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Abstract

We consider about subsemigroups of EndC. We can define Julia sets,
Fatou sets, etc. We show the backward selfsimilarity of Julia sets of finitely
generated rational semigroups. If the post critical set of the semigroup
is contained in a domain of Fatou set, the Julia set is a self similar set.

. Next, hyperbolic rational semigroups have no wandering domains under
a general assumption. If the hyperbolic rational semigroup is finitely gen-
erated and satisfies some conditions, the limit functions of the semigroup
on the Fatou set are only constant functions that take their values on
post critical set. When the generators of a finitely generated hyperbolic
rational semigroup are perturbed, the hyperbolicity is kept and the Jilia
sets depend cotiniously on the generators. Further more, if the finitely
generated rational semigroup is hyperbolic and if the inverse images by
the generators of the Julia set are mutually disjoint, then the Julia set
moves by holomorphic motion.

Next we consider about finitely generated rational semigroups satis-
fying a strong open set condition. We show that if a semigroup satisfies
the strong open set condition, the Julia set has no interior points, and
furthur more, if the semigroup is hyperbolic, the Hausdorff dimension of
Julia set is strictly lower than 2. The value é of the dimension coincides
with the unique value that allows us to construct §-conformal measure.
The é-Hausdorff measure of the Julia set is a finite value strictly bigger
than zero.

Next we construct the generalized Lyubich measure on Julia set when
the semigroups are hyperbolic or satisfy strong open set condition. The
measure also can be considered as the generalized Bernoulli measure on
self similar set. And using that measure we try to estimate the Hausdorff
dimension of Julia set from below.

1 Introduction

For a Riemann surface S, let End(S) denote the set of all holomorphic endomor-
phisms of S. It is a semigroup with the semigroup operation being functional
composition. A rational semigroup is a subsemigroup of End(C) without any
constant elements. Similarly, an entire semigroup is a subsemigroup of End(C)
without any constant elements. A rational semigroup G is called a polynomial
semigroup if each g € G is a polynomial. When a ratio nal or entire semigroup
G is generated by {fi1, fa,.-. fn,- ..}, we denote this situation by

G=(fi,far - Sy )



The rational or entire semigroup generated by a single function g is denoted by
(g9). We denote the n th iterate of f by f™.

Definition 1.1 Let G be a rational semigroup.

def

F(G) = {z € C| G is normal in a neighborhood of 2}

J(G) ¥ T\ F(G)

F(G) is called Fatou set for G and J(G) is called Julia set for G. Similarly,
Fatou set and Julia set for entire semigroup are defined.

Definition 1.2 Let G be a rational semigroup and z be a point of C. The
backward orbit O~ (z) of z and the set of ezceptional points E(G) are defined
by:

07 (2) def {w € C | there is some g € G such that g(w) = z},

EG) ¥ {:e T[40~ (2) < 2}.

Definition 1.3 A subsemigroup H of a semigroup G is said to be of finite
indez if there is a finite collection of elements {g1,92,...,9n} of G such that
G =Ulg9:H. Similarly we say that a subsemigroup H of G has cofinite index

if there is a finite collection of elements {g1, g2,...,9n} of G such that for every
g€ G thereis j € {1,2,...,n} such that g;g € H.

Lemma 1.1 Let G be a rational semigroup.

1. For any f € G,
f(F(G)) C F(G), f71(J(G)) c J(G)
F(G) c F({£)), J({f) c J(G)
2. IfG={(fi,...,fn), then
F(G) = N U (F(G)), J(G) = U, 7 1(J(G))

If a set K satisfies that K = UL, f7}(K), we say that K has backward self
similarity. Next lemma was shown in [HM1].
Lemma 1.2 Let G be a rational semigroup.

1. If a subsemigroup H of G is of finite or cofinite indez, then

J(H) = J(G).

In particular, when G is a rational semigroup generated by finite elements
{fi,f2y...fn} and m is an integer, if we set

Hpm ={g9=fj, - fi € G| m devides k},

I, = {9 € G| g is a product of some elements of word length m}
then '
J(G) = J(Hm) = J(Im).

