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Abstract
We consider about subsemigroups of $\mathrm{E}\mathrm{n}\mathrm{d}\overline{\mathbb{C}}$. We can define Julia sets,

Fatou sets, etc. We show the backward sel&imilarity of Julia sets of finitely
generated rational semigroups. If the post critical set of the semigroup
is contained in a domain of Fatou set, the Julia set is a self similar set.
Next, hyperbolic rational $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{g}_{\mathrm{l}\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{s}}$ have no wandering domains under
a general assumption. If the hyperbolic rational semigroup is finitely gen-
erated and satisfies some conditions, the limit functions of the semigroup
on the Fatou set are only constant functions that take their values on
post critical set. When the generators of a finitely generated hyperbolic
rational $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{g}_{1}\cdot \mathrm{o}\mathrm{u}\mathrm{p}$ are perturbed, the hyperbolicity is kept and the Jilia
sets depend cotiniously on the generators. Further more, if the finitely
generated $1\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}\mathrm{a}}1$ semigroup is hyperbolic and if the inverse images by
the generators of the Julia set are mutually disjoint, then the Julia set
moves by holomorphic motion.

Next we consider about finitely generated rational semigroups satis-
$\mathrm{f}\mathrm{y}\mathrm{i}_{1\mathrm{l}}\mathrm{g}$ a strong open set condition. We show that if a semigroup satisfies
the strong open set condition, the Julia set has no interior points, and
furthur more, if the semigroup is hyperbolic, the Hausdorff dimension of
Julia set is strictly lower than 2. The value $\delta$ of the dimension coincides
with the unique value that allows us to construct $\delta$-conformal measure.
The $\delta$-Hausdorff measure of the Julia set is a finite value strictly bigger
than zero.

Next we coustruct the generalized Lyubich measure on Julia set when
the semigroups are hyperbolic or satisfy strong open set condition. The
measure also can be considered as the generalized BernouUi measure on
self similar set. And using that measure we try to estimate the Hausdorff
dimension of Julia set from below.

1 Introduction
For a Riemann surface $S$ , let Elld$(S)$ denote the set of all holomorphic endomor-
phisms of $S$ . It is a semigroup with the semigroup operation being functional
composition. A rational semigroup is a subsemigroup of End $(\overline{\mathbb{C}})$ without any
constant $\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}$ . Similarly, an entire semigroup is a subsemigroup of End(C)
without any constant $\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{t}_{\mathrm{S}}$. A rational semigroup $G$ is called a polynomial
semigroup if each $g\in G$ is a polynomial. When a ratio nal or elltire semigroup
$G$ is generated by $\{f_{1}, f2, \ldots fn’\ldots\}$ , we denote this situation by

$G=\langle f_{1}, f2, \ldots f_{1\iota}, \ldots\rangle$ .
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The rational or entire semigroup gellerated by a single function $g$ is denoted by
$(g)$ . We denote the $f|$, th iterate of $f$ by $f^{n}$ .
Definition 1.1 Let $G$ be a rational semigroup.

$F(G)^{\mathrm{d}\mathrm{f}}=^{\mathrm{e}}$ { $z\in\overline{\mathbb{C}}|G$ is normal in a neighborhood of $z$ }

$J(G)^{\mathrm{d}\mathrm{e}}=^{\mathrm{f}}\overline{\mathbb{C}}\backslash F(G)$

$F(G)$ is called Fatou set for $G$ and $J(G)$ is called Julia set for G. Similarly,
Fatou set and Julia set for entire semigroup are defined.

$\mathrm{D}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}backwardofb1.2Leito-(zt)of_{Z}anhesetoGbear_{dt}ational_{S}emigroupaCfexepti_{\mathit{0}}nalp_{oi}nendzb.apEtS(c)areointof\overline{\mathrm{c}d}.efine\tau hed$

$by$:
$O^{-}(z)^{\mathrm{d}\mathrm{f}}=^{\mathrm{e}}$ { $w$.

$\in\overline{\mathbb{C}}|$ there is some $g\in G$ such that $g(w)=z$ },
$E(G)^{\mathrm{d}}=^{\mathrm{f}}\mathrm{e}\{z\in\overline{\mathbb{C}}|\#^{o}-(Z)\leq 2\}$.

Definition 1.3 A subsemigroup $H$ of a semigroup $G$ is said to be of finite
index if there is a finite collection of elements $\{g_{1},g_{2}, \ldots , g_{n}\}$ of $G$ such that
$G= \bigcup_{i=1}^{n}g:H$ . Similarly we say that a subsemigroup $H$ of $G$ has cofinite index
if there is a finite collection of elements $\{g1, g2, \ldots, gn\}$ of $G$ such that for every
$g\in G$ there is $j\in\{1,2, \ldots, n\}$ such that $g_{j}g\in H$.

Lemma 1.1 Let $G$ be a rational semigroup.

1. For any $f\in G$ ,

$f(F(G))\subset F(G),$ $f^{-1}(J(G))\subset J(G)$

$F(G)\subset F((f\rangle), J(\langle f))\subset J(G)$

2. If $G=\langle f_{1}, \ldots , f_{n}\rangle$ , then

$F(G)= \bigcap_{i=1}^{n}fi^{-}1(F(G)),$ $J(G)= \bigcup_{i=1}^{\hslash}f_{i}-1(J(G))$

If a set $K$ satisfies that $K= \bigcup_{i=1}^{\hslash}f^{-}i(1Iir)$ , we say tllat $K$ has backward self
similarity. Next lemma was shown in [HM1].

Lemma 1.2 Let $G$ be a rational semigroup.

1. If a subsemigroup $H$ of $G$ is of finite or cofinite index, then

$J(H)=J(c)$ .

In particular, $u’ henG$ is a rational semigroup generated by finite elements
\dagger $f_{1},$ $f2,$ $\ldots fn$ } and $m$ is an integer, if we set

$H_{m}=$ { $g=f_{j_{1}}\cdots f_{j_{k}}\in G|m$ devides $k$ },

$I_{m}=$ {$g\in G|g$ is a product of some dements of word length $m$ }
then

$J(G)=J(H_{m})=J(I_{m})$ .
Here we say an $e\dot{l}ementf\in G$ is word length $m$ if $m$ is the minimum
integer such that

$f=f_{j_{1}}\cdots f_{jn}$ .
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2. If $J(G)$ contains at least three points, then $J(G)$ is a perfect set.

3. If there $\dot{u}$ some $g\in G$ such that $\deg(g)\geq 2$ or there is some $g\in G$ such
that $\deg(g)=1$ and order of $g$ is infinite, then

$E(G)=\{z\in\overline{\mathbb{C}}|\# O^{-}(Z)<\infty\},$ $\# E(G)\leq 2$ .

4. If a point $\sim$
’ is not in $E(G)$ , then for every $x\in J(G),$ $x$ belongs to $\overline{O^{-}(z)}$ .

In particular if a point $z$ belongs to $J(G)\backslash E(G)$ , then

$\overline{o-(\approx)}=J(G)$ .

