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Another Green function for some birational maps of P

Yasuichiro Nishimura (FEHH{R—EF)
Osaka Medical College (KBRERKZF)

1 Introduction

Recently, several authors-(, for example, [HP], [FS] and [U],) began to study the iteration
theory of the rational maps of P*. The notion of the Green function (cf. §2) was introduced
into this theory and played a decisive role there. This Green function also played the
central role in the study of the Hénon maps (or more generally the finite composition of
the generalized Hénon maps) of P? or C?. (See, for example, [BS].)

Let F = (Fi,--+,Fo41) 1 C*1 — C™*?! be a holomorphic map defined by (n + 1) ho-
mogeneous polynomials Fy,---, F,; of degree d > 2 without common factor, and let
f :P*--- — P be the induced rational map. Denote by p : C*"*1\{0} — P the usual
projection map so that we have po Ficnt1\(o} = fop outside the set F'~1({0}) of C***\ {0}.
The symbol - - - — is used to emphasize that f is not necessary a holomophic map and may

contain the points of indeterminacy.

Definition 1.1 When the (n+ 1) components of the k times iteration F* have a common
factor for some k > 2, we say that the degree lowering occurs for f.

In the paper [FS], Fornaess and Sibony indicated that this kind of degree lowering phe-
nomenon causes some difficulties in the study of the dynamics of rational maps of P*. In
the case where the degree lowering occurs for f, it happens that the Green function is of
no use for the study of iteration of f. (See §3 below.)

This note is an attempt to define another Green function which is useful in the iteration
theory of rational maps for which the degree lowering occurs. The idea for defining another
Green function, which will be explained in (2.2) is simple, but the proof of the convergence
of the limit in (2.2) seems difficult. So, in this note, we only deal with a special example
of rational maps. We will explain here the background of this example. In the note [N],
we gave the list of the representatives of the birational polynomial quadratic maps of P?
under the conjugation by projective‘linear'transformations (PGL(3,C)) as the equivalence
relation. In this note, we investigate the third family of the class B in the table in p.153
of [N], which is given by ¢ : [z : w : ¢]- -+ — [wt + Bt* : zw + % : ¢2], where (8,7) € C*
and [z : w : t] is the homogeneous coordinates of P2. Let us define (b,c) € C% by 8 =
c—by=(1-c)b, fe PGL3,C)by [z:w:t] > [z —ct:w— bt:¢], and the map ¢ by

@ =fo@o f~1. Then, we have

p:lziw:t] = [wt,zw 4 bzt + cwt : £7]. (1.1)
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The family {¢;.} is not the list of the representatives. In fact, it is easy to see that two
maps @p.-and @y are both conjugate to the map ¢g., when ¥ =1 —-cand ¢ =1 —b.
However, it seems that the formula (1.1) makes some calculation simpler than the formula
of {¢s}. In this paper, ¢ always denote the map of (1.1) and % its inverse given by

‘ Yilziw:it]-- o [(w—c2)t:(z+bt)z: (2 +b8)t]. : (1.2)
The lifts to C3 of ¢ and ¢ are always denoted by ® and ¥. By the coordinates (z,w,t) of

C3, we have
® : (z,w,t) — (wt, zw + bzt + cwt, t?) _ - (L3)
and v ‘ : .
U (z,w,t) = (w— c2)t,(z + bt)z, (z + bt)t). | (1.4)
Let us denote (zx, wy, tr) = ®*(2, w, ) where ®F is the k times iteration of ®. Then, we see

that the three com onents zy, Wy, t; of ®% have the common factor ¢ because Z3,Wa, 1) =
P
(wlt (ww1 + bwt2 + cwlt)t t*). So, the degree of the 1nduced rational map

4,02 [z:w: t] — [wyt? : ww, + bwt® 4+ cunt : %] (1.5)

of P2 is'eqﬁ;il to 3 though the degree of ¢ is equal to 2. , ‘
Similary, we can see that the degree lowering occurs for the map . It is desireable to
define an’ another Green function for the map ¢ and . However, we have sﬁcceeded s0
far only to prove the convergence of (2.2) for ¢ under a condition on (b, c) (Theorem 5.1).
Here we remark: that for every k>1, the points of 1ndeterm1nacy of ©* are always two
pomts ' _