Here we say an element f € G is word length m if m is the minimum
integer such that

f=fj1"‘fjm-
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2. If J(G) contains at least three points, then J(G) is a perfect set.

3. If there is some g € G such that deg(g) > 2 or there is some g € G such
that deg(g) =1 and order of g is infinite, then

E(G)={z€ C|§07(2) < oo}, $E(G) L 2.
4. If a point z is not in E(G), then for every xz € J(G), z belongs to O~ (z).
- In particular if a point z belongs to J(G)\ E(G), then

0-(2) = J(G).

5. If there is some g € G such that deg(g) > 2 or there is some. g € G such
that deg(g) = 1 and order of g is infinite and J(G) contains at least three
points, then J(G) is the smallest closed backward invariant set containing
at least three points. Here we say that a set A is backward invariant under
G if for each g € G, g~1(A) C A.

6. If J(G) contains at least three points, then

J(G) = {z € C| z is a repelling fized point of some g € G}
Proof [HM1]. ]
Remark A similar result of 6. for entire semigroup can also be stated.

Example 1.1 For a regular triangle pip2ps, we set gi(z) = 2(z —pi) +pi, i =
1,2,3. And let G be a rational semigroup generated by {g;}, not as a group.
Then J(G) is the Sierpitiski Gasket. '

2 Dynamics of Hyperbolic Rational Semigroups

2.1 Limit Functions

Definition 2.1 Let G be a rational semigroup. We set

P(G) = U { critical values of g}
g€G

and we say that G is hyperbolic if and only if P(G) C F(G).

Definition 2.2 Let G be a rational semigroup and U be a component of F(G).
For every element g of G, we denote by Uy the connected component of F(G)
containing g(U). We say that U is a wandering domain if and only if {Uy} is
infinite. ’

Theorem 2.1 Let G be a rational semigroup and U be a wandering domain.
Then there is a constant limit function ¢ of G on U taking its value ¢ in J(G).

- Now we show a sufficient condition such that there is no wandering domain.

Theorem 2.2 Let G be a rational semigroup and U be a wandering domain.
Also let p be a constant limit function of G on U taking its value ¢ in J(G). If
there is an element of G such that the degree is at least two, then the value ¢ is

in P(G).



Corollary 2.1 If G is a hyperbolic rational semigroup containing an element
of degree at least two, then there is no wandering domain of F(G).

* Similarly we can show the following result.

Theorem 2.3 In the same situation as Theorem 2.1, assume that every ele-
ment of G is of degree one. For every point = € C, we denote the closure of G
orbit of x by A(z). Then for all z € C but at most two points of G-fized points,
¢ belongs to A(z).

Corollary 2.2 If every element of G is degree one and there is a point x € C
such that A(z) contains at least two points and is included in F(G), then there
is no wandering domain of F(G).

Next we consider about limit functions of a hyperbolic rational semlgroup on
the Fatou set. By Theorem 2.2, we get one of main results.

Theorem 2.4 Let G be a finitely generated hyperbolic rational semigroup which
contains an element of degree at least two and assume that every element of
degree one is not elliptic. Then for every compact subset K of F(G), the G
orbit of K can accumulate only to P(G) and every limit function of G on F(G)
is a constant function that takes its value in P(G).

2.2 Continuity of Julia sets

Definition 2.3 Let E be a metric space. We denote by Comp*(E) the set of
non-empty compact subsets of E. For every A B € Comp* (F) we set

0(A, B) = sup{d(z,B) | z € A}

and

dy (A, B) = max{0(A, B), d(B, A)}

It is well known that dy is a metric on Comp*(E). We call it the Hausdorff
metric.

Next we consider if a Julia set depends continuously on the genera.tors'.

Definition 2.4 Let M be a complez manifold. Suppose the map
(2,0) ECx M fia(z) €C

is holomorphic for each j = 1,...,n . We set Gq = (f1,4,*** fn,a). Then we
say that {Ga}aem is a holomorphic family of rational semigroups.

Deﬁmtlon 2.5 Let G be a rational semigroup. We say. that a compact subset
K of F(G) is a confinement set of G if and only if for every z € F(G), for all
but finite elements g of G the point g(z) is included in K.

