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Julia set of the function 2z exp (z + H )

Facrf 504 Fag =

(’Tadashi KURODA )

Introduction

Let fP be an entire transcendental function 2z«
z exp (z + H ), where r iS a complex parameter. Put f: =
fro f:—' for a positive integer n, where f; means the
identity mapping of the complex plane €. The Julia set
JH of .fH is defined as the set of all points on €, in
any neighbourhood of every point of which the sequence
m,°

{f'} does not form a normal family.
H’ n=0 :

Baker [1] proved the following theorem.

Theorem There exists a real value of the parameter H

such that the Julia set JF of fH coincides with C.

Jang [4] proved thebfollowing result by studying
Baker's argumeht in detail : There are infinitely many
positive real-values of ti with the property JF = C.

In this article, we study the distribution of values of
H stated in the above result of Jang. Noting another
result Jtl £ C (-0 < e < 2) of Jang [4], we restrict

the parameter H to the real value not less than 1.
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§ 1 Values Hﬂ and tﬁm) of the parameter B

Obviously the set of singular values of f : zr>

z exp (z + H ) consists of two values z = 0 and =z

fH(— 1). The point z = 0 is the only one finite

-1

transcendental singularity of the inverse function f# of f

and this is fiked by fH' The point 2z = fﬂ(_ 1) 1is the
...[.
only one finite algebraic singularity of fH .

For a fixed value lx of the parameter, we put

sO(H)-—1 and sﬂ(lu.)=f‘u(s,n_’(/&)), nxz 1.

0o
The sequence {s ( H)§ is the so-called orbit of the
n M=) | v
critical value 2z = fH(_ 1) of fF under the iteration of
fH. The behaviour of this orbit plays a very important role
in the study of the bifurcation of Julia sets JF' So,
first we state some properties of sm(ft).
Since the parameter {4, is real, every %n(H } is

negative and we have

- ' <K< n -
(1) s,n(l.l.) sh(ﬁ)e}(p\}’h,fn-h'(r’)' 0Sk<En 1,
where

kt+l-1 ' ~ _
(2) ﬂg‘f‘”%‘sg‘f"*f"’ L2

For an arbitrary real constant X , we see

3 li ( o4 = - 00,
(3) , rle;\o (sl'f“')f»f*‘)-
As Jang [4] showed, (3) implies

(4) lim s () =0, nX 2.
H%w» g rL _ ’



Evidently we see
(5) 7 K g'—’si(};) = exp (- 1 +”I—L ),

where the equality holds only for £ = 1. In other words,

the equation s‘(p ) + L =0 1in the unknown H has the
only one root My = 1. We see also that the equation s‘(ﬁ)
+ 1 = 0 has the only one root H“)= 1. A simple calculation

shows that sﬂ(H );+ r{ =0 hasfthe only one‘root ﬁ2= 1

in the interval 1§,4<cn and that sl(}l) + M is positive

for f >, . It is also easy to see that the equation
\Po,:z () =
and = (5 1) ana Y )i itive in th

H -rl > an qu.(ﬁ is positive in e

interval 1 < < tkcl) and is negative in the intervals

!

1 + 51(rx) + 2 H- = 0 has two root ﬁ.: 1

0 <L t-l. < 1 and (&u)<|.k< o0 . Since we see
\k%ﬁ1 + log 3) = - 4 + 2(1 + log 3) > 0,

the equation SQ(P') + 1 = - exp kqu(fk) + 1 = 0 has the

greatest root ﬁcz)greaterzthan 1 + log 3.
For completeness of our discussion, we recall Jang's
argument in (4] under a slight improvement. Sinece

5, t*”)) +1 =0, (5) implies

(2) (2) _ (2) ()
s, 0P« g e s (p) e g o

Hence (4) gives us the existence of the greatest root

o= By (> p®) of the equation s (p) + K = 0.
Clearly ssctL) + ﬁ ~ 1is positive for f‘>'H3 . Since
s;0f3) = - < -p™ - (14 log 3), the equality