Li=[0:1:00 and L'=[1:0:0], | (1.6)
whereas the number of the points of indetermina,cy of ¢F for general (b,c) increases as k
grows.
In §2,.we give a brief review of the Green function of the rational maps of P” and an idea
to define another Green function. In §3, we study the maps ¢ and 3 when (b,¢) = (0,0).
In this very special case, we can describe completely the & times iterates. So we can easily
define another Green functions for ¢ and 1. In §§4-5, the iteration of ¢ will be investigated.
In §4, we state two Propositions 4.5 and 4.6, for which we need not pose any assumption

on:(b,c). In §5, under a condition on (b, ¢), we prove the convergence of the limit in (2.2).

2 Green function

Theorem 2.1 ([HP],[FS],[U]) Let F = (Fy,- -+, Foy1) : C"t1 — C**! be a holomorphic
map defined by (n + 1) homogeneous polynomials Fi,---, Foyy of degree d > 2 without
common factor, and let f : P"-.. — P" be the induced rational map. Let

1
~H(p) = lim —log |[F*(p)], (2.1)
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where the norm | * | of |F*(p)| is, say, the mazimum norm.

(1) H: C**! > RU{—c0} is a plurisubharmonic function or is zdentzcally equal to —
() HOp) = Hp) +1gA| (e ). S e
(3) H(F(p)) =d-H(p).

A rational map f : P"--+ — P" is holomorphic if and only if F~1({0}) = {0}. When f is
holomorphic the Green function H reflects the dynamical properties of f, as is illustrated

by the -folloWing theorem.

Theorem 2.2 ([HP], [FS], [U]) Suppose that f : P* — P is a ﬁolomorphz’c map and let
H = {p € C"*"\{0}; H is pluriharmonic in a neighborhood of p}, .

and ) = p(H).” Then, Q coincides with the Fatou set.off

When n=2and fis the Hénon map (or the finite composition of the generahzed Hénon
maps), the Green function H plays an 1mportant role. For simplicity, we consider the Hénon
map f:P?... — P? given by [z:w:t]- - — [wt: w?—azt+ ct? : t?] with (a,c) € C* x C.
Usually the Hénon map is dealt with as a holomorphlc map f of C? by restricting f to
C? = P*\ {t = 0}. Let us denote by (z = t,y = ¥) the holomorphlc coordinates of
C? = P?\ {¢ = 0} so that we have f(z, y) = (¥,4* — az + ¢). Then k(z,y) := H(z,y,1)
on C? is the Green function of Bedford and Smillie [BS] and other authors The proof of
Theorem 2.1 ([FS], [U]) is very elegant and short. Especially, when n = 2 and f on P? or
on C? is the Hénon map, considering the lifts F : C® — C2 of J and applying Theorem 2.1
give the shortest proof for the convergence of k(z,y) = lims_., log™|f*(z,y)|.

We remark that the degree lowering does not occur for the Hénon map.

Now, we turn our attention to our map ¢ of (11)

Definition 2.3 (Fibonacci sequence) Define a sequence {v;} by the recursion relation

Vkt2 = Vi1 + Vg, with v =1, vy = 1.

k

By the notation w = ﬁz@ and w; = =L, we have vy = i—\;-;l (k>1).

Pr0p051t10n 2.4 Letp = (z,w,t) € C* and Pk = (2k, Wk, tx) = ®*(p). Then, the common.
factor Ay(p) of ®F(p) is Ay(p) = t2"—vksz, Therefore, letting p = (2, Wy, 1) = ZL(—) the
degree of the map ©* : [z :w 1]+ — [5 : ady t], which means the common degree of the,
components of pi, is equal to viy,. '

Proof. Let a; and b; be the multiplicities of the factor t contained ‘in zk,wk Fi lrst by
induction on k, we will show that aj = byZ; + 251 < 2% b, = k-1 + br_1 < 2k(k > 2)
By (1.3),we have a; =1 < 2,6, =0 < 2. By t;_; = ™" and