5. If there is some $g\in G$ such that $\deg(g)\geq 2$ or there is some $g\in G$ such
that $\deg(g)=1$ and order of $g$ is infinite and $J(G)$ contains at least three
points, then $J(G)$ is the smallest closed backward invariant set containing
at least three points. Here we say that a set $A$ is backward invariant under
$G$ if for each $g\in G,$ $g^{-1}(A)\subset A$ .

6. If $J(G)$ contains at least three points, then

$J(G)=\overline{\{z\in\overline{\mathbb{C}}|z}$isarepelling fixed point of some $g\in G$}

Proof [HM1]. $\square$

Remark A similar result of 6. for entire semigroup can also be stated.

Example 1.1 For a regular triangle $p_{1}p_{2}p_{3}$ , we set $g_{1}(z)=2(z-p_{1})+p_{i},$ $i=$

$1,2,3$ . And let $G$ be a rational semigroup generated by $\{g_{1}\}$ , not as a group.
Then $J(G)$ is the Sierpi\’{n}ski Gasket.

2 Dynamics ofHyperbolic Rational Semigroups

2.1 Limit Functions
Definition 2.1 Let $G$ be a rational semigroup. We set

$P(G)= \bigcup_{g\in G}${ critical values of $g$}

and we say that $G$ is hyperbolic if and only if $P(G)\subset F(G)$ .
Definition 2.2 Let $G$ be a rational semigroup and $U$ be a component of $F(G)$ .
For every element $g$ of $G$ , we denote by $U_{g}$ the connected component of $F(G)$

containing $g(U)$ . We say that $U$ is a wandering domain if and only if $\{U_{g}\}$ is
infinite.

Theorem 2.1 Let $G$ be a rational semigroup and $U$ be a wandering domain.
Then there is a constant limit function $\varphi$ of $G$ on $U$ taking its value $\zeta$ in $J(G)$ .

Now we show a sufficient condition such that there is no wandeling domain.

Theorem 2.2 Let $G$ be a rational semigroup and $U$ be a wandering domain.
Also let $\varphi$ be a constant limit function of $G$ on $U$ taking its value $\zeta$ in $J(G)$ . If
there is an element of $G$ such that the degree is at least two, then the value $\zeta$ is
in $P(G)$ .
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Corollary 2.1 If $G$ is a hyperbolic rational semigroup containing an element
of degree at least two, then there is no wandering domain of $F(G)$ .

Similarly we can show $\mathrm{t}1_{1}\mathrm{e}$ following result.

Theorem 2.3 In the same situation as Theorem 2.1, assume that every ele-
ment of $G$ is of degree one. For every point $x\in\overline{\mathbb{C}}$, we denote the closure of $G$

orbit of $x$ by $A(x)$ . Then for all $x\in\overline{\mathbb{C}}$ but at most two points of $G$ -fixed points,
$\zeta$ belongs to $A(x)$ .

Corollary 2.2 If every element of $G$ is degree one and there is a point $x\in\overline{\mathbb{C}}$

such that $A(x)$ contains at least two points and is included in $F(G)$ , then there
is no wandering domain of $F(G)$ .

Next we consider about limit functions of a hyperbolic rational semigroup on
the Fatou set. By Theorem 2.2, we get one of main results.

Theorem 2.4 Let $G$ be a finitely generated hyperbolic rational semigroup which
contains an element of degree at least two and assume that every element of
degree one is not elliptic. Then for every compact subset $K$ of $F(G)$ , the $G$

orbit of $I\iota’$ can accumulate only to $P(G)$ and every limit function of $G$ on $F(G)$

is a constant function that takes its value in $P(G)$ .

2.2 Continuity of Julia sets
Definition 2.3 $\dot{L}$et $E$ be a metric space. We denote by $C_{omp^{*}}(E)$ the set of
non-empty compact subsets of E. For every $A,$ $B\in \mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}^{*}(E)$ we set

$\partial(A, B)=\sup\{d(x, B)|x\in A\}$

and
$d_{H}(A, B)= \max\{\partial(A, B), \partial(B, A)\}$ .

It is well knoum that $d_{H}$ is a metric on $c_{omp^{*}}(E)$ . We call it the Hausdorff
metric.

Next we consider if a Julia set depends continuously on the generators.

Definition 2.4 Let $M$ be a complex manifold. Suppose the map

$(z, a.)\in\overline{\mathbb{C}}\mathrm{X}M\mapsto f_{j,a}(z)\in\overline{\mathrm{c}}$

is holomorphic for each $j=1,$ $\ldots$ , $n$ . We set $G_{a}=(f_{1,a},$ $\cdots,$
$f_{n,a}\rangle$ . Then we

say that $\{G_{a}\}_{a\in M}$ is a holomorphic family of rational semigroups.

Definition 2.5 Let $G$ be a rational semigroup. We say that a compact subset
$I\mathrm{i}’$ of $F(G)$ is a confinement set of $G$ if and only if for every $z\in F(G)$ , for all
but finite elements $g$ of $G$ the point $g(z)$ is included in $IC$.

Theorem 2.5 Let $\{G_{a}\}_{a\in M}$ be a holomorphic family of rational semigroups
$u’ hereG_{a}=\langle f_{1,a}, \cdots, f_{n,a}\rangle$ . We assume that for a point $b\in M$ there is a
$con,finement$ set $Ii$ of $G_{b}$ . Then the map.

$arightarrow J(G_{a})\in \mathrm{C}\circ \mathrm{m}\mathrm{p}^{*}(\overline{\mathbb{C}})$

is continuous at the point $a=b$ with respect to Hausdorff metric.
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By Theorems 2.4, 2.5, we get the following result.

Theorem 2.6 Let $\{G_{a}\}_{a\epsilon M}$ be a holomorphic family of rational semigroups
where $G_{a}=(f_{1,a},$ $\cdots,$

$f_{n},a\rangle$ . And we assume that for every $j,$ $d_{j}=\deg(f_{j},a)$ is
constant independent of a. Then

1. Let $b$ be a point of M. Assume tha.t $G_{b}$ is hyperbolic. And also assume
that $d_{1}$ is at least two and for every $g\in G_{b}$ such that $\deg(g)$ is equal to
one $g$ is not elliptic. Then there is an open neighborhood $W$ of $b$ such
that for every $a\in W$ the rational semigroup $G_{a}$ is hyperbolic and the map
$arightarrow J(G_{a})$ is continuous with respect to the Hausdorff metric.

