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ITERATION OF THE FUNCTION cexplaz + b/Z]

FTEA-B MR = (NIRO YANAGIHARA)
TEX - AABF  ®#E FNRF (KAYOKO GOTOH)

ABSTRACT. We will study iteration of the function cexplaz + b/z]. In
this note, we investigate orbits of the critical points, which are useful to
find conditions for real parameters a, b and ¢ such that the Julia set of
cexplaz + b/z] coincides with C*.

PART 1

1. INTRODUCTION

There are many investigations on iteration of entire functions (analytic self-
mappings on C), especially of exponential function ce®*. We shall study iter-
ation of analytic functions on the punctured plane C* = C\{0}.

We denote by E* the set of analytic self-mappings on C*. It is known that
f € E* can be expressed as

f(z) = 2™ exp[g(2) + h(1/2)],

where m is an integer and g , h are entire functions. We call that f belongs
to the Radstrém class, when both g and h are non-constant. The most simple
example of the function in this class is

f(z) = cexplaz + b/2], a,b,cc R\{0},

iteration of which will be investigated in this note.

We use the standard terminology in the iteration theory. We denote by f™
the n-th iteration of the function f. Fatou set and Julia set of f are denoted
by F(f) and J(f), respctively. It is known that the set of repelling periodic
points of f is dense in J(f) [6].
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As seen below, the analytic map w = cexplaz + b/z],a,b,c € R\{0} is
reduced to one of the following three canonical forms:

(1.1) W = Xexp[u(Z +1/Z)], if ab>0,
(1.2) W = dexp[u(Z —1/2)], if ab< 0, ac >0,
(1.3) W = Xexp[—u(Z —1/Z)], if ab< 0, ac <0,

where A and p are positive real numbers.

Case (1) : ab>0
(1-1) When a > 0,6 > 0,c > 0. Putzz\/EZ,w:\/EW, then we have
a a
(1.1)With)\=c\/%>0,,u=\/(ﬁ>0.
b 1
(1-2) When a > 0,b > 0,c < 0. Putz_—\/;-i,w—— ;-—W,thenwe
' b
have (1.1 )WlthA———\[>0,ﬂ Vab > 0.
(1-3) When a < 0,b < 0,c > 0. Putz—\/' ,w*\/' %,thenwe
b
have (1.1) with A = - \/'>0u Vab > 0.

b
(1-4) When a < 0,b < 0,c < 0. Put z = —\/;Z, w = —\/gw, then ‘we

have(ll)w1th)\—-—c\/%>0 p= \/—>0

Case (2) : ab< 0, ac > 0.

(2-1) When a > 0,0 < 0,c > 0. Put z = —_—bZ,wzz ;bW, then we have
V a V «a :

(1.2) with ) = ¢, /-_‘15 >0, p=+/—ab> 0. |
E b

(2-2) When a < 0,b> 0,c < 0. Put z = — _—aZ,wz— —_—;W, then we
have (1.2) with \ = —c\/‘Ta >0, u=+/—ab> 0.
Case (3) : ab< 0, ac < 0.
/b b
(3-1) When a < 0,b > 0,¢ > 0. Put z = -:-C;Z, w = —_aW’ then we

have (1.3) with A = c\/:bcE >0, u=+—-ab>0..
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. - , . b b
(3-2) When a > 0,b < 0,¢ < 0. Put 2 =.—\/7Z, w= —\/-E—W, then we

have (1.3) with A = —c,/—_a—l; >0, p=+v—ab>0.

Put
(1.4 A() = Aexplu(z +1/2)],
(15) () = Aexplu( - 1/2)],
(16) fo(2) = Aexp[—u(z — 1/2)],

where A > 0, > 0. Note that f; has critical points at £1, f, and f3; have at
+i. :

We say that the function f € E* belongs to the class 57 if there exist
ai,...,a € C* such that

f:C\f " ({ary...,a.}) = C\{ay,..., 0.}
is a covering map. ay,...,q, are called finite singularities of f~! and we write

sing (f~') = {@,...,a,}. The union of all the classes S} is denoted by S*.
Obviously all of fi(2), f2(2) and f3(z) belong to S*.