Theorem 2.5 Let {Go}acm be a holomorphic family of rational semigroups
where G4 = (fi,ay***y fn,a). We assume that for a point b € M there is a
confinement set K of G. Then the map

a - J(Gq) € Comp*(C)

is cantinuous at the point a = b with respect to Hausdorff metric.

101



By Theorems 2.4, 2.5; we get the following result.

Theorem 2.6 Let {Ga}aem be a holomorphic family of rational semigroups
where G4 = (fi,as "+ fn,a). And we assume that for every j, d; = deg(f;a) is
constant independent of a. Then '

1. Let b be a point of M. Assume that G,, is hyperbolic. And also assume
that dy is at least two and for every g € Gy such that deg(g) is equal to
one g is not elliptic. Then there is an open neighborhood W of b such
that for every a € W the rational semigroup G, is hyperbolic and the map
a+— J(Gg) is continuous with respect to the Hausdorff metric.

2. Under the same assumption as 1, if the sets (f ‘I(J (@))); are mutually

deomt then there is an open neighborhood V of b and a continuous map

: € x V — C such that for every z € C the map a — t(z,a) is holo-

morphzc, and for every a € V the map z — i(z,a) is a quasi conformal
homeomorphism of C and maps J(Gy) onto J(Ga).

2.3 Self Similarity of Julia Sets

When G is generated by a. rational function f, we know that if all the critical
points are in the immediate attractive basin of a fixed point, then the Julia set
is a Cantor set. Now we consider about the folloing situation similar to that.

Theorem 2.7 Let G = (f1,..., fn) be a finitely generated rational semigroup.
Assume that deg(f1) is at least two and for each j such that deg(f;) is one, the
map f; is not elliptic. If P(G) is included in a connected component U of F(G),
then there are simply connected domains Vy,...,V) and mappings hy,...,h,

from W = U;V; to W such that for each j,i the map h; is a hyperbolic metric
contraction from V; to some Vi with the contraction rate bounded by a constant
strictly less than one throughout V; and

J(G) c W, Uh.,-(J(G)) = J(G).

Example 2.1 Let G, = (z* + ¢, z% + ci). Then J(G. ) is a Cantor set for
sufficiently large posztwe number c.

3 Hyperbolicity and Strong Open Set Condi-
tion

Definition 3.1 Let G = (f1, f2,... fa) be a finitely generated rational semi-
group. We say that G satisfies strong open set condition if and only if there is
an open neighborhood O of J(G) such that each set f]-_l(O) is included in O and
18 mutually disjoint.

The Julia set of rational semigroup may have interior points in general. For
example, the Julia set of (z2,2z) is the closure of the unit disc. In [HMZ2], it
was shown that if G is a finitely generated rational semigroup, then each super
attracting point of any element of g € G does not belong to the boundary of
the Julia set. So we can construct many examples such that the Julia set has
interior points. Here we show a sufficient condition such that the Julia set has
no interior points.
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Theorem 3.1 Let G = (fi, f2,...fn) be a finitely generated rational semi-
group. We assume that for each (i,j) such that i # j the set f71(J(G) n
fJ-_l(J(G)) has at most countable points. Then the Julia set J(G) has no in-
terior points. ‘

Proof  Assume J(G) has its interior points and let U be a component of

int(J(G)). From Lemma 1.1.2, UﬂU}'=1fJ?'1(intJ(G))'is dense in U. So if

UNf; 1(intJ(G)) is not empty, then U N f,-:l(intJ (@)) is dense in U and f;,(U)

is included in a component U of int(J(G)). In this way, we can take a sequence
(x )k such that for each k& the number iy is in (1,...,n) and

fik 0-"Of,‘1(U) C Uka

where Uy, is a component of int(J(G)). Now let (g;) be a sequence of elements
of G. If the sequence contains infinite elements of (fi, o---o f;;), then (g;) isa
normal family on U. If (g;) contains a subsequence (h;) such that for each ! the
map Ny does not belong to the sequence (f;, o:--0 f;;), then for each I the set
hi(U) is included in F(G) and so (g;) is a normal family on U. So U is included
in F(G) and this is a contradiction. o

Definition 3.2 Let G be a polynomial semigroup. We denote by K(G) the
clusure of a set K1(G) such that for each z € K1(G) there is a sequence (gm)m
consisting of mutually distinct elements of G and the sequence (gm(z))m is
bounded. K(G) is called the filled-in Julia set of G.