2. Under the same assumption as 1, if the sets $(f_{j,b}^{-1}(j(c)))_{i}$ are $m\mathrm{u}$tually
disjoint, then there is an open neighborhood $V$ of $b$ and a continuous map
$i$ : $\overline{\mathbb{C}}\mathrm{x}Varrow\overline{\mathbb{C}}$ such that for every $z\in\overline{\mathbb{C}}$ the map $arightarrow i(z, a)$ is holo-
morphic, and for every $a\in V$ the map $zarrow\rangle$ $i(z, a)$ is a quasi conformal
homeomorphism $of\overline{\mathbb{C}}$ and maps $J(G_{b})$ onto $J(G_{a})$ .

2.3 Self Similarity of Julia Sets
When $G$ is generated by a rational function $f$ , we know that if all the critical
points are in the immediate attractive basin of a fixed point, then the Julia set
is a Cantor set. Now we consider about the folloing situation similar to that.

Theorem 2.7 Let $G=(f_{1},$
$\ldots,$

$f_{n}\rangle$ be a finitely generated rational semigroup.
Assume that $\deg(f_{1})$ is at least two and for each $j$ such that $\deg(f_{j})$ is one, the
map $f_{j}$ is not elliptic. If $P(G)$ is included in a connected component $U$ of $F(G)$ ,
then there are simply connected domains $V_{1},$

$\ldots,$
$V_{k}$. and mappings $h_{1},$

$\ldots$ , $h_{\epsilon}$

from $W= \bigcup_{j}V_{j}$ to $W$ such that for each $j,$ $i$ the map $h_{j}$ is a hyperbolic metric
contraction from $V_{*}$ to some $V_{:}$ , with the contraction rate bounded by a constant
strictly less than one throughout $V_{i}$ and

$J(G)\subset W,$
$\bigcup_{j}h_{j(j(G))=J()}G$ .

Example 2.1 Let $G_{c}=(z^{2}+c,$ $z^{2}+ci\rangle$ . Then $J(G_{\mathrm{c}})$ is a Cantor set for
sufficiently large positive number $c$ .

3 Hyperbolicity and Strong Open Set Condi-
tion

Definition 3.1 Let $G=\langle f_{1}, f2, \ldots f_{1}1\rangle$ be a finitely generated rational semi-
group. We say that $G$ satisfies strong open set condition if and only if there is
an open neighborhood $O$ of $J(G)$ such that each set $f_{j}^{-1}(O)$ is included in $O$ and
is $mutually\backslash$ disjoint.

The Julia set of rational semigloup may have interior points in general. For
example, the Julia set of $(z^{2},2z)$ is the closure of the unit disc. $\ln[\mathrm{H}\mathrm{M}2]$ , it
was shown that if $G$ is a finitely generated rational semigroup, then each super
attracting point of ally element of $g\in G$ does not belong to the boundary of
the Julia set. So we can construct many examples such that the Julia set has
interior points. Here we show a sufficient condition such that the Julia set has
no interior points.
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Theorem 3.1 Let $G=(f_{1},$ $f_{2},$ $\ldots f_{\hslash}\rangle$ be a finitely generated rational semi-
group. We assume that for each $(i,j)$ such that $i\neq j$ the set $f_{1}^{-1}.(J(G)\cap$

$f_{j}^{-1}(J(G))$ has at most countable points. Then the Julia set $J(G)$ has no in-
terior points.

Proof Assume $J(G)$ has its interior points and let $U$ be a component of
int $(J(G))$ . From Lemma 1.1.2, $U \mathrm{n}\bigcup_{j=1}\hslash f_{j}^{-1}(\mathrm{i}\mathrm{n}\mathrm{t}J(c))$ is dense in $U$. So if
$U\cap f_{i_{1}}^{-1}(\mathrm{i}\mathrm{n}\mathrm{t}J(c))$ is not empty, then $U\cap f_{\dot{2}1}^{-}1$ (int$J(G)$ ) is dense in $U$ and $f_{i_{1}}(U)$

is included in a component $U_{1}$ of int$(J(G))$ . In this way, we can take a sequence
$(i_{k}.)_{k}$. such that for each $k$ the number $i_{k}$ is in $(1, \ldots, n)$ and

$f_{i_{k^{\circ\cdots\circ}}}f_{1}.1(U)\subset Uk$ ,

where $U_{k}$. is a $\mathrm{C}\mathrm{O}\ln_{\mathrm{P}^{\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{t}}}$ of int$(J(G))$ . Now let $(g_{j})$ be a sequence of elements
of $G$ . If the sequence contains infinite elements of $(f_{i_{k}}\mathrm{o}\cdots \mathrm{o}fi1)$ , then $(g_{j})$ is a
normal family on $U$. If $(g_{j})$ contains a subsequence $(h_{l})$ such that for each $l$ the
map $h_{l}$ does not belong to the sequence { $f_{1}k\mathrm{o}\cdots \mathrm{o}fi1)$ , then for each $l$ the set
$h_{l}.(U)$ is included in $F(G)$ and so $(g_{j})$ is a normal family on $U$. So $U$ is included
in $F(G)$ and this is a contradiction. $\mathrm{O}$

Definition 3.2 Let $G$ be a polynomial semigroup. We denote by $K(G)$ the
clusure of a set $I\mathrm{i}_{1}’(c)$ such that for each $z\in Ii_{1}’(c)$ there is a sequence $(g_{m})_{m}$

consisting of mutually distinct elements of $G$ and the sequence $(g_{m}(z))_{m}$ is
bounded. $K(G)$ is called the filled-in Julia set of $G$.

Remark For $\mathrm{e}\mathrm{a}\mathrm{c}1_{1}g\in G$ the inverse image $g^{-1}(K(G))$ is included in $K(G)$

and $J(G)\subset K(G)$ . If $G=\{f_{1},$ $f_{2},$ $\ldots f_{n}$ ) is a finitely generated polynomial
semigroup, then

$K(G)=\cup^{n}f^{-}j(K(G))j=11$ .

Theorem 3.2 Let $G=\langle f_{1},$ $f_{2},$ $\ldots f_{n}$ ) be a finitely generated polynomial semi-
group. Assume that for each $(i,j)$ such that $i\neq j$ the set $f_{i}^{-1}(J(c)\cap f_{j}^{-1}(J(G))$

has at most countable points. Then

$\partial(K(c))=J(G)$ .

Proof By remark and a similar argument in the proof of Theorem 3.1. $\square$

Now we consider about the expanding property of hyperbolic rational semi-
groups.