Theorem 1. Let f be a function in the class S*, and s € sing (f~*). The
sequence {f"(s)} is said to satisfy the condition (S) provided that one of the
following conditions is satisfied: |

(S1) /()] = 0,

(52) 1f*(s)] — o0,

(S3) s is a preperiodic, not a periodic point of f.
Suppose that for every s € sing (f~') the sequence {f™(s)} satisfy the
condition (S). Then J(f) = C*.

In the case of entire functions, this theorem was given by Baker [1] and
Devaney [4]. This theorem is a generalization of the results of them.

As seen by Theorem 1, it is important to observe the orbits of critical points.
We shall discribe the orbits of the critical points of

fi(z) = Aexp[u(z+1/2)], A>0, pu>0.

We write simply f for fi.
Consider the funcion ¢; defind by

(1.7) a=ca(p)= % (\./1 +4p? — 1) exp [\/1 +4pu? — 2;1] .

This funcion varies from 0 to 1 as y varies from 0 to co. Note that the equation
f(z) = z has at least one positive solution if and only if Ae? . ¢ (u) < 1.
Indeed, f(z)/z = Aexp[u(z + 1/2)]/z has the minimum value Ae? - ¢;(u) at
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z=(1++1T+4p%)/2u > 1. If Xe* < 1/¢, the equation f(z) = z has two
positive solutions A;, A, such that

14/ 7
+vV1+4p <A

o < 2u
Further
1< A if 1< e,
A =1 if et =1,

Al<l< A, if 0<Xe? <1,

because f has critical point at 1 and f(1) = Ae?. Firstly we observe the orbit
of 1 by iteration of f. Let a, = f™(1), then a; = \e?* and

1
(1.8) a, = Aexp [u (an_l + )] = a; exp [,u’(an_l + ! —2)] .
apn—1 : Qn—1

Thus for any n € N,

(1.9) an 2 a
We consider a, = a; exp[u(a; +1/a; — 2)] Let
1
(1.10) K(z) = zexp [,u (a: + —— 2)] ,

then K has a minimum at ¢; = (=1 4+ +/1 +4p?)/2p < 1, and decreases in
0 < z < ¢, increases in c; < z. If ¢ is the solution of the equatlon

(1.11) c2 exp [,u (co—l———Z)] =1, 0<c¢g<l

Co

then K(cp) = As and co = 1/A,. So we shall prove existence of the solution
of the equation (1.11). Let |

Ko(z) = 2% exp [,u (a:—%—}-—Z)], 0<z<1.
T

Then Ko has a minimum at ¢ = (-1 4+ +/1 4+ p?)/p < 1, and decreases in
0 < z < ¢, increases in ¢ < ¢ £ 1. Since lim;_,0 Ko(z) = oo and Kp(1) =1
there exist only one 0 < ¢g < 1 such that Ko(co) = 1. We note that

(1.12) Ko(z) > 1, thatis zexp [u (:1: + - = 2)] > —

I
if0 <z <.

Theorem 2. Let ¢; and ¢y be as above. Then we have the following:
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(1) If Ae* > 1/¢;, then f*(1) — oo as n — oo.
(2) If 1/c; 2 Ae* 2 o, then {f™(1)} is bounded from 0 and oco.
(3) If co > Xe* > 0, then f*(1) — 00 asn — co.

Next we observe the orbit of —1. Let b, = f*(—1). Then b; = Ae~?* and

' 1
b, = Aexp |p | booy + 1 =byexp || b1+ +21].
bn-—-l b'n.—l

Define two functions Lo and F' by

ALO(:L') = z exp [,u (:1:+%+2)],

and

/A4r? —
F(z) = frtl 1exp[v4:1:2+1+2:v].

2z

It is then easy to see that, Lo(z) 2 F(u) for any z > 0. Define two functions
L, and G by

Li(z) = 2% exp [u <a: + i + 2)] ,

and

G(z) = (@“ 1>2exp [2V27 +1+24].

We easily get that L;(z) 2 G(u), for any z > 0. Note that F(u), G(r) increase
from 0 to oo in x > 0.

Let p1, p2 be positive numbers such that F'(u1) = 1, G(u2) = 1, respectively.
Note that 0 < 3 < p2 < 1. Then we obtain the following.

Theorem 3. Let ¢;, ¢ be as in (1.7),(1.11).