Remark  For each g € G the inverse image g~ Y(K(Q)) is included in K(G)
and J(G) € K(G). f G = (f1,f2,...fn) is a finitely generated polynomial
semigroup, then

k()= | ;71 (K@),
j=1

Theorem 3.2 Let G = (f1, f2,... fn) be a finitely generated polynomial semi-
group. Assume that for each (i,j) such that i # j the set f,-"l(J(G)ﬂfj"l(J(G))
has at most countable points. Then )

IK(Q)) = J(G).
Proof By remark and a similar argument in the proof of Theorem 3.1. O

Now we consider about the expanding property of hyperbolic rational semi-
groups.

Theorem 3.3 Let G = (fi, f2,. .. fn) be a finitely generated hyperbolic rational
semigroup . Assume that deg(fi) is at least two and for each g € G such that
deg(g) is one the map g is not elliptic. Let K be a compact subset of C\ P(G).
Then there is a positive number ¢ and is a number A > 1 such that for each k

inf{||(fi, 0---0 f,'l)'(z)” | z € (fi, 0 °fi1)_1(1{)a(iks°"ail) € (1""’n)k} ,

> c)A¥, here we denote by || || the hyperbolic metric on an open subset of C\ P(G).
In particular, if W is a simply connected domain which is a relative compact
subdomain of C\ P(G) and A is a family of maps on W such that each element
h of A is a well defined branch of g~! where g is an element of G, then each
limit function of A on W. is a constant function such that the constant value is

in J(G).
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Proof = We take a relatively compact open subset V of C \ P(G) such that
V contains K U J(G) and for each element g of G the inverse image g~}(V) is
included in V. We take the hyperbolic metric in each component of V. From [S3],
every limit function of G on F(G) is a constant function such that the constant
value is in P(G). So for each large number k the closure of g; ' (V) is included
in V where g, is any element of G in the form f;, o--- o f;,. So the inclusion
map i from g; (V) to V satisfies that |[i'(z)|| < 1 for each z € g7 (V) from
the Schwartz lemma, where we denote by || || the hyperbolic metric on g Lv).
The map gy, is a covering map from g, 1V to V and is an isometry between the
hyperbolic metric on g; 'V and V. So ||g(2)|| > 1 for each z € g;*(V), where
we denote by || || the hyperbolic metric on V. O

By Theorems 3.1, 3.3, we get the following result.

Theorem 3.4 Let G = (f1, fa,. .. fn) be a finitely generated hyperbolic rational
semigroup satisfying strong open set condition. Then m(J(G)) = 0, where we
denote by m the Lebesgue measure on C.

4 $-Conformal Measure

We construct 6-conformal measure on Julia sets of rational semigroups. § con-
formal measure on Julia sets of rational function is considered in [Sul] .

Theorem 4.1 Let G = (fy, fa,- .- fn) be a finitely generated hyperbolic rational
semigroup satisfying strong open set condition. We assume that when n is equal
to one the degree of fi is at least two. And assume that oo € F(G). Let O be
the open set in Definition 3.1. Then there is a number 0 < § < 2 and there is a
probability measure p such that the support of the measure is included in J(G)
and if A is a measurable set included in fj"l(O) such that f; is injective on A,

w(f3(4)) = /A 1) d.

Also we say that a probability measure is 6-conformal if and only if the measure
satisfies the above. And we set '

8(G) = inf{6 > 0| there is a §-conformal measure on J(G)}.
Then 6(G) > 0.