(€))
(4) shows the existence of the greatest root rl( :>I43 ) of

134
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the equation Ass(t&) + 1 = 0. Obviously 53(}1) + 1 is
positive for }“ > PLB)'

We use fﬁg)instead of Hz)in the above observation
and See the existence of the greétest root H+ (> #(3) )
of ﬁhe equation s+(rl) + L. = 0 and the existence of the

4) .
greatest root TL ( >»‘k1_) of the equation ‘54(F‘) + 1 = 0.
It is easy to check that s+(tl) +'fl is positivé for
4.

f> K4 and s“_(t{) + 1 1is also positive for .r\> HL)

Repeating the above procedure, we have a sequence of

infinitely many values H'n and rl(ln) of the parameter {l
such that

t
1=t‘\l=rL)=H2<1+10g3<

(6) 415 )

. ., lntl
F< b€ s < <R < pMPc e
where
| 5,0 1) + Py = O, nx=1,
(7)
sm(H) +r1>0 for p> Py , N2z 2
and

(n) )
sm( P ) + 1 = 0, nzi1l,

(8) L m)
sm(t&)+1>0 forr&)ﬁ , n> 2,

—_—

Remark Jang [4] states only that, for n = 3} the

. _ » m-1)
equation sm(ft) + rL = 0 has a root Hm (>H" /) (not
necessarily the greatest) and that the equation. sm(r&) + 1

m)
= 0 has a root F} )( )>l-l,n ) (not necessarily the greatest).
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- o0
§ 2 Distribution of the seugence {t*ﬂ§m |

First we prove the following proposition.

n
Proposition 1 For values P )(ng;Z) of the parameter

H , the n points sk(rnp), 0 =k< n - 1, are mutually
distinct and are super-attractive n-th pepiodic points of

frum. Therefore, the Julia set of £ ,,, does not coincide

ILL

with .

Proof Suppose that there are integers k and fL

(0 £k<f<n - 1) with the property S 4l r-"") ) =5, rt"") ).

t“n) - (n) _ ; '
Clearly sk(ll ) Sﬁ+1(bﬁ)(fk ) for any non-negative

integer q. There is a positive integer p satisfying

k+p(.Q‘k)§_“<k+(P+1)(9,—k). The sequence

3 Rt(pr)i-h)

{s-( H”") ) containing s, ( fﬁm)) coincides with
J = kepU-w) L '

the sequence {Sj( ﬁ“” % 2 and this shows the existence

of sucha j (k=23 < ) that SJ( ﬁ“” ) = s_( FP")).

fiM

This contradicts (8). Thus n points sk(tﬂm) ) (0= k

n - 1) are mutually distinct. Since fﬁg) (- 1) =0, it

is easy to see that these n points are super-attractive

fl("n) .

On the value Hq,(r125 3) of the parameter P, we

n-th periodic points of £

can see that the point sm(l4m ) is a repulsive fixed point

of f = frl . To see this, we note (7) and (6) and have
m

Els Oy )) = 2= py ) = - iy

and

f'(sm( Hﬂ )) = £'(- Hﬂ ) = - K * 1 < - log 3.
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Thus sm(lxm ) 1is a repulsive fixed point of £f. Hence,

as Jang stated in [4], Baker'é argument in [1]}, which was

used to prove the theorem stated in the introduction of

this article, leads us to the following result of Jang

stated also in the introduction : The Julia set of. fP

(n =z 3) coincides with €. This is also proved in the
following way. By Eremenko-Lyubich's theorem [2], the function
f‘%n has no wandering domain ahd"no Baker ddmain. Hence
Sullivan's argument [5] implies JHm = ¢.

Now we prove the following theorem.

Theorem 2 lim (n) ‘= lim = 00 .
n-> 00 & m-» oo ta

Proof By (6)} it suffices to show lim ﬁym = 00 .
o0 N o

vn) .
Since the sequence {H km—l is increasing, we see the
' _ : oy
existence of P = 1lim p™ . Assume H'P< o0 .