(1) Suppose that p > py. Then, for any A >0, f*(—1) — oo as n — oo.
(2) Suppose that 0 < pu < pq. If Xe? > 1/c; or 0 < Xe?* < ¢, f*(—1) —
00 asn — oo. ’ '

Theorem 4. Let c1, ¢o be as in (1.7),(1.11), and
V1 2
e = c(p) = tapt =1 exp [2;1 -1+ 4u2] .

24
(1) If e > 1/cy, then J(f) = C*.
(2) If ex £ A S 1/cy, then J(f) # C*.
(3) If 0 < Xe* < o, then J(f) = C*.
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2. PROOF OF THEOREM 1

We need the lemma below.

Lemma. Suppose that f € S*. Let E be the set of points of the form f™(s),
s €sing (f~'),n=1,2,.... Then any constant limit o of a sequence { f™*(z)}
in a component of F(f) belongs to L = EU {0} U {o0}.

Although this lemma was given by Baker [1, Theorem 2] for entire functions,
his proof also works for analytic function f : C* — C*.

Suppose that F(f) would be non-empty. By a result of Makienko [6, Lemma
4], f™* converges to a constant & € C* in a component D of F(f). Since F(f)
has no wandering component [6, Theorem 4], we may suppose that f?(D) C D
for some p. Thus f™*? also converges to a in D, and hence a = fP(a).
The lemma above implies o € L, that is @ = f™(s) for some m € N and
s € sing (f~'). Moreover D\{a} contains no finite singularities of f~! by
assumption. Thus D is attractive basin with super-attracting periodic point
a. Thus (f?)'(ca)) = 0 hence f'(B) = 0 for B = f9(a) with some ¢,0 £ ¢ < p—1.
Then f(fB) € sing (f~') is periodic, which contradicts the assumption.

3. PROOF OF THEOREM 2

In the sequel, we frequently use the facts that

1 .
(3.1) the function = 4+ — increases on = 2 1, and decreases on 0 < z < 1,
x

and |
(3.2) T > dexp [,u (m + -la;)] if and 6nly if Ai<z<A,

Case (1) : Ae** > 1/¢;. By (3.1), any1 > a, for any n € N, and hence we
obtain that a, — oo as n'— oo, since the equation f(z) = z has no positive
solution. ’

Case (2) : 1/c; 2 Ae** 2 1. By a; 21 and (3.1), a3 < Aexp[4; + A)] = A,
a; < @, < ap4;. Hence, by means of (3.2), it is shown inductively that
a1 < ap < apyy < Ay, for any n € N.

Note that K(c;) = ¢; <1 and K(1) = 1. So we may take the value c3 such
that 0 < ¢3 < ¢y and,

(3.3) K(cs3) = czexp [u (03 + 21; — 2)] =1,

By A, > 1 and (3.1), we have ¢y < c3.
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Case (3) : 1 > Ae* > c3. We then have ¢; < K(a;) £1, and a; < a3 £ 1,
so that,

a1

1 1
as = A exp [u (ag + a_>] < Aexp [p (al + —)] = a,,
- 2

, 1 1
as = Aexp [,u <a3 + —)] > dexp [u (ag + —)] = as.
as/1 az

and further,
1 2 2 2
a3—a1=)\exp[u<a2+—)] — de* 2 he* — he** =0,
{ v .
1 1
gy — ag = A {exp [,u (a3 + ——)] — exp [u(al + ——)]} <0.
- ag a

Hence a; < a3 £ a4 £ a; £ 1, and we obtain

<

aoam-1 = < 1,

A2m+1 § Ao2m+2 § Aom =

by induction. |
Case (4) : c3 > Xe? 2 ¢o. Then K'(a;) < 0,K(a;) > 1. Since K(c3) = 1
and K(cp) = Ay, Ay 2 a2 > 1 > a;. Suppose a; < a, S A,, then we have

1
an41 = Aexp [u (an + ;—-)] < Xexp [u (Au + AL)] = A,, if 1 £ a,,
1

Any1 = Aexp [ﬂ (an + —1—>] < dexp [u (a1 +
: a

n

by (3.1). Hence for every n € N, a1'< a, S A,.
Case (5) : co > Xe* > 0. From K'(a;) < 0 and K(a;) > 1, we have
K(a;) > K(co) = Ay. Thus we obtain from (3.1) and (3.2),