2"_1 2k—1 2k—1
Zr = Wg_qt s W = Zp_qWg—1 + bzg_qt + cwg_qt y
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the induction hypothesis on k£ — 1 yields the assertion on k. Hence, letting‘ di = 2F — b,
{di} satisfy diyo = diy1+di, di = 2,d; = 3. Refering to Definition 2.3, we have dy = viy4,
therefore a; = 2F — v 4q, b, = 2’? — Vk4a- a

The idea to define another Green function G(p) on C3 for the map ¢ is simple and seems
reasonable. Using the notation of Proposition 2.4, we consider

1 @k _ | _
Gi(p) = )\ Gp) = tim Gilp), (2.2)
: ’/k+2 Ax(p) . koo
where | - | is the maximum norm of (C3; Of course, this idea may be applicable for the

general rational maps f of P? or P*. Denoting the lift of f by F, the common fac-
tor of Fk( ) by Ax(p), the degree of F*(p)/Ai(p) by di, what we want to consider is
e 2 log |F *(p)/Ax(p)|- But, contrary to Theorem 2.1, the proof of the convergence
of this limit seems not so easy. In the final section, we Wlll prove the convergence of (2.2)
for ¢ when |b—c| < 1.

3 ¢ and v when b=c=0

When b = ¢ = 0, we can describe ¢*, 1* explicitly. Therefore, we can define another Green

function for both ¢ and v. In this §3, ¢, 1, ® and ¥ always denote (1.1),(1.2), (1.3) and
(1.4) with b=¢c¢=0.. :

Proposition 3.1 Suppose b =c=10. We set vy = 0. :
(a) For k > 1, py = (21, ws, tx) = ®F(p) = (z"k-lw"ktzk‘”k“,z”"w”"“tzk'”"“,tzk).
(b) The Green function of (2.1) is H(p) = log |[¢|.

(¢) The Fatou set of f consists of two components
D= {[z:w: 1] € P z|lw* > [¢['}, and Qp = {[z : w : {] € P} |efjw]” < [t}

and we have p() = (1) and ©(Q,) = (Q2). Here we remark that w? =1+ w.
(d) The ezpression of (2.2) converges uniformly on every compact on C? to

Glp) = { —sloglz| + ~loglu| (when |z|jul* > [{)
log || (when |z]|w|* < Itl‘” )-
(e) The function G(p) has the following properties:
(1) G: C®* > RU {—o0} is plurisubharmonic.
(2) GOp) = G(p) + log ]A| (A € €.
(

3) G(®(p)) = wG(p) + Zr log It].

Proof. By Proposition 2.4, we can put z; = z%%wP*¢2* k1 g, = z”"w‘s"t2 TVkt2,

Then, by 2 = wi_1tx_1, W = zx_1Wk_1, We have

op = Yk—1, Pk = 5k-1,7k = ap-1 + Yk-1, and & = Br_1 + Ok_1,
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from which it holds that
7k+2 :_ 7k+1 +7k771 = 1)72 = 1;6k+2 = 6k+1 + 6k751 = 1762 = 2'

By Definition 2.3, we have vy = v, o = Vg—1; 0k = Vik41, Bk = Vi, which imply the assertion

(a). Since w = 1.6--- < 2, (b) follows immediately from (a). Since %’;{% = (%, Wk, tk) =

| (2%-1w¥kt"s | Vet 142 we have G(p) = J5 log max(|z|jw|“|¢|, |2|“|w]“’, [¢t|"). When

|lz]Jw|“|t|=" < 1, it holds |z|*|w|*” < |z||w|“|t]* < |t|°, hence G(p) =log [t|.