Theorem 4.2 Let G = (f1, f2,... fn) be a ﬁm‘tély generated hyperbolic rational
semigroup satisfying strong open set condition. We assume that when n is equal
to one the degree of f is at least two. And assume that oo € F(G). Let 6 be
a number satisfying that 0 < 6 < 2 -and assume that there is a 6-conformal
measure § on J(G). Then § = 6(G) and

dian(J(G)) = 6(G), 0< H,s(G)(J(G)) < 00,
where dimy is the Hausdorff dimension and H, is the a— Hausdorff measure.

- By Theorem 3.4 , Theorem 4.1 and Theorem 4.2, we get one of main results.

Corollary 4.1 Let G = (f1, f2,... fn) be a finitely generated hyperbolic rational
semigroup satisfying strong open set condition. We assume that when n is equal
to one the degree of f, ts at least two. Then

0 < dimgy(J(G)) < 2.
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And if we set a = dim(J(G)), then
0 < Ho(J(G)) < o0.

Theorem 4.3 Let G = (fi1, f2,... fn) be a finitely generated hyperbolic rational
semigroup satisfying strong open set condition. We assume that when n is equal
to one the degree of f1 is at least two. Let X be the number in Theorem 3.8 when

K = J(G). Then
log(3_ ; deg(f;))
log A )

Example 4.1 Letn be a positive integer such thatn > 4. We set G = (z", n(z—
4) + 4). Then G is a finitely generated hyperbolic rational semigroup satisfying
strong open set condition and

dimg (J(G)) <

log(n +1)
log(n)

1 < dimg I(G)

5 Invariant Measure

We introduce some notations and results from [L]. Let A be a bounded operator
in the complex Banach space B. The operator A is called almost periodic if the
orbit {A™p}3_; of any vector ¢ € B is strongly conditionally compact. The
eigenvalue A and related eigenvector are called unitary if |A] = 1. The set of
unitary eigenvectors of the operator A will be denoted by spec,A. We denote
by B, the closure of the linear span of the unitary eigenvectors of the operator
A. And we set :
={p| AT - 0 (m — )},

here the convergence is assumed to be strong.

Theorem 5.1 If A : B — B is an almost periodic operator in the complex
Banach space B, then
B=B,® By.

Corollary 5.1 Let A : B — B be an almost periodic operator in the complex
Banach space B. Assume that spec,A = {1} and the point X = 1 is a simple
eigenvalue. Let h # 0 be an invariant vector of the operator A. Then there ezists
an A* invariant functional p € B*, u(h) = 1, such that

A™p — u(p)h  m — oo.
Proof [L]. a

We now construct invariant measures on Julia sets of hyperbolic rational
semigroups. Let G = (f1, f2,... fn) be a finitely generated rational semigroup.
For each compact set I of C we denote by C(K) all continuous complex valued
functions on K. It is a Banach space with supremum norm. Assume that K is
backward invariant under G. For each j and for each element ¢ we set

1
W)= Ty 2 PO

where z is any point of K. Then A;p is an element of C(K) and A; is a bounded
operator on C(K). We set

W = {(a1,...,an) € R* | D _aj =1, a; > 0}.
i
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And for each a € W we set
2) =Y aj(4;je)(2).
Jj=1

Then By is a bounded operator on C(K).

Theorem 5.2 Let G = (f1, fa,. .. fn) be a finitely generated hyperbolic rational
semigroup. Assume G has an element of degree at least two. Leta € W be a
point satisfying that there is a number i such that a; # 0 and f; is not an elliptic
element of Aut(C). Then there is a probability measure yu, on C such that for
each compact set K included in C\ P(G)

”Ba Y= /-l’a(‘p) 1”K -0 m- oo, - ‘ (1)

where we denote by 1 the constant function taking its value 1 and || ||k is
supremum norm on K. Also

supp(pa) = J({firs-- -, fir))s
where {il,...,ik} ={j|a; #0}.

To prove Theorem 5.2, we need the following two lemmas.'

Lemma 5.1 If K is a backward invariant compact subset of C\ P(G), then B,
is an almost periodic operator on C(K).

Lemma 5.2 Let K be a backward invariant compact subset of C \ P(G). If
By = Ap, |A| =1, then XA =1 and ¢ is constant. That is, (C(K)), =C- 1.