Theorem 3.3 Let $G=(f_{1},$ $f_{2},$ $\ldots f_{\hslash}\rangle$ be a finitely generated hyperbolic rational
semigroup. Assume that $\deg(f_{1})$ is at least two and for each $g\in G$ such that
$\deg(g)$ is one the map $g$ is not elliptic. Let $K$ be a compact subset $of\overline{\mathbb{C}}\backslash P(c)$ .
Then there is a positive number $c$ and is a number $\lambda>1$ such that for each $k$

$\inf\{||(f_{i_{k^{\mathrm{O}}}}\cdots \mathrm{O}f:1)’(z)|||z\epsilon(f|.k^{\circ}\ldots \mathrm{o}fi_{1})^{-1}(I\iota’), (ik, \ldots, i1)\in(1, \ldots, n)^{k}\}$

$\geq c\lambda^{k}$ , here we denote $by||||$ the hyperbolic metric on an open subset $of\overline{\mathbb{C}}\backslash P(c)$ .
In particular, if $W$ is a simply connected domain which is a relative compact
subdomain $of\overline{\mathbb{C}}\backslash P(c)$ and $A$ is a family of maps on $W$ such that each element
$h$ of $A$ is a well defined branch of $g^{-1}$ where $g$ is an element of $G$ , then each
limit function of $A$ on $W$ is a constant function such that the constant value is
in $J(G)$ .
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Proof We take a relatively compact open subset $V$ of $\overline{\mathbb{C}}\backslash P(G)$ such that
$V$ contains $K\cup J(G)$ alld for each element $g$ of $G$ the inverse image $g^{-1}(V)$ is
included in $V$. We take the hyperbolic metric in each component of $V$. From [S3],
evely lilnit function of $G$ on $F(G)$ is a constant function such that the constant
value is in $P(G)$ . So for each large number $k$ the closure of $g_{k}^{-1}(V)$ is included
in $V$ where $g_{k}$ is any element of $G$ in the form $f_{1}k\mathrm{o}\cdots \mathrm{o}f_{i_{1}}$ . So the inclusion
map $i$ from $g_{k}^{-1}(V)$ to $V$ satisfies that $||i’(\approx)||<1$ for each $z\in g_{k}(-1V)$ from
the Schwartz lemma, where we denote by $||||$ the hyperbolic metric on $g_{k}(-1V)$ .
The nlap $g_{k}$ is a covering map from $g_{k}^{-1}V$ to $V$ and is an isometry between the
hyperbolic metric on $g_{k}^{-1}V$ and $V$. So $||g_{k}’(Z)||>1$ for each $z\in g_{k}^{-1}(V),$

$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\coprod \mathrm{e}$

we denote by $||||$ the $1_{1}\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{b}_{0}1\mathrm{i}\mathrm{C}$ metric on $V$.

By Theorems 3.1, 3.3, we get the following result.

Theorem 3.4 Let $G=(f_{1},$ $f_{2},$ $\ldots f,.\rangle$ be a finitely generated hyperbolic rational
semigroup satisfying strong open set condition. Then $m(J(G))=0$ , where we
denote by $m$ the Lebesgue measure on $\overline{\mathbb{C}}$.

4 $\delta$-Conformal Measure
We construct $\delta$-conformal mbasure on Julia sets of rational semigroups. $\delta$ con-
$\mathrm{f}_{\mathrm{o}\mathrm{r}\mathrm{l}\mathrm{n}\mathrm{a}}1$ measure on Julia sets of rational function is considered in [Sul].

Theorem 4.1 Let $G=\langle f_{1},$ $f2,$ $\ldots fn$ ) be a finitely generated hyperbolic rational
semigroup satisfying strong open set condition. We assume that when $n$ is equal
to one the degree of $f_{1}$ is at least two. And assume that $\infty\in F(G)$ . Let $O$ be
the open set in Definition 3.1. Then there is a number $0<\delta\leq 2$ and there is a
probability measure $\mu$ such that the support of the measure is included in $J(G)$

and if $A$ is a measurable set included in $f_{j}^{-1}(O)$ such that $f_{j}$ is injective on $A$ ,

$\mu(f_{j(A))=}\int_{A}|f_{j}’(z)|^{\delta}d\mu$ .

Also $u\prime e$ say that a probability measure is $\delta$ -confomal if and only if the measure
satisfies the above. And we set

$\delta(G)=\inf${ $\delta\geq 0|$ there is a $\delta$ -confomal measure on $J(G)$ }.

Then $\delta(G)>0$ .
Theorem 4.2 Let $G=\langle f_{1},$ $f_{2},$ $\ldots f_{n}$ ) be a finitely generated hyperbolic rational
semigroup satisfying strong open set condition. We assume that when $n$ is equal
to one the degree of $f_{1}$ is at least two. And assume that $\infty\in F(G)$ . Let $\delta$ be
a number satisfying that $0<\delta\leq 2$ and assume that there is a $\delta$ -conformal
measure $\mu$ on $J(G)$ . Then $\delta=\delta(G)$ and

$\mathrm{d}\mathrm{i}_{\ln_{H}}(j(G))=\delta(G),$ $0<H_{\delta(G)(}J(G))<\infty$ ,

where $\mathrm{d}\mathrm{i}_{\mathrm{l}}\mathrm{n}_{H}$ is the Hausdorff dimension and $H_{\alpha}$ is the $\alpha$ -Hausdorff measure.

By Theorem 3.4, Theorem 4.1 and Theorem 4.2, we get one of main results.

Corollary 4.1 Let $G=\langle f_{1}, f_{2}, \ldots f_{\hslash}\rangle$ be a finitely generated hyperbolic rational
semigroup satisfying strong open set condition. We assume that when $n$ is equal
to one the degree of $f_{1}$ is at least two. Then

$0<\dim_{H}(j(G))<2$ .
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And if we set $\alpha=\dim(J(G))$ , then

$0<H_{\alpha}(J(c))<\infty$ .
Theorem 4.3 Let $G=\langle f_{1},$ $f_{2,\ldots f_{n}\rangle}$ be a finitely generated hyperbolic rational
semigroup satisfying strong open set condition. We assume that when $n$ is equal
to one the degree of $f_{1}$ is at least two. Let $\lambda$ be the number in Theorem 3.3 when
$K=J(G)$ . Then

$\dim_{H}(J(c))\leq\frac{\log(\sum_{j}\deg(f_{j}))}{\log\lambda}$ .

Example 4.1 Let $n$ be a positive integer such that $n\geq 4$ . We set $G=\langle z^{n},$ $n(z-$

$4)+4\rangle$ . Then $G$ is a finitely generated hyperbolic rational semigroup satisfying
strong open set condition and

$1 \leq\dim_{H}J(c)\leq\frac{\log(n+1)}{\log(n)}$ .

5 Invariant Measure
We introduce some notations and results from [L]. Let $A$ be a bounded operator
in the complex Banach space $B$ . The operator $A$ is called almost periodic if the
orbit $\{A^{m}\varphi\}_{m=1}\infty$ of any vector $\varphi\in B$ is $\mathrm{s}\dot{\mathrm{t}}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{y}$ conditionally compact. The
eigenvalue $\lambda$ and related eigenvector are called unitary if $|\lambda|=1$ . The set of
unitary eigenvectors of the operator $A$ will be denoted by $\mathrm{s}_{\mathrm{P}}\mathrm{e}\mathrm{c}_{u}A$. We denote
by $B_{u}$ the closure of the linear span of the unitary eigenvectors of the operator
$A$ . And we set

$B0=\{\varphi|A^{m}\varphiarrow 0(marrow\infty)\}$ ,

here the convergence is assumed to be strong.