On the other hand, when |z||w|*[¢{|"" > 1, it holds |¢|*® < |2|[w|“|¢|* < |z|*|w|*’, hence
G(p) = Z5log|z| + 1log |w|, which is the assertion (d). The assertions (1), (2) and (3) of

(e) are 1mmed1ately shown by (d). ' :

Finally, we will prove (c). Note that all the points of 1ndeterm1nacy of ¢ in (1 6) satlsfy

{6, L} n (3 UQy) = 0. By direct calculation, we can see () = Q; and () =

We will show that {(*} converges to the constant map I; = [0 : 1 : 0] uniformly on

every compact of Oy = {|z||w|* > |t|*’}. In fact, since Q; C P?\({w = 0} U {z = 0})

we investigate in the coordinates u = Z,v = L. Then, we have (0 = {|u| > |v]“’} and

¢*(u,v) = (u™*-2v", u~v*s+2). Therefore, when (u,v) € )y, applying limy_, i’i;—‘:?- = w?,

we see that |u|™"-2|v|"* < (|v|“’2|u|“1|v|("k/”k‘2_w§)Vk—2 — 0.

Similarly, we can prove that {p*} converge to the constant map [0 : 0 : 1] uniformly on

every compact in 0y = {|z||w|” < |t|**}. a

Propositon 3.1, (b), shows that it happens that H(p) does not reflect the dynamics of .
Proposition 3.2 (a) Let k > 2 be an even integer and let

2k+1+(wk+2+wk+2) 2k__(wk+1+wk+1) 2k+1_(wk+wk)
— 1 — 1
Ap = L Bp= = , Cr = < s

ok+1 _2(wk+1+w{¢+1)

Dy = By, = Zretred) g 22T b
5 ? 5 ]
2"+1—(w"+w") 2"+(w" 1+wk 1) 2k+1+(wk—2+wk—2)
— 1 — 1 —
Gy = 5 , Hy = 3 y Iy = 1.

Then, pr = (zk, Wk, 2x) = U¥(p) of U in (1.4) satisfy
Uk (p) = (2wt PreqpPrili CkyyHiili), (3.1)
The common factor Ag(p) of three components of \Ilk( ) is
Ai(p) = 2PrwBrtC  where we have Dy, + By +Cp =2k — Vky2-

(b) The Green function.of (2.1) is H(p) = %log |2]?|w|]]%.
(¢) The Fatou set of 1 consists of two components

Q1= {[z:w: ) [21" > |wl“t]} and Qo = {[z: w: &) |o" < |w]”t]}
satisfying () = Qg and Y(Qs) = Q.

(d) For Gi(p) := Uk“l g lAk(p)l’ G(p) = hm Gi(p) converges unzformly on every compact

g [ logld  (when e 2 wlel)
1 C 10 G0) = { L 1og 0y dylogltl (when o < l-le
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(e) This G(p) satifies the following propefties.
(1) G(p) : C* - RU {~o0} is plurisubharmonic on C3.
(2) G(Ap) = G(p) + log I/\li (A e C).
(3) G(¥(p)) = wG(p) + —log [¢].

Proof. We can prove (3.1) by induction on even integer k. Since we can see easily that
Dy < Gy < Ag, By < Hy < Ey and Cy < I < Fy, the assertion on Ag(p) follows.

Now, it is easy to deduce the expression of p; for odd integers. The assertion (b) can be
seen by the expfessions for both even and odd ihtegers.

The points of indeterminacy ofpare Jy=[0:1:0]and J, =[0:0:1]and (Q; UQy)N
{J1,J2} = 0. So, we can see by direct calculation that P() = Q2 and P(Q) = Q4.

For (d), first, we give the proof when k — oo with even integers k. By using (3.1), we have
iy = (45, PO, [ e =) _ |

Then, we have G(p) = 25 log max(|z|*", |[w[* |¢|*,|z|“|w|“|t]), since it hold éfk_:gﬂ —1(k—
00) and so on. Since |z|*° > |z|“|w|*|t| > |w|*’[t|* when |z|**|w|™ > |t| and |z|** <

lz|“|w|“|t] < |w]|*’|t|* when |z|“’|w|™ < |t|, we have the expression of (d). We can prove

the same expression (d) when letting k — oo with odd integers.

~ All the assertions of (e) are clear by (d).

