SPIRAL CONVERGENCE OF SOR DURAND-KERNER'S METHOD

山岸 義和 (YAMAGISHI YOSHIKAZU)

龍谷大学理工学部数理情報学科

(Department of Applied Mathematics and Informatics, Ryukoku University)

ABSTRACT. It is proved that SOR Durand-Kerner's method has spiral trajectories of approximants toward multiple roots.

1. Introduction

Durand-Kerner's method is an iterative algorithm for finding zeros of a monic complex polynomial p(x) of degree d>1. It was proposed by Weierstrass[8], Durand[2], Dochev[1], Kerner[5] and Prešić[6]. Let $\vec{x}=(x_0,\ldots,x_{d-1})$ be a point in the complex Euclidean space \mathbb{C}^d_x . Let $I_k=\{0,1,\ldots,k-1\}$, $I'_k=\{1,\ldots,k-1\}$ be finite sets of indices. Let $\pi_i:\mathbb{C}^d_x\to\mathbb{C}$, $\pi_i\vec{x}=x_i,\ i\in I_d$, be the projection to the i-th coordinate. If f is a self-map of \mathbb{C}^d_x , we denote the iteration of f by f^k : $f^0(\vec{x})=\vec{x},\ f^{k+1}(\vec{x})=f(f^k(\vec{x}))$.

In this paper we consider Durand-Kerner's method with 'successive-over-relaxation'. It can be defined in several ways. SOR Durand-Kerner's method is:

· the iteration of the rational mapping

$$\sigma f: \mathbb{C}^d_x o \mathbb{C}^d_x$$

where $f:\mathbb{C}^d_x o\mathbb{C}^d_x$ is the rational function defined by

$$\pi_i f = \left\{egin{array}{ll} x_0 - \lambda rac{p(x_0)}{(x_0 - x_1) \cdots (x_0 - x_{d-1})}, & i = 0, \ x_i, & i \in I_d'. \end{array}
ight.$$

and $\sigma: \mathbb{C}^d_x o \mathbb{C}^d_x$ is the linear automorphism

$$\sigma(x_0,\ldots,x_{d-1})=(x_1,\ldots,x_{d-1},x_0).$$

· the iteration of the mapping

$$F = f_{d-1} \cdots f_0 : \mathbb{C}^d_x \to \mathbb{C}^d_x$$

where $f_i = \sigma^{-i} f \sigma^i$, $i \in I_d$.

1991 Mathematics Subject Classification. 30C15 32H50 34C35 65H05.

· the recursive formula

$$x_{i+d} = x_i - \lambda \frac{p(x_i)}{(x_i - x_{i+1}) \cdots (x_i - x_{i+d-1})}$$

with initial values x_0, \ldots, x_{d-1} that generates the sequence of complex numbers $\{x_i\}_{i=0,1,\ldots}$.

Remark 1. The constant $\lambda \in \mathbb{R}$ is called the relaxation parameter. The case with $\lambda = 1$ is especially called Gauss-Seidel Durand-Kerner's method.

Remark 2. We have $F = (\sigma f)^d$ because $\sigma^{-d+1} = \sigma$. Each f_i leaves x_j invariant if $j \neq i$: $\pi_j f_i = \pi_j$.

Let r_i , $i \in I_{\nu}$, be the roots of p(x) with multiplicities m_i , so that $\sum_{i=0}^{\nu-1} m_i = d$. Let R the set of mappings $\rho: I_d \to I_{\nu}$ such that $\#\rho^{-1}(i) = m_i$ for $i \in I_{\nu}$. If $\rho \in R$ is given, let $\theta_i: I_{m_i} \to I_d$, $i \in I_{\nu}$, be the injective mapping such that $\operatorname{image}(\theta_i) = \rho^{-1}(i)$, and $\theta_i(j) < \theta_i(k)$ for j < k.

$$\ell_d(\gamma) = (1 - \gamma)(1 - \gamma^2) \cdots (1 - \gamma^d), \qquad \gamma \in \mathbb{C}$$

Then for each primitive d-th root of unity ζ , there exists a function $\lambda \mapsto \gamma_{\zeta}(\lambda)$ defined for $0 < \lambda < \epsilon$ with ϵ small such that $\ell_{d}\gamma_{\zeta} = id$, $\lim_{\lambda \to 0} \gamma_{\zeta}(\lambda) = \zeta$ and

$$\gamma_{\zeta}(\lambda) = \zeta - \frac{\zeta}{d^2}\lambda + O(|\lambda|^2)$$
 as $\lambda \to 0$.