Proof of Lemma 5.1 By Ascoli Arzela theorem it is sufficient to show that for
each element ¢ € C(K) the family {B ¢}, is equicontinuous on K because
B¢l < |l¢llx for each m and so the family {B]*¢}, is uniformly bounded.
Let z be a point of K and let U be a simply connected open neighborhood of 2
included in C\ P(G). Then for each g € G we can take well defined branches of
g~ ! on U. The family {S | a branch of g~! on U, g € G} is normal on U and
equicontinuous on U. So {BJ*¢},, is equicontinuous. o
Proof of Lemma 5.2 Let z be a point of I such that

le(2)] = sup |p(w)].
weK

Then
le(z)] = |(Bap)(2)|
= 12 ei(49)()
) ,
) ajle()l = ¢(2).
j

IA

IA

So if ¢ is a point of £7}(z), then |p(¢)| = |¢(2)] and so ¢(¢) = Ap(z). Since if ¢
is a point of f"(z), then ¢({) = A"p(z). Now for each point ¢ of J({f;)) there
is a sequence ({m)m such that for each m the point ¢, belongs to f;™(z) and

Cm — ¢
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Then
A"o(z) = o(Cm) = @({) m — co.
So A = 1. Now we will show that ¢ is constant. We put ¢ = Ry + iSp. Then

Bq(Rp) = Ry, Ba(Syp) = Sp.

Let z be a point of K such that

[Ro(2)] = sup [Rep(w)l.
weK

By a similar argument we can show that ¢(¢) = ¢(2) for each ¢ € f}(2). Let
¢ be any point of J({f:)). Let ((m)m be a sequence such that for each m the
point C belongs to £ ™(z) and Cm — C. Then ¢(Gm) — (C) s0 ¢(2) = (C).
In the same way we can show that if z is the minimum point of the function
Ry, then ¢p(z) = ¢(¢), where ¢ is any point of J({f:)). So Ry is constant and
by the same argument ¢ is also constant. Whence ¢ is constant. o

Proof of Theorem 5.2  we can assume that for each j, a; # 0. By Lemma 5.1,
Lemma 5.2, and Corollary 5.1, if I is a backward invariant compact subset of
C\ P(G), then there is a probability measure pq x on K such that for each
@ € C(K)

IBF'¢ — pta, k(@) Lk = 00 m — oo. : (2)

We consider pq i as a probability measure on C. Then. Ma K is independent of
K which is backward invariant under G and is included in C \ P(G) because
J(G) is included in K by Lemma 1.2.5 and (2) holds. For each ¢ € C(€) we
put stq() = pa k(p). Then pi4 is a probability measure on C. Now let L be any
compact subset of C \ P(G). There is a compact subset K of €\ P(G) which
contains L and is backward invariant under G. Then by (2),

|BS*¢ — tta(@) 1| = 00 m — oo.

Now we will show that supp pq = J(G). If we set K = J(G), then pq = pig k-
So supp pte C J(G). To prove Supp pa D J (G) it is sufficient to show that for
each z € J(G) and for each ¢ € C(C) such that ¢ > 0, ¢(z) >0

/_cpdu.a>0.
¢

U ={¢eJ(G)]| () >0}

By Lemma 1.2.6, there is a point zyp € U such that zy is a repelling fixed point
of an element g € G. Then there is an open neighborhood Uy of 2 included in
U such that g(Up) D Up. When deg(g) is at least two, then E({g)) is included
in P(G) C F(G) and

We set

[o <]
J(G) c |J ™).
m=1
Whence there is a positive integer N such that for each ¢ € J(G)

g NQNU £0. 3)

When deg(g) is equal to one if we change g to some another element of G, we
can show that (3) holds for an element g € G and for an integer N. Now for
each z € J(G)

| Bl ¢(z) >0,
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so there is a positive number ¢ such that for each z € J(G)
BY¢(z) 2 c.