Cearly we have 1 + log 3 < H(M) by (6) and - 1 gn(rwoy

< 0 (nZx 2) by (8). Hence we have
(&0 ) ) (09)
Sor P s (p ) = exp (s p) 4 p?)

> exp (-1 +r*cw))> 3

for every n (> 2), which implies
m-I|
o (09 (00) 5
N e N Nl
The right hand side of this tends to - o0 , as n tendé to

' 00
infinity. This is a contradiction. Hence fﬁ ) must be

infinity.

The above theorem can also be deduéed from the féllowing

proposition.
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Proposition 3 s >1 + log (n + 1) for nz 2.

Proof . In the case n = 2, we have seen . 1 + log 3,<=rlw-')
in (6). Hereafter, we consider the case 'n 2 3.
Put yg = y(p) = - s (R)y Y, =y, () = Y, () -
- = - - . il
si(H) and.y3 y3(H,) (n 1)+an We see easily

that the equation yf = y3 has ‘two roots M= 1 and H-=

,u_x_ ( > 1) and that Y, < vy if and only if IH is in the
open interval 1 < t/L < H*

In the case p x p, (6) implies fly < pm
tn-1)

Consider the contrary case H < f** . In this case,

(6) and (8) give us s_k(l,L) + 1> 0 in H>FM~D for 2 < k

< n - 1. Hence we have

Nn~1
- = . - - 1) - 0
Yz Y3 JZ'=0'(SA(rL) +Iu.) Si(fi) + (n ) np >
for H> P('n—l). As was seen already, we have y‘ <Y, in

. -0 o .
the interval P < t-k < P% . Hence we see y‘ <y, in
this interval. On the other hand, (3) and (4) imply

lim (y -y ) = lim yz
0

(H) = - co .
Hreo 2 1 useo 'nH

Since yl( frt_x_) - Y, () = ya.( P‘*‘) - y3(l-‘~*) ‘is positive,

the equation y‘ - y2 = 0 has a root greater than Hx -
As fl

Lpol_n (H) = Yi - y1 = 0, we see l—lx.< f“(’")

]

) i{s the greatest root of s () +1 =0 and of

Thus we have always I.L* < {i"”) . On the other hand, we

have

y1(1+1og(n+1)) n+1<1T+nlog (n + 1)

(1 + log (n + 1)),
y3 + log (n + 1))
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which implies 1 + log (n + 1) < F* . Therefore, we have

1+ log (n + 1) <T*M)

for n2 3. This is the required.

Remark By more careful observation, we can see

[\

1 + log (2n + 1) n

4,

() . : “
(‘* > 1 + log (3n + 1), n2>9,
1 + log (4n + 1), n x> 20

and so on. The proofs ofvthese may be omitted here.

We have also the following proposition.
. (3)
Proposition 4 ﬁ > 3.

Proof A direct calculation gives us

- 74/10 <€ s‘(3) = - exp 2 < - 7.
Hence we see
52(3) = - exp (5 + 54(3)) > f exp (- 2);> -1/7
and
53(3) é - exp (8 + 51(3)_+ 52(3))

< - exp (8 - 74/10 - 1/7) < - 1.

Since the value %B) is the greatest root of sa(rk) + 1 =0,

we have \*ta)> 3 by (4).

(3) '
Remark According to Sagawa, t* lies between 31/10
and 32/10.
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'§3 Repulsi\}e' periodic points of £ for some values of P

tL

In the preceding section) we were concerned with the
values "lm of the parameter {& , each of which is the greatest
root of the equation m/.‘(h) = S/n(}‘L) + rt = 0. In this

section, we are concerned with the greatest root of the
equation \Pﬂ’ﬁ(r&) = 0 for n_}_43 and k 2 2. We see easily
by (1) that, for this greatest root p of \kn‘k( k) =0,
s,mh({u.) is equal to sm(rt) so that s,n(H) is a periodic
point of fl" . ’

, , ' (ntk-2).