1
as = A exp [,u (ag + ‘—z—)] > a,,
2

1 1
ay = Aexp [,u (a3 + —)] > dexp [;z (a2 + —)] = as.
as a3

and a,41 > a, > Ay, by induction. Hence a,, — oo.
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4. PROOF OF THEOREM 3 -

Case (1) : g > py: Lo(z) and Ly(z) have the minimum values F(p) and

G(p) at z = (/1 +4p%—1)/2p and = = (/1 + p? —1)/u, respectively. Hence
by definition of y; and pg, for any z > 0,

Lo(@) = wexp [ (z + - +2)] 2 F(1) > 1
Li(z) = 2% exp [p (3: + % + 2)] 2 G(p) > 1.

First assume that b; = Ae™?* 2> 1. Then

(4.1)

by = Aexp [;z (bl + %)] 2 Xt =a; >b 21,
1

and it is shown by induction that

brnty1 = Aexp [,u (bn -+ bl>] > dexp [u (bn_l + bl ) = b,
n n—1/ |

bpy1 = Aexp [u (bn + bl>] 2 dexp [,u (an_l + al ) = Gy,
n n—-1/ |

for any n 2 2. Note that Ae?** > 1/¢; 2 e** > e*/F(u) = 1/¢;, by assump-
tion. Thus Theorem 2 (1), implies b, 2 a,_; — oo.
Next assume that b = Ae™? < 1. Then by (4.1)

1 1
(4.2) by = dexp [/z (bl + —)] > —> 1.
by by
and hence by (3.1)

1 1
bz = Aexp [u (bz + —)] > \exp [u (— + bl)] = b,.
b, by

Further we have b,;; > b,, for every n 2 2 by induction. Note that 1/b; > A,
because of (4.2) and (3.2). Therefore we obtain b, — oco. -

Case (2) : pg 2 p > p1. Suppose that Ae** > 1/¢;. Then

| 1 1
b, = Aexp [u (bn_l—{— )] 2> —>1, n22.

bn-1 1
If \e™2* 2 1, in exactly the same way as Case (1), we have

bn+1 > Ay
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for any n 2 2. By Theorem 2 (1), b, — oo. If he~2* < 1, by (3.1),

1 |
by = Aexp [;4 (bl + —)J > e =q; > —>1.

. bl C1
Hence

1 1
b3 = Aexp [u (b2 + —)] > dexp [u (al + —)] = a,.
b2 ay

By induction, b, > an_; for any n 2 2. By Theorem 2 (1), we obtain b, — oo.
Suppose that Ae?* < ¢;. Then by (1.12)

1 1

By Xe™? < Xe* < ¢ < 1 and (3.1),

! +2)] < Xe** . dexp [u (/\e"z"+ 1 )J = ay - b,.

Ae2w de—2k

1< Mexp [u ()\62" +
Thus we have

1 1
a; = Aexp [,u (— + al)] < Aexp [,u (bg + —)] = ba,
a1 by
and hence a, < bny1, for any n 2 2, by induction. Therefore b, — oo as
n — 00, as above.
Case (3) : p1 2 p > 0. If Ae? > 1/c,, then .

2u 1 1
e~ > exp [——\/4/12 +1-— 2p] = 2> =1.
VApT+1-1 F(p) = F(m)

In exactly the same way as Case (1), we obtain b, — oo.
If Ae* < co, we can prove that b, — oo, in the same way as case (2).

5. PROOF OF THEOREM 4

If de? > 1/c; or 0 < Xe* < ¢y, Theorem 2, Theorem 3 and Theorem
1 imply the assertion. So we consider the case Ae** = ¢,. In this case, by
definition of ¢, it is shown that a; = ¢, a3 = 1/¢y = A,, thus we have a, = as
forn 2 3, b; < a; = ¢, and b, > A;. Therefore a, is a repelling fixed point,
since f'(1/cy) = u(As —1/A,) > 1. Moreover b, — 00 as n — 0o by Theorem
3(2). Hence both {f™(1)} and {f™(—1)} satisfy condition (S), and we have
J(f) = C* by Theorem 1. ,

Next we shall prove (2). Let

:\/1+4,u+1

2p

er = ex(p)
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Vvi+4p -1
2u '

Case (1) : Ae® = 1/c;. Then the equation f(z) = z has only one positive
solution e;(x). Choose a positive real value 1 < 2z, < e; near e; and put
p = e1 — zo. Because of conformality of f the disk A = {|z — 2| < p}
is mapped by f in a disk A’ = {|z — 2| < p'}, where z, < 2, < e; and
e1 — 2y = p' < p. Hence {f"} is normal in A.