Theorem 5.1 If $A$ : $Barrow B$ is an almost periodic operator in the complex
Banach space $B$ , then

$\mathcal{B}=B_{u}\oplus \mathcal{B}0$ .
Corollary 5.1 Let $A:Barrow B$ be an almost periodic operator in the complex
Banach space B. Assume that $spec_{u}A=\{1\}$ and the point $\lambda=1$ is a simple
eigenvalue. Let $h\neq 0$ be an invariant vector of the operator A. Then there exists
an $A^{*}$ invariant functional $\mu\in B^{*},$ $\mu(h)=1$ , such that

$A^{m}\varphiarrow\mu(\varphi)h$ $marrow\infty$ .

Proof [L]. $\square$

We now construct invariant llleasures on Julia sets of hyperbolic rational
semigroups. Let $G=\langle f_{1},$ $f_{2,\ldots f_{n}\rangle}$ be a finitely generated rational semigroup.
For each compact set $K\mathrm{o}\mathrm{f}\overline{\mathbb{C}}$ we denote by $C(K)$ all continuous complex valued
functions on $I\iota’$. It is a Banach space with suprelnum norm. Assume that $IC$ is
backward invariant under $G$ . For each $j$ and for each element $\varphi$ we set

$(A_{j\varphi})(Z)= \frac{1}{\deg(f_{j})}\zeta\in f\sum_{j}\varphi(\zeta)-1(z)$ ’

$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\approx \mathrm{i}\mathrm{s}$ any point of $IC$. Then $A_{j\varphi}$ is an element of $C(I\zeta)$ and $A_{j}$ is a bounded
operator on $C(K)$ . We set . $\cdot$

$\mathcal{W}=\{(a_{1}, \ldots, a_{\mathrm{r}}.,)\in \mathrm{R}^{n}|\sum_{j}a_{j}=1, a_{j}\geq 0\}$
.
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And for eacll $a\in \mathcal{W}$ we set

$(B_{a} \varphi)(\approx)=j1\sum_{=}^{n}a_{j(A_{i^{\varphi}}})(_{Z})$.

Then $B_{a}$ is a bounded operator on $C(K)$ .
Theorem 5.2 Let $G=\langle f_{1}, f_{2}, \ldots f_{n}\rangle$ be a finitely generated hyperbolic rational
semigroup. Assume $G$ has an element of degree at least two. Let $a\in \mathcal{W}$ be a
point satisfying that there is a number $i$ such that $a:\neq 0$ and $f_{i}$ is not an elliptic
element of $Aut(\overline{\mathbb{C}})$ . Then there is a probability measure $\mu_{a}$ on $\overline{\mathbb{C}}$ such that for
each compact set $Ii’$ included in $\overline{\mathbb{C}}\backslash P(G)$

$||B_{a}^{m}\varphi-\mu a(\varphi)1||_{K}arrow 0$ $marrow\infty$ , (1)

where we denote by 1 the constant function taking its value 1 and $||||K$ is
supremum norm on $Ii’$. Also

supp$(\mu_{a})=J(\langle f_{i}1’\ldots, f_{i}k))$,

where $\{i_{1}, \ldots, i_{k}\}=\{j|a_{j}\neq 0\}$.
To prove Theorem 5.2, we need the following two lemmas.

Lemma 5.1 If $I\mathrm{i}’$ is $a$ backward invariant compact subset $of\overline{\mathbb{C}}\backslash P(G)$ , then $B_{a}$

is an almost periodic operator on $C(K)$ .

Lemma 5.2 Let $I\mathrm{i}’$ be $a$ backward invariant compact subset of $\overline{\mathbb{C}}\backslash P(G)$ . If
$B_{a}\varphi=\lambda\varphi,$ $|\lambda|=1$ , then $\lambda=1$ and $\varphi$ is constant. That is, $(C(K))_{u}=\overline{\mathbb{C}}\cdot 1$ .
Proof of Lemma 5.1 By Ascoli Arzela theorem it is sufficient to show that for
each element $\varphi\in C(K)$ the family $\{B_{a}^{m}\varphi\}_{m}$ is equicontinuous on $K$ because
$||B_{a}^{m}\varphi||_{K}\leq||\varphi||_{K}$ for each $m$ and so the family $\{B_{a}^{m}\varphi\}_{m}$ is uniformly bounded.
Let $z$ be a point of $K$ and let $U$ be a simply connected open neighborhood of $z$

$\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{l}\mathrm{u}\mathrm{d}\mathrm{e}\mathrm{d}$ in
$-\mathrm{l}$

$\overline{\mathrm{c}}\backslash P(c)$ . Then for each $g\in G$ we can take well defined branches of
$g$ on $U$. The family { $S|$ a branch of $g^{-1}$ on $U,$ $g\in G$} is normal on

$U\mathrm{a}\mathrm{n}\mathrm{d}$

equicontinuous on $U$. So $\{B_{a}^{m}\varphi\}_{m}$ is $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}_{\mathrm{C}\mathrm{O}}11\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{U}\mathrm{o}\mathrm{u}\mathrm{S}$ .
Proof of Lelllma 5.2 Let $z$ be a point of $I\mathrm{i}^{r}$ such that

$|\varphi(Z)|=$
$\sup_{\prime,w\epsilon I\mathrm{i}}|\varphi(w)|$

.

Then

$|\varphi(Z)|$ $=$ $|(B_{a}\varphi)(Z)|$

$=$
$| \sum_{j}a_{j}(Aj\varphi)(z)|$

$\leq$

$\sum_{j}a_{j^{\frac{1}{\deg(f_{j})}}}\zeta\in f_{j}\sum_{z()}|\varphi(\zeta)-1|$

$\leq$

$\sum_{j}a_{j}|\varphi(z)|=\varphi(Z)$
.

So if $\zeta$ is a point of $f_{i}^{-1}(Z),$ tllen $|\varphi(\zeta)|=|\varphi(z)|$ and so $\varphi(\zeta)=\lambda\varphi(z)$ . Since if $\zeta$

is a point of $f_{i}^{-r}(Z)$ , then $\varphi(\zeta)=\lambda^{r}\varphi(z)$ . Now for each point (of $J((f_{i}))$ there
is a sequence $(\zeta_{m})_{m}$ such that for $\mathrm{e}\mathrm{a}\mathrm{c}1_{1},?1$ the point $\zeta_{m}$ belongs to $f_{i}^{-m}(Z)$ and

$\zeta_{m}arrow\zeta$ .
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Then
$\lambda^{m}\varphi(\approx)=\varphi(\zeta_{m})arrow\varphi(\zeta)$ $marrow\infty$ .