Under the conditions n 2> 3 and k 2 2, we see s =

(3) ’ . (ntk-2)
P by (6). If r* is not less than { , we see s,mh_l(rk)
+ 120 and-1<sj({4.)<0 for 2 £j3J< n+ k - 3.

Those are conclusions from (8). Hence we have

s'ni-k-—g,( () = anuq-o.(f‘) exp (- Sﬁm—s(f"“) -t )

> S, ihea (l,l_) exp (1 —-t«L)>-exp (1 —rl)

(M+f-2 o
for ‘\4';_‘.1 . Similarly, for 2 <3j < n+ k - 4, we have

ss(r-)>'sé-“ (p) exp (1 - ()
> Sp+ &~3 (rL) exp ((n + k - 3 - 3)(1 -p))
> -exp ((n+ k- 2-3)(1 - (1))

(Mth—2)

for nzp . Therefore, for 2 <Sp<£n + k - 3 and
for R = {.«"‘,’”*’k“"’*) , we have

Mnik-3 mM+k-3 .

E sj(r\)>-j2=P, e)<l£>((’n+k—2—j)(1—/u.))

I=P.
: >—1/(exp({—t-1)-1).
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Proposition 4 and (6) imply

ntR-3 .
D.s(p)> - 1/((exp 2) - 1) > - 1/6
—p
= | 1 | |
for 2 < p<n=+ k-3 and Rz P (fm'{e-—z). Hence we. see

j (k-2 / k- 11 k-2 (7 t-2)
E T I s
) . B

hik3 e » nid-2)
= > s,(/u”"*'z)) s (n - 2)p "5 0,
J=2 .

(nth-2)

Here we recall F. is a root of sn+h—2(ft) + 1 =0, that is,

a root of o) =0, Hence the above inequality shows
0,mth) ft |
(9) | = (ﬁ”“”)+krqu)<0-
. /‘7'-0 ) .

Now we can prove the following proposition.

Proposition 5 For n = 3 and k2 2, the'equatidn
\l}'n,h (!A.) = 0 has the greatest root ¢ ={-*,an , and %ﬂ/k(#)

is positive,for t4:>fim k- - In addition, the inequalities

(MR~ 1) van l)

- Proof The inequality (9) shows

| Ll.r.\ fk-i) ookl ] l—h- 2) (nth-2)
\{/ A ) = (s.( ) +
I‘.z /::41 : E
) (n+4-2) | (Mt+h-2) (noik-2)
Speea B ) ¥ Sy (B ) K
- ( chtk-2) ( tmik-l)i N ntk=-2) ;O
= s rl ) + s1 # + [4 <
. ‘ . . mtk-2) -
by v1;tue of sj(ﬁ_) < 0 and of sﬂ*kfl(r ’ .) % -71 =
O(Hwﬂhd)). On the other hand, for rL:Zrﬁﬂf ) , we see
~ Nt4-|
(10) L"/n,k(ﬁ) jE (s ({L)+{*)>-—k+kf‘> o_

by (8) and (6). Hence there is the greatest root ﬁﬂkcm
! /
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the equation l.‘,) & (R) = 0 such that {«lm'k 2rgﬂk<rl""”‘">

~Thus we have our propositlon.

Using this proposition, we prove the following

proposition.