Whence for each integer m > N and for each z € J (G’).
BZe(z) 2 ¢,

and so |

/god;t,.2c>0.
0

Theorem 5.3 Let pu, be the probability measure constructed in Theorem 5.2.
Then

1 pa=Y, a;jAjpa. Andif p is a probability measure on C such that supp p C
C\ P(G) and p = Y a; A, Then p = p,.
2. Let b be a point of W and assume that there is an integer i such that

a; # 0 and f; is not an elliptic element of Aut C. Then the map a +— 4
s continuous at b with respect to the weak topology.

3. Leta € W be a point. If there is an integer j such that aj # 0 and deg(f;)
is at least two, then i, is non atomic.

Theorem 5.4 Let a be a point of W. Assume that there is a number jo such
that aj, # 0 and f;, is not elliptic element of AutC. Then

1. ;za(fJT'l(J(G))) 2 aj, for each number j.
2. Assume that for each (i, j) such that i # j, f71(J(G))N fj_l(J(G)) =
Then ;La(fj_l(J(G))) = aj, for each number j.

3. Assume that there is a number k such that a; # 0 and deg(fi) > 2. Also
assume that for each (i,j) such that i # j, the set fi“l(J(G))ﬂfJT'l(J(G))
has at most countable points. Then pa(f;'(J(G))) = aj, for each number
J- ’
Theorem 5.5 In the same assumption as Theorem 5.2,

1. if for each number i the map f; is not elliptic element of Aut C and for
each (i,7) such that i # j the set f'(J(G)) N fJ-_l(J(G)) is empty, then
the map

a fig

is topological embedding from W into the space of all probabzlzty measures
on € with respect to the weak topology.

2. sz N Aut C = 0 and for each (i,5) such that i # j the set f71(J(G))N
(J (G)) has at most countable points, then the map

@ fig

is topological embedding from W into the space of all probability measures
on C with respect to the weak topology.

Proof = By 2., 3. of Theorem 5.4. v |



Theorem 5.6 Let M be a complex manifold. Suppose for each j =1,...,n the
map ' _ o -
(z, u)erMr—vfju(z)GC

is holomorphic. We set Gy = (fi,us***, fn,u): And we assume that for every
5hdj = deg(f_, «) 18 constant independent of u. Let v be a point of M. Assume
that Gy is a hyperbolic rational semigroup not included in Aut C and each g €
G, N Aut C is a hyperbolic element. Let a be a point of W. Then there is an
open neighborhood V of v in M such that for each u € V we can construct the
probabilty measure pq, n Theorem 5.2 with respect to the hyperbolic rational
semigroup G, and the map
U flgy

is continuous from V to the space of all probability measures on C with respect
to the weak topology.

Now we construct invariant measures on Julla sets of ratlona.l semigroups
satisfying strong open set condition.

Theorem 5.7 Let G = (f1, f2,... fn) be a finitely generated rational semigroup
satisfying strong open set condition. When n = 1, we assume that fi is not
elliptic element of Aut C. Let O be an open set in Definition 3.1. Then for each
a € W there is a probability measure pq on C such that for each compact subset
K of O which is backward invariant under G

"Ba Y — l’a(()o) 1”1\’ — 0, 1.n — 00,
where ¢ is any element of C(C). Also

supp(;ta) = J((fiw LR fik>)7
where {iy,...,1} = {j | a; # 0}. Also

n
ftg = ZajA;;l.a ,
=

and the map
av fig

is a topologacal embedding from W into the space of all probability measures on
C with respect to the weak topology.

Proof  The proof is similar to that of Theorem 5.2 so we only have to show
that the family {B™¢}m is equicontinuous on K for each ¢ € C(K). o

Theorem 5.8 Let G = (f1, fa,... fn) be a finitely generated rational semigroup
satisfying strong open set condition. When n = 1, we assume that fi is not
elliptic element of Aut C. Let a be a point of W. Assume that there is a number
J such that a; # 0 and deg(f;) > 2. Then pq is non atomic.