So $\lambda=1$ . Now we $\mathrm{w}\mathrm{i}\mathrm{U}$ show that $\varphi$ is constant. We put $\varphi=\Re\varphi+i\Im\varphi$ . Then

$B_{a}(\Re_{\varphi)\Re}=\varphi,$ $B_{a}(\Im_{\varphi)\Im}=\varphi$ .
Let $z$ be a point of $I\iota’$ such tllat

$| \Re\varphi(z)|=\sup_{w\in I\mathrm{f}}|\Re\varphi(w)|$ .

By a similar argument we can show that $\varphi(\zeta)=\varphi(z)$ for each $\zeta\in f_{\dot{8}}^{-1}(Z)$ . Let
$\zeta$ be $\mathrm{a}\mathrm{l}\tau \mathrm{y}$ point of $J((f\dot{|}\rangle)$ . Let $(\zeta_{m})_{m}$ be a sequence such that for each $m$ the
point $\zeta_{m}$ belongs to $f_{:}^{-m}(\approx)$ and $\zeta_{m}arrow\zeta$ . Then $\varphi(\zeta_{m})arrow\varphi(\zeta)$ so $\varphi(z)=\varphi(\zeta)$ .
In the same way we can show that if $x$ is the minimum point of the function
$\Re\varphi$ , then $\varphi(x)=\varphi(\zeta)$ , where $\zeta$ is any point of $J((f:\rangle)$ . So $\Re\varphi$ is constant

$\mathrm{a}\mathrm{n}\mathrm{d}\square$

by the salne argument $\Im\varphi$ is also constant. Whence $\varphi$ is constant.

Proof of Theorem 5.2 we can assume that for each $j,$ $a_{j}\neq 0$ . By Lemma 5.1,
Lemma 5.2, and Corollary 5.1, if $I\iota’$ is a backward invariant compact subset of
$\overline{\mathbb{C}}\backslash P(G),$ tllen there is a probability measure $\mu_{a,K}$ on $K$ sucll that for each
$\varphi\in C(K)$

$||B_{a}^{m}\varphi-\mu a,K(\varphi)1||_{K}arrow\infty$ $marrow\infty$ . (2)

We consider $\mu_{a,K}$, as a probability measure on $\overline{\mathbb{C}}$. Then $\mu_{a,K}$ is independent of
$I\iota^{-}$ which is backward invariant under $G$ and is included in $\overline{\mathbb{C}}\backslash P(G)$ because
$J(G)$ is included in $K$ by Lemlna 1.2.5 and (2) $1_{1}\mathrm{o}\mathrm{l}\mathrm{d}\mathrm{s}$. For each $\varphi\in C(\overline{\mathbb{C}})$ we
put $\mu_{a}(\varphi)=\mu_{a,K}(\varphi)$ . $\mathrm{T}1_{1\mathrm{e}}\mathrm{n}\mu_{a}$. is a probability measure $\mathrm{o}\mathrm{n}\overline{\mathbb{C}}$. Now let $L$ be any
compact subset of $\overline{\mathbb{C}}\backslash P(G)$ . There is a compact subset $K$ of $\overline{\mathbb{C}}\backslash P(G)$ which
contains $L$ and is backward invariant under $G$ . Then by (2),

$||B_{a\varphi-}^{m}\mu_{a}(\varphi)1||_{L}arrow\infty$ $marrow\infty$ .
Now we will show that $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\mu_{a}=J(G)$ . If we set $K=J(G)$ , then $\mu_{a}=\mu_{a,K}$ .
So supp $\mu_{a}.\subset J(G)$ . To prove $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\mu_{a}\supset J(G)$ it is sufficient to show that for
each $\approx\in J(G)\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{d}$ for each $\varphi\in C(\overline{\mathbb{C}})$ such that $\varphi\geq 0,$ $\varphi(z)>0$

$\int_{\overline{\Phi}}\varphi d\mu_{a}>0$ .

We set
$U=\{\zeta\in j(c)|\varphi(\zeta)>0\}$.

By Lellmla 1.2.6, there is a $\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}\approx 0\in U$ such that $z_{0}$ is a repelling fixed point
of an element $g\in G$ . Then there is an open neighborhood $U_{0}$ of $z_{0}$ included in
$U$ such that $g(U_{0})\supset U_{0}$ . When $\deg(g)$ is at least two, then $E(\langle g\rangle)$ is included
in $P(G)\subset p(G)$ and

$J(G) \subset\bigcup_{m=1}g^{m}(U0)\infty$ .

Whence there is a positive integer $N$ such that for each $\zeta\in J(G)$

$g^{-N}(\zeta)\cap U\neq\emptyset$ . (3)

When $\deg(g)$ is equal to one if we change $g$ to some another element of $G$ , we
call $\mathrm{s}\mathrm{l}_{\mathrm{l}\mathrm{O}\mathrm{W}}$ that (3) holds for an element $g\in G$ and for an integer $N$. Now for
$\mathrm{e}\mathrm{a}\mathrm{c}11\approx\in j(G)$

$B_{a}^{N}\varphi(\approx)>0$ ,
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so there is a positive llunll)er $c$ such that for each $z\in J(G)$

$B_{a}^{N}\varphi(z)\geq C$ .
$\mathrm{W}\mathrm{l})\mathrm{e}\mathrm{n}\mathrm{C}\mathrm{e}$ for each integer $m\geq N$ and for each $z\in J(G)$

$B_{a}^{m}\varphi(z)\geq C$ ,

and so
$\int\varphi d_{l^{\iota}a}\geq c>0$.

$0$

Theorem 5.3 Let $\mu_{a}$ be the probability measure constructed in Theorem 5.2.
Then

1. $/t_{a}.= \sum a_{j}A_{j}^{*}\mu a$ . And if $\mu$ is a probability measure $on\overline{\mathbb{C}}$ such that supp $\mu\subset$

$\overline{\mathbb{C}}\backslash P(G)$ and $\mu=\sum a_{j}A_{j}^{*}\mu$ , Then $\mu=\mu_{a}$ .
2. Let $b$ be a point of $\mathcal{W}$ and assume that there is an integer $i$ such that

$a:\neq 0$ and $f_{i}$ is not an elliptic element of $Aut\overline{\mathbb{C}}$ . Then the map $arightarrow\mu_{a}$

is continuous at $b$ urith respect to the weak topology.

3. Let $a\in \mathcal{W}$ be a point. If there is an integerj such that $a_{j}\neq 0$ and $\deg(f_{j})$

is at least two, then $\mu_{a}$ is non atomic.

Theorem 5.4 Let $a$ be a point of $\mathcal{W}$. Assume that there is a number $j_{0}$ such
that $a_{j_{0}}\neq 0$ and $f_{j_{0}}$ is not elliptic element of $Au\varpi$. Then

1. $/\iota_{a}(f_{j}^{-}1(J(G)))\geq a_{j}$ , for each number $j$ .