Finally, we will prove the first part of (c). We will show that the sequence {1*;k even}
converges to the constant map [1 : 0 : 0] uniformly on every compact in Q;. Since Q; C
P?\{z = 0}, we investigate in the coordinates f = 2,9 = £. Then, Q; = {|f|“|g] < 1}
and, for even k, ¥*(f,g) = (f“*+1g%, f**g”*-1). Here we used Ey — By = vgq1, Fy — Cr =
Ve, Hy — By = v, and Iy — Cy = vg_;. Then, for (f,g9) € Q4, we have |f|"*+1|g|"* =
((If1=1gD1f[e2/x=) % — 0. |

Similarly, we can prove that the sequence {1*;k even} converges to the constant map

[0:1: 0] uniformly on every compact in {};. O

4 Two propositions on ¢

In this section, we do not pose any assumption on (b, c).

First, we will consider p|c2 : (z,y) — (y,zy + bz + cy) by the coordmates r=2y=%of
= (P? — {t = 0}) and let us denote (a:k,yk) ©*(z,y)- '
Lémm;i_ 4.1 ‘Take A >0 with
A>2+ |b| + e, A2 2el,A> 2|b| o (4.1)

and let Wy = {|y| > A, lz| 2 A} Then we have cp(WA) C Wy and ¢ (WA) C WZA



198

Proof. Let (z,y) € W4. Then |z;| = |y| > A, and -
il 2 lellyl = 1blle] — lellyl = (Flz| = leDlyl + (51y] ~ Dz

> (5 = leD)A + (5 ~ )4 = (4 - [bl — [e])A > 24.

- S0, p(Wy4) C Wy4. Furthermore, for (z1,y;) € Wy, the above calculation lmphes |:v2| =
ly1] > 2A and |yo| >2A. O . :
In the following Lemmas 4.2 and 4.3, we fix § with 0 < § < 1, and A; > 0 satisfying

Ibl + ¢ 1] + |e|
—————— and 6 > .
— Tl — el * A

A2 24 [b] + [e], Ay > 2|c|, Ay > 20b],6 > - (4.2)

Lemma 4.2 For (z,y) € Wy,, we have |y| < |z1] < |y|, (1 +5)‘1|xy'| <y1] < (1 +6)|zy].
Proof. The inequalities for |y;| can be seen by |

L I le|

|x||y| el
A= b= |
el S b >
el > eyl
and I B Bl el
] < lellyl + {1le elly| + | Eilalll < lells] + ¢ lellyl + |||y|

_ A1+|bl+ICI

1 lzllyl < (1 + 6)|z|ly]. O
1

Lemma 4.3 For (z,y) € Wa,, we have
(14 8) W= D)gr=r |y < [z4| < (14 §)s41 72 [g] =1 [y,
(14 &)~ Gre Dz eyt < ye| < (14 8)7+27 Xy 4+,

Proof. Let us define {IN;} by Ny = (1 + 6)Nk+1Nk,N1 =1+ 5) Ny = (1 +6)? and
let Miyy = Ny (M7 = 1). Let o = 0 and let v, be as in Definition 2 3. Then, for
k>1and (z,y) € Wa,, we have :

M o= [y < fel < Milels=yl*, N el [y < Jye] < Nefal*[y]+.  (4.3)

In fact, by Lemma 4.2, these inequalities hold for & = 1. The general case follows by
induction on k. Let us define a sequence {3k} by the recursion relation Sk+2 = 'sk+i + Sk +1
with s; = 1,5, = 2. Then, by Definition 2.3, it holds sp = vg42 — 1. Now (4.3) are the
desired inequalities of the present lemma because log Ni. = s log(1+6). O

Deﬁnition 4.4 Forq = (a: y) € WA, and G(p) of (2.2), let gi(z, ) Gr(z,y, ) Letting
9(0) = 727 log lax| and gf(q) = ;1= logluil, it follows ga(q) = max(g{" (q), 9 (4), 0).

I/k+
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Proposition 4.5 For A with (4.1), {gi(q)} converges uniformly on every compact in Wj.