6 Estimate of Hausdorff Dimension of Julia sets

Using invariant measures in Theorem 5.7, we get one of main results which gives
a lower estimate of Hausdorff dimension of the Julia set of a rational semigroup
which satisfies strong open set condition.
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Theorem 6.1 Let G = (f1, f2,... fn) be a finitely generated rational semigroup
satisfying strong open set condition. When n = 1, we assume that fi is not
elliptic element of Aut C. Assume that oo € F(G) and we set

M = max max f, Z)l
J'=1.-.-,nzef,."(J(G))| i@

Then n
108(2,‘—.—1 deg(f;))
log M ’

where we denote by dimy the Hausdorff dimension.

dian J(G) Z

Proof Let p = g, be the probability measure constructed in Theorem 5.7

where
= Jeglf)
? E?:l deg(fl)
We fix a number t satisfying

log(X}-; deg(f;))
logM

0<t<

and we take a number a such that

log(%5-, deg(;))

t
<a< log M

Let € > 0 be a small number and for each j we denote by Jj ¢ the € nelghborhood
of f 1(J(G)). We take small € such that for each j and for each z € f; LJ(®))

1

THOIRS (Z deg(f;))*-

We set n
C = | J{-critical points of f;}
j=1
and
C'=CU J(G)

we can assume that

C' =Uk,Jic[)C.

We fix any positive integer p. Because G- satisfies strong open set condition,
there is no super attracting fixed point of any elément of G in J(G). So there
is a positive number 7 such that < € and if w € C’ is a critical point of an
element g € G of word length ! < p, then

lw - g(w)] > .

Also there is a positive number p such that p < 7 and for each j if w is a critical
point of f;, then for each point z € D(w, p)

Ifi(z)l < 1.

Let C’ be the p neighborhood of C’. There is a positive number é such that
5 < 3 and for each z € J(G) \ C}, and for each j the map f; is mjectlve on
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D(z, 6). Now let ¢ be any point of J(G) and r be a small posmve number. We
take a positive integer s such that .

6((3 des(fj B < r < (3 des(£)})
j=1

j=1

There is the unique element g € G of word length s such that g(¢) € J(G). We |

can assume that deg(f1) = max; deg(f;). Then the equation g(z) = g(¢) has at
most ‘
(deg(fl))(zj=1ades(fj)—z)f;

roots in D((, r) counting multiplicities. Then for each m € N

(S0, deg(f;))™ - (deg(fr)) 2osmr 248U -D%
(Ti=r deg(F)F ™
(deg(f)) 2= 2285204
(X251 deg(£))’

WD, 1)) <

Let m — oo and we get

(deg(fy))2=ims 248023
(-Z}': deg(f;))®

w(D(, 1)) <

0 2des(s;)-2
S Qa0 T
If we take p such that
? . 2deg(f;) -2
P
then we get
#(D(G, 1) < (O deg(f;)™ %
j=1
Hence
w(D(¢, 7)) < ( <) (E deg(f;))* (4)
ij=1
and the statement of our theorem follows. 0

Next we consider the case a hyperbolic rational semigroup G does not satisfy
strong open set condition but satisfy open set condition and J(G) is finitely
ramified. In this case we also consider the lower estimate of Hausdorff dimension
of the Julia set. Here we get the next interesting example in which the J uha set
is similar to the Sierpinski Gasket.

Example 6.1 Let G = (fi, f2, f3) where
f1(2) = 22, fa(2) = 3(z —4) + 4, f3(2) = 3(z — 4i) + 4i.
G 1is hyperbolic. For small positive number c we set G. = (fi,c, fa,cs [3,c) where

fic(z) = 22, foc(2) =@+c)(z—4)+4, f3.(2) =(B+c)(z—45)+ 4.
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Then G is also hyperbolic. G does not satisfy strong open set condition but G,
satisfies. J(Gc) = J({{fi,c© fjc}i;)) and by Theorem 6.1,

| log 16
dimgy J(G > ;
(Ge) log max;,j max,e(f; .of; )-1(s(G)) |(firc © fi,e)'(2)]
log 16
g1z’ <~

By Theorem 2.6.1, the map c — J(G,) is continuous with réspect to the Haus-
dotff metric. And by Theorem 5.6 and (4) in Theorem 6.1, we get

] log 16
> —,
dimyg J(G) > log 12
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