2. Assume that for each $(i,j)$ such that $i\neq j,$ $f_{i}^{-1}(j(G))\cap f_{j}^{-1}(J(G))=\emptyset$ .
Then $\mu_{a}(f_{j}^{-1}(j(G)))=a_{j}$ , for each number $j$ .

S. Assume that there is a number $k$, such that $a_{k}$. $\neq 0$ and $\deg(f_{k})\geq 2$ . Also
assume that for each $(i,j)$ such that $i\neq j$ , the set $f_{i}^{-1}(J(G))\cap f_{j}^{-1}(J(G))$

has at most countable points. Then $\mu_{a}(f_{j}^{-1}(J(G)))=a_{j}$ , for each number
$j$ .

Theorem 5.5 In the same assumption as Theorem 5.2,

1. if for each number $i$ the map $f_{i}$ is not elliptic element of $Aut\overline{\mathbb{C}}$ and for
each $(i,j)$ such that $i\neq j$ the set $f_{i}^{-1}(J(G))\cap f_{j}^{-1}(J(G))$ is empty, then
the map

$arightarrow\mu_{a}$

is topological embedding from $\mathcal{W}$ into the space of all probability measures
on $\overline{\mathbb{C}}$ with $fes_{l)ect}$ to the weak topology.

2. if $G\cap Aut\overline{\mathbb{C}}=\emptyset$ and for each $(i,j)$ such that $i\neq j$ the set $f^{-1}.\cdot(J(G))\cap$

$f_{j}^{-1}(J(G))$ has at most countable points, then the map

$arightarrow\mu_{a}$

is topological embedding from $\mathcal{W}$ into the space of all probability measures
on $\overline{\mathbb{C}}$ with respect to the weak topology.

Proof By 2., 3. of Theorem 5.4. $\square$
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Theorem 5.6 Let $M$ be a complex manifold. Suppose for each $j=1,$ $\ldots$ , $n$ the
map

$(z, u)\in\overline{\mathbb{C}}\cross Mrightarrow f_{j,u}(z)\in\overline{\mathrm{c}}$

is holomorphic. We set $G_{u}=(f_{1,u},$ $\cdots,$
$f_{\hslash,u}\rangle$ . And we assume that for every

$j,$ $d_{j}.=\deg(f_{j},u)$ is constant independent of $u$ . Let $v$ be a point of M. Assume
that $G_{v}$ is a hyperbolic rational semigroup not included in $Aut\overline{\mathbb{C}}$ and each $g\in$

$G_{v}\cap Aut\overline{\mathbb{C}}$ is a hyperbolic element. Let $a$ be a point of $\mathcal{W}$ . Then there is an
open neighborhood $V$ of $v$ in $M$ such that for each $u\in V$ we can construct the
probabilty measure $\mu_{a,u}$ in Theorem 5.2 with respect to the hyperbolic rational
semigroup $G_{u}$ and the map

$urightarrow l^{\iota_{a,u}}$.
is continuous from $V$ to the space of all probability measures on $\overline{\mathbb{C}}$ with respect
to the weak topology.

Now we construct invaliant measures on Julia sets of rational semigroups
satisfying strong open set condition.

Theorem 5.7 Let $G=(f_{1}, f_{2}, \ldots f_{n})$ be a finitely generated rational semigroup
satisfying strong open set condition. When $n=1$ , we assume that $f_{1}$ is not
elliptic element of $Aut\overline{\mathbb{C}}$ . Let $O$ be an open set in Definition 3.1. Then for each
$a\in \mathcal{W}$ there is a probability measure $\mu_{a},$ on $\overline{\mathbb{C}}$ such that for each compact subset
$I\iota’$

. of $O$ which is backu’ard invariant under $G$

$||B_{a}^{m}\varphi-l‘\cdot a(\varphi)1||_{K}arrow 0,$ $marrow\infty$ ,

u’here $\varphi\dot{r}s$ any element of $C(\overline{\mathbb{C}})$ . Also

supp$(\mu_{a})=J(\langle fi1’\ldots, fi_{k}))$ ,

u’here $\{i_{1}, \ldots, i_{k}\}=\{j|a_{j}\neq 0\}$. Also

$\mu_{a}=\sum_{=j1}^{n}ajA^{*}\mu j.a$

and the map
$a\mapsto\mu_{a}$

is a topologacal embedding from $\mathcal{W}$ into the space of all probability measures on
$\overline{\mathbb{C}}$ with resp. $ect$ to the weak topology.

Proof The proof is similar to that of Theorem 5.2 so we only have to
$\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{w}\square$

that the family $\{B_{a}^{m}\varphi\}_{m}$ is equicontinuous on $Ii’$ for each $\varphi\in C(K)$ .
Theorem 5.8 Let $G=(f_{1},$ $f_{2,\ldots f_{n}\rangle}$ be a finitely generated rational semigroup
satisfying strong open set condition. When $n=1$, we assume that $f_{1}$ is not
elliptic element of $Aut\overline{\mathrm{C}}$ . Let $a$ be a point of W. Assume that there is a number

$j$ such that $a_{j}\neq 0$ and $\deg(f_{j})\geq 2$ . Then $\mu_{a}$ is non atomic.

6 Estimate ofHausdorffDimension of Julia sets
Using invariant measures in Theorem 5.7, we get one of main results which gives
a lower estimate of Hausdorff dimension of the Julia set of a rational semigroup
which satisfies strong open set condition.
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Theorem 6.1 Let $G=(f_{1}, f_{2}, \ldots f_{n})$ be a finitely generated rational semigroup
satisfying strong open set condition. When $n=1$ , we assume that $f_{1}$ is not
elliptic element of $Aut\overline{\mathbb{C}}$ . Assume that $\infty\in F(G)$ and we set

$M=$ $\max$ $\max$ $|f_{j}’(z)|$ .
$j=1,\ldots n1z\in f_{J}-1(j(G))$

Then
$\dim_{H}J(c)\geq\frac{\log(\sum_{j_{-}1}^{n}-\deg(f_{j}))}{\log M}$,

where $u\prime e$ denote by $\dim_{H}$ the Hausdorff dimension.

Proof Let $\mu=\mu_{a}$ be the probability measure constructed in Theorem 5.7
where

$a_{j}= \frac{\deg(f_{j})}{\sum_{i=1}^{n}\deg(f_{i})}$ .

We fix a number $t$ satisfying

$0<t< \frac{\log(\sum_{j_{-}1}^{n}-\deg(f_{j}))}{\log M}$

and we take a $\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{l}$) $\mathrm{e}\mathrm{r}$ $a$ such that

$t<a< \frac{\log(\sum_{j_{-}1}^{n}-\deg(f_{j}))}{\log M}$ .

Let $\epsilon>0$ be a slnall number and for each $j$ we denote by $J_{j,\epsilon}$ the $\epsilon$ neighborhood
of $f_{j}^{-1}(J(G))$ . We take small $\epsilon$ such that for eacll $j$ and for each $z\in f_{j}^{-1}(J(G))$

$|f_{j}’(Z)|<( \sum_{j=1}^{n}\deg(f_{j}))^{\frac{1}{l}}$ .