Proof. Fix U CC Wy and € > 0. Taking the boundedness of the sequence {Z—::—;} into
consideration, we take 0 < § < 1 such that, for all k¥, € N with k& > [, we have

(L L )log(l +6) <e, (VkJr2 L 2 )1 g(l+d8)<e. - (44)
Vk+42 Vit2 Vk+2 Vitz

We take A; > 0 satisfying (4.2). We take and fix a positive integer m with ™ (U) CC Wy, .
This is possible by Lemma 4.1. For q=(z,y) € U, put (u,v) = gm = ¢™(q) € ¢™(U) CC
W,,. Note that, for : =1 and ¢ = 2, we have gfn)Jrk( ) = 2 gy 3

Vm4k+2

By Lemma 4.3 applied for (u,v) € Wy, and by the boundedness of {"" 1} {2 } {Z1}

V42 V42
the sequence {g,C (¢); k} is bounded on ¢™(U). Take B > 0 such that |gk (gm)| < B on U
for:=1,2and k € N. ' _
Take K > 0 such that, for all (k,{) € N* with £ > [ > K and for all (v, v) € o™(U),

Vk

Vk-1 V-1
(mpion )10g|"|| <& [ —L)log o] < e,
Vk+2 Verz  Viga
Uk v . vk v
Gy~ paleslull <e G2 =SB log oll <. (45)
Vk+2 U
This is possible since {"" St {V:iz} and {K’ii—} are convergent.

Now by Lemma 4.3 apphed for (u,v), (4.4) and (4.5), we have, for g € U and k > 1 > K,
195 (4m) = 91 am)| < 3e. (4.6)
Since {;r:—’:%} is convergent, we can take K; > K such that, fork>1> Ki,

B| Vk+2 V42
Vmtk+2  Vm4l42

Then, by (4.6) and (4.7), for ¢ € U and k > [ > K;, we have

| <e. (4.7)

v G v G
944m(@) = gipm(@)] = “de%a—gﬁLﬁk%n

+m+2 +m+2

Vi 1 141 P
< 22169 g, - gkqn+| — g0 (g)| < 3 e < 4.
Vet+m+2 m+2  Vi4m+2 Vetm+2

Hence, for ¢ € U and k > [ > (K; + m), we have |gx(q) — gi(q)| < 4e. O

In the next Proposition 4.6, we study the iteration of ¢ around two points of indeterminacy
IL=[0:1:0land I, =[1:0:0]. For u > 0, let

Ay () = {|2] < plwl, [] < plwl}, As(p) = {lw] < plal, [t] < ulzl} CP. (4.8)
Because of Proposition 2.4, we can see that

(£k+17 u*)k+1, fk-};l)': 7? Ve[ V42 (wktk zkwk + bzktk + cwktk, tk) (4:9)
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Proposition 4.6 Let 0 < p <1 and v = max(|b|,|¢|,1).
(1) For (z,w,t) € p~'(A1(p)), we have

Iﬁkl < e(l+2’¥)?uk_1‘uuk+1|w|uk+2, Iﬁ)kl < e(1+2'y)2uk#l{k|w|uk+2, It‘kl < Nyk+2|w|Uk+2-

(2) For (z,w,t) € p~*(Az(x)), we have

Iékl < é(1+27)2uk”2uklzlvk+27 |’L;Jk‘ < e(1+2'y)2uk+1“l/k+1Izluk.n’ li‘kl < #”k+2|z|‘/k+2_
Proof. (1) Let L; = eW+2)*% and By, + ype+t = L for k > 1. We will prove, for k> 1,
|2k] < Br_ap™*, |ig| < Beu™™, |t| = p++e, - (4.10)

when lz| < pu, lw] = L, [t| = p (Set By = 1.). Then, by the ‘maximum principle of
the plurisubharmonic functions |2, || and |f|, the estimates (4.10) hold when |z| <
#, |w| =1 and [¢| < p, which implies the assertion of Proposition.