We will prove the following theorems.

Let

Theorem 1. Let $d \geq 2$, $0 < \lambda < \epsilon$ with ϵ small, ζ a primitive d-th root of unity, and $\gamma_{\zeta}(\lambda)$ the function defined as above. There exists a complex manifold $W \subset \mathbb{C}^d_x$ holomorphically isomorphic to the punctured disk $\mathbb{D}^* = \{z \in \mathbb{C} \mid 0 < |z| < 1\}$ such that each $\vec{x}_0 \in W$ has a backward orbit $\vec{x}_{-n} \in W$, $-n \leq 0$, with $\sigma f(\vec{x}_{-(n+1)}) = \vec{x}_{-n}$, $\lim_{-n \to -\infty} \pi_0 \vec{x}_{-n} = \infty$, and

$$\lim_{-n \to -\infty} \frac{\pi_0 \vec{x}_{-n}}{\pi_0 \vec{x}_{-(n+1)}} = \gamma_{\zeta}(\lambda).$$

Remark. Existence of the spiral trajectory $\{\pi_0\vec{x}_{-nd}\}_{-n=0,-1,\dots}$ of 'period' d was observed by Kanno et al. [4].

Theorem 2. Let $d \geq 2$, $0 < \lambda < \epsilon$ with ϵ small, $\rho \in R$, ζ_i a primitive m_i -th root of unity, θ_i and $\gamma_{\zeta_i}(\lambda)$ the functions defined as above. Denote by $\gamma_i(\lambda) = \gamma_{\zeta_i}(\lambda)$. There is an open set $U \subset \mathbb{C}^d_x$ containing the point $\vec{r}_{\rho} = (r_{\rho(0)}, \ldots, r_{\rho(d-1)})$ on its boundary, such that for each initial value $\vec{x} \in U$ we have

$$\lim_{n\to\infty} F^n(\vec{x}) = \vec{r}_{\rho}$$

and, for each $i \in I_{\nu}$,

$$\lim_{n \to \infty} \frac{\pi_{\theta_{i}(j)} F^{n}(\vec{x}) - r_{i}}{\pi_{\theta_{i}(j-1)} F^{n}(\vec{x}) - r_{i}} = \gamma_{i}(\lambda), \qquad j \in I'_{m_{i}},$$

$$\lim_{n \to \infty} \frac{\pi_{\theta_{i}(0)} F^{n}(\vec{x}) - r_{i}}{\pi_{\theta_{i}(m_{i}-1)} F^{n-1}(\vec{x}) - r_{i}} = \gamma_{i}(\lambda).$$

Our argument is based on the Unstable Manifold Theorem and the deformation of the phase space \mathbb{C}^d_x . In section 2 we recall the dynamics of σf in the simplest but important case $p(x) = x^d$ that was studied in [9]. In section 3 we study the dynamics at infinity and prove Theorem 1. In section 4 we study the dynamics close to the root \vec{r}_{ρ} and prove Theorem 2.

This work is partially supported by The Ryukoku University RIKOU Foundation.

2. The case
$$p(x) = x^d$$

In [9], we proved the Theorems above in the case $p(x) = x^d$. We take the coordinate change $\vec{y} = \chi(\vec{x})$ defined by

$$y_0 = x_0$$

$$y_i = x_i/x_{i-1}, \qquad i \in I'_d.$$

The rational map $g = \chi \sigma f \chi^{-1} : \mathbb{C}^d_y \to \mathbb{C}^d_y$ is written by