We set
$C= \bigcup_{j=1}^{n}$ { $\prime \mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{C}\mathrm{a}1$ points of $f_{j}$ }

and
$C’=c\cup J(G)$ .

we can assulne that
$C’=\cup jn=1J_{j},\epsilon\cap C$.

We fix any positive integer $\mathrm{p}$ . Because G. satisfies strong open set condition,
there is no super attracting fixed point of any element of $G$ in $J(G)$ . So there
is a positive number $\eta$ such that $\eta<\epsilon$ alud if $w\in C’$ is a critical point of all

element $g\in G$ of word length $l<p$ , then

$|w-g(w)|>\eta$ .

Also there is a positive nunuber $\rho$ such that $\rho<q2$ and for each $j$ if $w$ is a critical
point of $f_{j}$ , then for $\mathrm{e}\mathrm{a}\mathrm{c}1_{1}$ point $z\in D(w, \rho)$

$|f_{j}’(z)|<1$ .

Let $C_{\rho}’1$) $\mathrm{e}$ the $\rho \mathrm{n}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{b}_{0}1^{\cdot}\mathrm{h}\mathrm{o}\mathrm{o}\mathrm{d}$ of $C’.$ Tllel.e is a positive number $\delta$ such that
$\delta<e2$ and for each $z\in J(G)\backslash C_{\rho}’$ and for each $j$ the map $f_{j}$ is injective on
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$D(z, \delta)$ . Now let $\zeta$ be any point of $J(G)$ alld $r$ be. a small positive nu.mber. We
take a positive integer $s$ such that

$\delta((\sum_{j=1}\deg(fj))*n)^{-\epsilon-}11<?\cdot<\delta((\sum^{n}j=1\deg(f_{j}))*)1-\epsilon$ .

There is the unique element $g\in G$ of word lengtll $s$ such that $g(\zeta)\in J(G)$ . We
call assulne that $\deg(f_{1})=\max_{j}\deg(f_{j})$ . Then the equation $g(z)=g(\zeta)$ has at
$\mathrm{n}\mathrm{l}\mathrm{o}s\mathrm{t}$

$(\deg(f1))=1$
( $\sum_{\mathrm{j}}\hslash-22$degt $f\mathrm{j}$ ) $),1$

roots in $D(\zeta, f\cdot)$ counting multiplicities. Then for each $m\in \mathbb{N}$

$\mu^{g(\zeta)}\theta+m(D(\zeta, ’\cdot))$ $\leq$
$\frac{(\sum_{j=1}^{n}\deg(f_{j}))^{m}\cdot(\deg(f1))^{(}\sum^{n}j--1-22\deg(f.\mathrm{j}))\frac{}{p}}{(\sum_{j=1}^{n}\deg(f_{j}))^{\epsilon+m}}$

.

$=$
$\frac{(\deg(f1))^{(}\sum^{n}\mathrm{j}_{--\mathrm{l}}\mathrm{e}2\mathrm{d}\mathrm{g}(f\mathrm{j})-2)\frac{}{p}}{(\sum_{j=1}^{n}\deg(fj))\epsilon}$

.
.

Let $\uparrow?l\cdotarrow\infty$ and we get

$\mu(D(\zeta, ’\cdot))$ $\leq$
$\frac{(\deg(f1))^{(}\sum_{\mathrm{j}\mathrm{l}}*--2\deg(f_{\mathrm{j}})-2)\overline{\mathrm{p}}}{(\sum_{j=1}^{n}\deg(fj))\epsilon}$

.

$\leq$
$( \sum_{1j=}^{n}\deg(f_{j}))^{-}\epsilon(1-\cdot\frac{\dot{\sum}^{n}--1\mathrm{z}\mathrm{d}_{l}(\text{ノ}\mathrm{j}^{)-}2}{p}.)$ .

If we take $p$ such that

$a(1- \frac{\sum_{j=1}^{n}2\deg(f_{j})-2}{l}))>t$ ,

then we get

$l^{\iota(D(\zeta},$ $r \cdot))\leq(\sum_{=j1}\deg n(fj))^{-\frac{t}{a}}.$ .

HellCe

$\mu(D(\zeta, ’\cdot))\leq(\frac{r}{\delta})^{t}(j=\sum_{1}^{n}\deg(f_{j}))^{\frac{t}{l}}$ (4)

and the statement of our theorem follows. $\square$

Next we consider the case a hyperbolic rational semigroup $G$ does not satisfy
strong open set condition but $s$atisq open set condition and $J(G)$ is finitely
raniified. Ill this case we also consider the lower estimate of Hausdorff dimension
of the Julia set. Here we get the next interesting example in which the Julia set
is $\mathrm{s}\mathrm{i}_{1}\mathrm{n}\mathrm{i}\mathrm{l}\mathrm{a}\mathrm{r}$ to $\mathrm{t}1_{1}\mathrm{e}$ Sierpitski Gasket.

Example 6.1 Let $G=(f_{1},$ $f_{2},$ $f_{3}\rangle$ where

$f_{1}(z)=z^{2},$ $f_{2}(z)=3(Z-4)+4,$ $f\mathrm{a}(z)=3(z-4i)+4i$ .

$G’$ is hyperbolic. For small positive number $c$ we set $G_{\mathrm{c}}=(f_{1,\mathrm{c}},$ $f_{2,\mathrm{c}},$ $f_{3,c}\rangle$ where

$f_{1,\mathrm{c}}(\approx)=z^{2},$ $f_{2,\mathrm{c}}(z)=(3+C)(\approx-4)+4,$ $f_{3,\mathrm{c}}(z)=(3+C)(_{Z}-4i)+4i$ .
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Then $G_{c}$ is also hyperbolic. $G$ does not satisfy strong open set condition but $G_{\mathrm{c}}$

satisfies. $J(G_{\mathrm{c}})=J((\{f_{i},c^{\mathrm{O}}fj,c\}_{i,j}\rangle)$ and by Theorem 6.1,

$\dim_{H}J(G_{c})$ $\geq$ $\frac{\log 16}{\log\max_{i,j\in(f}\max_{z\mathrm{c}^{\circ f).(J(c))}}-1|\mathfrak{i},\mathrm{j}.\mathrm{c}(f_{1c}\mathrm{o}f_{j,c})’(z)|}.$

,

$arrow$
$\underline{\log 16}carrow 0$ .
$\log 12$

’

By $Theorem\mathit{2}.\mathit{6}.\mathit{1}$, the map $crightarrow J(Gc)$ is continuous with respect to the Haus-
dorff metric. And by Theorem 5.6 and (4) in Theorem 6.1, we get

$\mathrm{d}\mathrm{i}\mathrm{n}1_{H}J(G)\geq\frac{\log 16}{\log 12}$.
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