We will proceed by induction on k. When k = 1, we have

|21 < b, |wi] < (1 + plp] + |e)p < Bup,
and when k = 2,
|22] < W71+ pfb] + [e])u® < Bu?,
o] < {1+ b+l + 16 + [el(L + bl + )i’} < B
Assume that inequalities (4.10) hold. Then, by (4.9), |
p e < By,
pT*{ Bi1 Bep? + [b| By p 1 42 (| B

<
<

< {(Bror + 1) (Bi + yut+t) — it s

S {(Bicy + ) (By 4 yu+1) — g huen = Byypth,

|2k 41

[Dg41]

(2) Let Ly, = 20 and B, + yu* = Li for £ > 1. We will prove
12k] < Bro1pt®™*, |ibe] < Bep™+, |iy] = ps+2, - (411)

when |z| =1, |w| < p and |t| = g and k > 1 (Set By = 1.). Then, by the maximum
principle of the plurisubharmonic functions |2/, || and |#|, the estimates (4.11) hold
when |z| =1, |w| < g and [¢| < p, which implies the assertion of Proposition.

We will proceed by induction on k. When k£ =1, V

21| < 2, Jwy| < (14 18] + plef)p < B p.

When £ = 2,
|22] < ™' (1 + [b] + ple])u® < Byu?,
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[ha] < ™ H{(L+ [b] + plel)p® + 1816 + el(1 + [8] + plel)u®} < Bap.
Assume that the estimate_s (4.11) hold. Then, by (4.9), |

,LL -V Bk#l/k.’.lﬂvk_‘_z B #21/];.*.1

Uk{Bk lBku2uk+uk+1 + IblBk— 2uk+uk+2 |C|Bkﬂyk+1+uk+2}
{ (Bi + v ) (B + yp*=t) — oy phss putees |
{(Be+7u)(Beoy + =) — yp* 1 Jp42 = Byp+2. O

|24

gl

IN A A CIA

5 ¢ with |[b—¢| <1

A seqiiéricé {fx} of functions with values in R U {—o0} is called uniformly convergent on a
set S when the sequence of non negative real valued functions {exp(fs)} converges on S.

Theorem 5.1 Assume |b— c| < 1. The limit in (2.2) for ¢ of (1.1) converges uniformly
on every compact in C?\ {0}. The limit function G(p) satisfies the following propertzes
(1) G:C3\{0} > RU {— oo} is plurisubharmonic.

(2) G(Ap) = G(p) +log|A| (A eC).

(3) G(8(p)) = wG(p) +  logl1].

I do not know whether the assumption |6 — ¢| < 1 is necessary for the convergence of the
limit in (2.2). In the remaining part, we will prove Theorem 5.1.

In general, t-hé“multip‘liers of a holomorphic map A around a fixed point P € C? mean the
two eigenvalues of the differential dh(P). When absolute values of the two multipliers are
both < 1, the fixed point P is called attracting. For our maps ¢ or 2, we will consider
the blowing up of P? at a point of indeterminacy. Then, a fixed point appears on the
exceptional set which is attracting under some conditions on the parameters (b, c).

Using the notation in (1.6), define the coordinates (v = Z,v = %) around I; such that
C*(u,v) =P — {w =0} and (f = %,g = 1) around I, such that C2(f,g) = P? — {z = 0}.
Let 7 : M — P? be the blowing up centered at the point I; with the exceptional curve
E = 77!(I1). Let us denote by Ly, L., L; the proper transforms of {w = 0}, {z = 0}, {t=
0} C P?, respectively. Let us denote by U;,U,,Us the open subsets of M which are
biholomorphic to C? defined by Uy = M\{L,UL,},Us = M\{L,UL,},Us = M\{EUL,}.
Take the coordihat‘és'(hs) of Uy defined by r = (£) o7, s = ({) o, (p,q) of U; by
p=(L)om, qg=(2)onr. Since C*(f,g) and Us are biholomorphic, we use the coordinates
(f,9) of Us by abusing f = for and g = go . ' |

Denote three points of M by I; = {(r,s) = (0,0)}, I, = {(f,9) =(0,0)} and X = {(p,q) =
(0,—c)}. Let us denote by @, ¢ : M--- — M the lift of ¢, : P?--- — P2. Let us denote
by I(¢) the points of indeterminacy of ¢. -
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| Proposition 5.2 (1) About the points of indeterminacy, it hold I(p) = {I1; I}, 1(p) =
{12} and](tp)—{X 12} ' . E s _ SRR S e - '
(2) We have $(E) = Ly, ¢(I,) = i, #(X) = I, (L\{L}) = I, and $*(E\{X}) =

(3) At the fized point I of ¢, the multipliers are {0,0}: R

Proof. By (1.1), we see I(p) = {I;, I,}. Since ENU; = {r = 0} and ENU, ={p=0},all
the other assertions are verified from _

s 1 7 |
5. = — L= , — = p; — b ’ =
P T T brstes qibpgte 1TTETP fi=q+bpg+c, g1=p
and | |
=2 .. (14 brs+ cs)rs B (g + bpq + O)p e ,_ . .