Case (2) : 1/e1 > Ae? 2 1. Then 1 £ A; < e; and f'(A;) € [0,1). Thus A
is an attracting fixed point, and J(f) # C*.

Case (3) : 1> Xe* >¢,. Then 1 > A; > e, and f/(A;) € (—1,0). Thus A,
is an attracting fixed point, and J(f) # C*.

Case (4) : Ae® = ¢,. Then f(4;) = —1 and so (f?)'(A;) = 1. Choose a
positive real value 2o < A; near A; and put p = A; — 2. Since 0 < (f2) < 1
on (zo, A;), we can see that {f?"} is normal in the disk A = {|z — z| < p} in
the same way as Case (1).

€2 = ex(n) =

PART II

The present Part II has been inspired by comments of attendants in the as-
sembly 9.24-9.27, 1996, at the RIMS.

6. THE SITUATION WHEN )\ IS FIXED

In Part I, we have investigated behaviors of the function fy,(z) for varying
A with p fixed. In the present Part II, we suppose that A is fixed and will
consider the problem for varying u. We write for simplicity f for Foap

We consider only the case A > 0, u > 0. Other cases can be treated similarly.

Put

(6.1) M (p) = % (\/1 +4p? — 1) exp [m] . |

~ Obviously M, (1) increases from 0 to oo as p varies from 0 to co. Let p* = p*())
be a number such that ’

o Mi(u) = 1/
By Theorems 2 and 3 in Part I, we know that

(6.2) u > p*(A) imples a, = f*(1) — oo, b, = f*(—=1) — 0o, as n — oo.
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Let z; be the fixpoint of f(z), then f'(z1) = p(zy — 1/z1). If f'(z1) = -1,
then o |
_VI+ 4p? —1

I = .
24
The value of A with this fixpoint z; must be

(6.3) A= 51; (\/1 +‘4/z2 - 1) exp [—\/A 1+ 4y2] :

We write the right hand side of (6.3) as M(p). Then M,(x) attains the
maximum £* = (v/2 — l)e_ﬂ = 0.100702249... at p = 1/2. Thus if A > £*,
then there is no fixpoint z; with f'(z;) = —1, that is, -1 < f'(z) < 1 if
f(z) = z, provided 0 < g < p*(X). Therefore we obtain the following theorem:

Theorem 5.
(1) If p> p=(A), then J(f) = C*.
(2) Suppose X 2 £* = 0.100702249 ..., where £* has been defined above.
Then if 0 < p < () we have J(f) # C*.
(3) If A > X* = 0.0322903204227226 ... , where A\* will be defined below,

then the case (8) in Theorem 4 does not occur. That is, there is no cg
such that J(f) = C* for 0 < Ae** < c.

We have only to prove the case (3) in Theorem 5. Put
Ms(z, p) = (ze**)? exp [,u(a:ez" +1/ze? — 2)] = Ko(ze**),

where Ko(z) is the function in (1.12) of Part I. Let z(u) be the implicit function
determined by :

Ms(z(p),p) =1, 0<z(u)e® < 1.

Then -
de  (2u+1l)ze** — (2u —1)/(ze?*) + 2

dp = T peem — 1/ (we™) + 2
Thus z(u) takes the local maximum value ¢ = e™2#(2u — 1)/(2p + 1) where u

satisfies

o 2u—1 (2u-1)\? 4y

M. 2p = | —— =
from which we get p = 0.62783439300776.... Then z(p) = e~ (2u—1)/(2u+
1) = 0.0322903204227226 ..., which number we denote as A*. Therefore if

A > A*, then Ae?* can not take the value co(g) in (1.11), for any u. Hence, if
A > X* then f™(1) and f™(—1) are bounded from 0 and oo if p £ u*(XA).
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