(1)
$$\pi_{i}g(\vec{y}) = \begin{cases} y_{0}y_{1}, & i = 0, \\ y_{i+1}, & 1 \leq i \leq d-2, \\ \frac{1}{y_{1}\cdots y_{d-1}} \left(1 - \lambda \frac{1}{(1-y_{1})\cdots(1-y_{1}\cdots y_{d-1})}\right), & i = d-1. \end{cases}$$

The origin of \mathbb{C}^d_x is blowed-up to the hyperplane

(2)
$$\alpha = \left\{ \vec{y} \in \mathbb{C}_y^d \mid y_0 = 0 \right\}$$

which is forward invariant under g. A point $\vec{y} \in \mathbb{C}_y^d$ is fixed under g if and only if $\vec{y} = \vec{\gamma}$ where $\vec{\gamma} = (0, \gamma, \dots, \gamma) \in \alpha$ and γ is a root of the equation $\lambda = \ell_d(\gamma)$.

Lemma. Let $d \geq 2$, $p(x) = x^d$, and $0 < \lambda < \epsilon$ with ϵ small. A point $\vec{y} \in \mathbb{C}_y^d$ is a stable fixed point under g if and only if $\vec{y} = \vec{\gamma}_{\zeta}(\lambda) \in \alpha$ where ζ is a primitive d-th root of unity and

$$\vec{\gamma}_{\zeta}(\lambda) = (0, \gamma_{\zeta}(\lambda), \dots, \gamma_{\zeta}(\lambda)).$$

The multipliers of $\vec{\gamma}_{\zeta}(\lambda)$ under $g|\alpha$ are written by t_k , $k \in I'_d$, where

$$t_k = \zeta^k - \frac{k\zeta^k}{d^2}\lambda + O(|\lambda|^2)$$
 as $\lambda \to 0$.

Proof. [9].

3. Dynamics at infinity

Here we prove Theorem 1. Let $p(x,x') = x'^d p(x/x')$ be the homogeneous polynomial of degree d of two variables x, x'. We take the coordinate change $\vec{z} = \chi(\vec{x})$ defined by

$$z_0 = 1/x_0$$

$$z_i = x_i/x_{i-1}, \qquad i \in I'_d.$$

The rational map $h=\chi\sigma f\chi^{-1}:\mathbb{C}^d_z o\mathbb{C}^d_z$ is written by

$$\pi_i h(\vec{z}) = \begin{cases} z_0/z_1, & i = 0, \\ z_{i+1}, & 1 \le i \le d-2, \\ \frac{1}{z_1 \cdots z_{d-1}} \left(1 - \lambda \frac{p(1, z_0)}{(1-z_1) \cdots (1-z_1 \cdots z_{d-1})} \right), & i = d-1. \end{cases}$$

The hyperplane $\beta \subset \mathbb{C}^d_z$ defined by $z_0 = 0$ corresponds to the set of 'points at infinity' of \mathbb{C}^d_x , and is forward invariant under h.

Since p(1,0)=1, we have $h|\beta=g|\alpha$ if we identify $\beta\subset\mathbb{C}^d_z$ with $\alpha\subset\mathbb{C}^d_x$. For each primitive d-th root of unity ζ , the point $\vec{\gamma}_{\zeta}(\lambda) \in \beta$ is a stable fixed point of $h|\beta$, but is a saddle of h with a multiplier $1/\gamma_{\zeta}(\lambda)$ and the eigenvector tangent to the complex line

$$L_{\zeta} = \{(y, \gamma_{\zeta}(\lambda), \dots, \gamma_{\zeta}(\lambda)) \mid y \in \mathbb{C}\}.$$

Thus it has a holomorphic unstable manifold V of complex dimension 1 tangent to L_{ζ} (by an argument of Hirsch-Pugh-Shub [3] adapted to the holomorphic category). We take $W = \chi^{-1}(V - \{\vec{\gamma}_{\zeta}(\lambda)\})$ and all the assertions in Theorem 1 follows.

4. Dynamics around the root

Here we prove Theorem 2. We denote the rational map g defined in (1) by g_d , and the hyperplane α defined in (2) by α_d .