Proposition 6 For n 2 3 and k 2 2, the points
SS(N*\,'&) (n £3< n+ k- 1) are mutually distinct k-th

periodic points of fF R
. : n

/

Proof For simplicity, put ﬁ:[&"k and f = %*' As
. /

was stated at thé beginning of this section, -sﬂ(ﬁ.) is
equal to sm+k(t*)' So, it suffices to prove sm*J(rl) #
Speg () for 0<3< 0 < k-1,
= S— j . - .
Assume SM£j(fL) Sﬂ+1((*) for 0% ] < L £k 1
Then we see

)

0-4 |
f (sm+J(rL)) = s”*J(fL) exp}f _(!&),

S')Hé ( f"‘ ) = Szn-f-ﬂ_ ( ﬁ )

which shows «a - (R 0. Proposition 5 shows that the
nej, -y (’L

greatest root of the equation ?;+ Q— (F.) = 0 lies beween

(m¢d-2 -1 MNide—
ned-2) and thwi 1) S0 we have o< ntd— ) m«‘cl?

s

Since rL: Hﬂ/k is greater than(ﬁﬂikﬁn by Proposition 5, we

have a contradiction. Therefore, we see

s’n‘fé(t&) # 54“’1(‘-\)
for 0 £3 < f £k -1 and we have our proposition.

Proposition 7 For n 23 and k Z 2, the values (L,,, %
. - (4

in Proposition 5 satisfy the following :
(ntk-2) '
: . . tntk-1)
rl < t‘_:]'-nfﬁ-.} < [L;.)m‘k_g °e < H'-nf'{t—i’.) l< r(‘n'i’k—l < r( :
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Proof First, as was stated in Proposition 5, we have
ntk-| o
' = = Oo
\/;,k( rk’",‘k) Z (Sj(t/‘-mlk) + H‘n’k )
Hence we see

nt+k-|

\f’mbk—ﬂ‘*“ﬁ ) = 2. (5;i{fm 1)+ Fa )

J=nt

ok CEng) = Sal by ) - Fok

- S,n( ,’L.nlk ) - /u',nlk .

k-
By Proposition 5 and (6), we see Fmﬂg (e 2)

S | < rH"/h '
which shows sm(tiﬂfk) + 1 > 0. Hence (6) leads us to

\:”/n'“,h""( an,k) = - S,n( I"L/"lk,) - H"”,k< 1 - lu'n"ﬂ < 0.
Therefore, we see by Proposition 5 that the greatest root
t%*b*" of the equation ¥;*Lk—” P) =0 is greater than rﬁuk.
From this observation, we have

tnek-2)

) _ (nth+)
t < t‘5'.nm-3< ﬁ‘m <t <Py w22 < .

‘Furthermore, since erk~| is the greatest root of the
equation 4%*k4/‘((L) = sm+k—l(rk) + |t = 0, we may put Higu-
=+th—11 in the notation used in Proposition 5. So,similarly
’ : : ‘
. (nth-1)
~ to the above, we see easily f%ak—gg < Mapde—t ﬁ .

Thus we have our proposition.
Now we prove the following theorem.

Theorem 8 Assume n x> 3 and k 2 2. Then, for the
values PW‘* of the parameter rL obtained in Proposition 5,
¢

the Julia set of f coincides with c.'

ﬁnl 4(
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Proof Proposition 6 shows that k-th periodic points

sj( H”Hk ) (n SjE£n+k-1) of f = are mutually

f
, AFm-k
distinct. Suppose that there isa j (n< j=n+k - 1)

with the property sj('ﬂhlk ) = - 1. This means that the
4
point -1 is a k-th periodic point of f and we have
ok ‘ . : 2 3)
Sh‘ ﬁﬂ,k ) = f (- 1) = -~ 1. This and (8) imply Hon &P

Proposition 5 leads us to a contradiction. Hence every

point Sj({iﬂfk ) (n£j<n+ k=1) is different from

- 1. The equation 2z exp (z + f() = s{(li ) = - exp (- 1 + )

has the only one real root z = - 1 and hence the sequence
'n+k 1

{sd(fkﬂ & ) - does not contain s'( H,’k ). Therefore,

the cr1t1cal point s(( H"lk) of f is a preperiodic
point of f. 1In the same way as was stated after Proposition
1, Eremenko-Lyubich's theorem [2] and Sullivan's argument
[4] give us the desired.
Remark In Fagella [3], we can find discussions about
the same problem as ours.
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