Let $\sigma_i: \mathbb{C}^d \to \mathbb{C}^d$, $i \in I_{\nu}$, be the linear automorphism defined by

$$\pi_k \sigma_i(\vec{x}) = x_k, \qquad k \in I_d \text{ with } \rho(k) \neq i,$$

and

$$\pi_{\theta_i(j)}\sigma_i(\vec{x}) = \begin{cases} x_{\theta_i(j+1)}, & 0 \le j \le m_i - 2 \\ x_{\theta_i(0)}, & j = m_i - 1. \end{cases}$$

Let $\hat{f}_i = f_{\theta_i(0)}$ for $i \in I_{\nu}$. It is easily seen that

- $\sigma_i^{m_i} = id$
- $f_{\theta_{i}(j)} = \sigma_{i}^{-j} \hat{f}_{i} \sigma_{i}^{j} \text{ for } i \in I_{\nu}, j \in I_{m_{i}},$ $\sigma_{i} f_{k} = f_{k} \sigma_{i} \text{ if } i \neq \rho(k),$
- $\cdot \ \sigma_i \hat{f}_i = \hat{f}_i \sigma_i \text{ if } i \neq j.$

Thus we can re-factor $F = f_{d-1} \cdots f_0$ by the composite of $\sigma_i \hat{f}_i$, $i \in I_{\nu}$, as

(3)
$$F = \sigma_{\rho(d-1)} \hat{f}_{\rho(d-1)} \cdots \sigma_{\rho(0)} \hat{f}_{\rho(0)}.$$

Denote by $(z_{i,0},\ldots,z_{i,m_i-1})$ a point in $\mathbb{C}^{m_i}_{z_i}$, $i\in I_{\nu}$, and let $M=\mathbb{C}^{m_0}_{z_0}\times\cdots\times\mathbb{C}^{m_{\nu-1}}_{z_{\nu-1}}$. Let $\pi_{i,j}:M\to\mathbb{C}$, $\pi_{i,j}(\vec{z})=z_{i,j},\ i\in I_{\nu},\ j\in I_{m_i}$, be the projection to the (i,j)-th component. Let $\chi_i:\mathbb{C}^d_x\to\mathbb{C}^{m_i}_{z_i},\ i\in I_{\nu}$, be the rational map

$$z_{i,j} = \begin{cases} x_{\theta_i(0)} - r_i, & j = 0, \\ (x_{\theta_i(j)} - r_i) / (x_{\theta_i(j-1)} - r_i), & j \in I'_{m_i}. \end{cases}$$

We take the coordinate change

$$\chi = \chi_0 \times \cdots \times \chi_{\nu-1} : \mathbb{C}^d_x \to M.$$

The rational mapping $h_i = \chi \sigma_i \hat{f}_i \chi^{-1} : M \to M$ is written by

$$\pi_{k,j}h_i(\vec{z}) = z_{k,j}, \qquad k \in I_{\nu}, j \in I_{m_k}, \text{ with } k \neq i$$

and

$$\pi_{i,j}h_i(\vec{z}) = \begin{cases} z_{i,0}z_{i,1}, & j = 0, \\ z_{i,j+1}, & 1 \leq j \leq m_i - 2, \\ \frac{1}{z_{i,1}\cdots z_{i,m_i-1}} \left(1 - \lambda H_i(\vec{z}) / \prod_{k=1}^{m_i-1} (1 - z_{i,1}\cdots z_{i,k})\right), & j = m_i - 1 \end{cases}$$

where

$$H_i(\vec{z}) = \frac{\prod_{k \in I_{\nu}, k \neq i} (r_i - r_k + z_{i,0})^{m_k}}{\prod_{k \in I_{\nu}, k \neq i} \prod_{l=0}^{m_k - 1} (r_i - r_k + z_{i,0} - z_{k,0} \cdots z_{k,l})}.$$

By (3) we have

$$\chi F \chi^{-1} = h_{\rho(d-1)} \cdots h_{\rho(0)}.$$

Let $\beta_i \subset \mathbb{C}_{z_i}^{m_i}$ be the hyperplane defined by $z_{i,0} = 0$. The product $B = \beta_0 \times \cdots \times \beta_{\nu-1} \subset M$ corresponds under χ to the point $\vec{r}_{\rho} \in \mathbb{C}_x^d$, and is forward invariant under every h_i , $i \in I_{\nu}$. Since $H_i(\vec{z}) = 1$ on B, $i \in I_{\nu}$, we have

$$h_i|B = id \times \cdots \times (g_{m_i}|\alpha_{m_i}) \times \cdots \times id, \qquad i \in I_{\nu},$$

if we identily $\beta_i \subset \mathbb{C}_z^{m_i}$ with $\alpha_{m_i} \subset \mathbb{C}_y^{m_i}$. Note that h_i 's are commutative on B: $h_i h_j | B = h_j h_i | B$, $i, j \in I_{\nu}$.

A point $\vec{z} \in B$ is fixed under every $h_i|B$ if and only if $\vec{z} = \vec{\gamma}_0 \times \cdots \times \vec{\gamma}_{\nu-1}$ where $\vec{\gamma}_i = (0, \gamma_i, \dots, \gamma_i) \in \beta_i$ and γ_i is a root of the equation $\lambda = \ell_{m_i}(\gamma)$. A point $\vec{z} \in B$ is a stable fixed point of every $h_i|B$, $i \in I_{\nu}$, if and only if $\vec{z} = \vec{\gamma}_{\zeta_0} \times \cdots \times \vec{\gamma}_{\zeta_{\nu-1}}$ where ζ_i , $i \in I_{\nu}$, is a primitive m_i -th root of unity. Such fixed point $\vec{\gamma}_{\zeta_0} \times \cdots \times \vec{\gamma}_{\zeta_{\nu-1}}$ is also a stable fixed point of every h_i , $i \in I_{\nu}$, with a multiplier $\gamma_{\zeta_i}(\lambda)$ and the eigenvector tangent to the complex line $\vec{\gamma}_{\zeta_0} \times \cdots \times L_{\zeta_i} \times \cdots \times \vec{\gamma}_{\zeta_{\nu-1}}$. Thus it has an attracting region V. We take $U = \chi^{-1}(V - \{\vec{\gamma}_{\zeta_0} \times \cdots \times \vec{\gamma}_{\zeta_{\nu-1}}\})$ and all the assertions in Theorem 2 follows.

5. Discussion

In section 4, we only studied the points $\vec{z} \in B$ that is fixed under 'every' $h_i|B, i \in I_{\nu}$. It is desirable that our argument be extended to the stable fixed points of the mapping $h_{\nu-1}^{m_{\nu-1}} \cdots h_0^{m_0}|B$ which will also have the spiral trajectories in the space \mathbb{C}_x^d .

REFERENCES

- 1. K. Dochev, An alternative method of Newton for simultaneous calculation of all the roots of a given algebraic equation, Phys. Math. J. Bulgar. Acad. Sci. 5 (2), 136-139.
- 2. I.E. Durand, Solutions Numérique des Équations Algébriques. Tome I: Équations du Type F(x) = 0; Racines d'une Polynôme, Masson, Paris, 1960, pp. 279–281.
- 3. M. Hirsch, C. Pugh, and M. Shub, Lecture Notes in Mathematics, vol. 583, Springer, 1977.
- 4. S. Kanno and T. Yamamoto, Validated computation of polynomial zeros by the Durand-Kerner method, Topics in Validated Computations (Herzberger, ed.), Elsevier, Amsterdam, 1994, pp. 55–63.
- 5. I.O. Kerner, Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen, Numerische Mathematik 8 (1966), 290-294.
- 6. M.D. Prešić, Un procédé itératif pour déterminer k zéros d'un polynôme, Comptes Rendus de l'Academie des Science, Paris, Ser. I **273** (1971), 446-449.
- 7. M. Shub, Global stability of dynamical systems, Springer, 1987.
- 8. K. Weierstrass,, Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus lineare Functionen derselben Veränderlichen, (Johnson Reprint Corp., New York, 1967), 251–269.
- 9. Y. Yamagishi, Stable spiral orbits of SOR Durand-Kerner method applied to the equation $x^d = 0$, submitted to Journal of Computational and Applied Mathematics.