(1 + crs)(l + brs+ cs) +brs?2 (14 cp)(g+bpg+c)+bp’ 2=

1+brs+cs q+bpq+cb'

Denote J; = F[—b : —bc : 1] and Jg; = [~bc: b(bc —b—c?): 1]. Then, J, = J3iff c=1 or

b=0. For 7 : M — P, we set J, = 77Y(J;) and J5 = 7~ (J5). R

Proposition 53 (1) We have I(p) = {Il,Jz}, I(y ) = {Il,Jz} 1(1/12) = {Il,Jz,J;;} and
I(y ) {I,,J2,J3}, where J, =J3 and Jy=J3 iffc=1 orb=0.

(2) Though ¥(I;) = I, € I(¢), ¥? is holomorphic at I, and ? (Iz) = 12. We have
( t\{Il}) = E\{L}, z/)(E\{Il}) = I, and 1/)(]2) = X. Two points {I;, X} form a

cycle of 1. ' : ‘

- (3) The multipliers at the fized points I and X of ¥? are both {0,b = ¢}.

Proof. By (1.2), we see I(¢) = {I],Jg}. Using the notation (ék,zbk,fk‘) = Aﬂk(%, we have

S = {2+ (b+ A)zt — cwt}(z + bt), by = {w + (b— )z + Bt} (w — e2)t,

ty = {w+ (b= c)z + b*t}(z + bt)t,
hence, we have the results about I(1?). The set I(1)) and I()?) can be 'éeén:from '

1Z'r :(1—07')3: 1A—‘cpq s _(1+bs)r_(q+b)p-
T (L+bsyr  (g+bpg’ T l—er  1-cpg’
b b
1/, f __(q+ Jpg _ (a+b)p.
— cpyq 1—cpg’
e {(q+6)+b—6}p | {¢ +(b+bC)q+cb2}p ,
v P gt e BT iy o opg o (5-1)
N 7152 N {r+ b+ c2)rs —csH1+bs)r _ {1+(b-0o)r +:kb2rs}s,
2T+ (b ) + b2rs}(1 — cr)s’ 2= r+(b+e)rs—cs
The first asgertion of (2) can be seen from v : u; = ﬁ{—i—%, V=g And _ .
¢2 . f2 — {f+(b—6)+b2g}(f— C)g __{f +(b——C)+b2g}g B v (52)

(+G+)g—cfaf(+bg) ¥~ 1+ (b+cDg=cfg’
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and the other assertions of (2) from the above expression of pand ¢ :p =g, g = g_ﬁg%.
Finally, the multipliers of 4* at X and I, are seen from (5.1) and (5.2). O

We will study around the attracfing fixed point X and I, of 2.

Lemma 5.4 Assume |b —c < 1.

(1) We can take ny-> 0 sufficiently small such that, for any sujﬁczently small &, > 0, letting
Ty = {|p| < 61, ¢+ c| < m}, we have $*(Ty) C Ty. :
(2) We can take 6, > 0 sufficiently small such that, for any suﬁ?czently smallny > 0, lettzng
Ty = {1f] < ,1g] < ma}, we have §*(T3) C T

Proof. (1) Fix 5y > 0 with |b —¢| 4+ 7, < —+J;——d Take any 6; > 0 so far as it satisfies

b—cl+m 1+1]b—¢ S1{(m + |e])® + [b + be|(m + |el) + |e][b]*}
5 < and : 5 .
1—|ef6im — [e|261 2 1— [b— c|é1(m + |e]) — [b]26; 2

Then, according to (5.1), we can show that D*(Ty(81,71)) C T1(1_+I§:gl5l’ ).
(2) Take and fix 6 with 0. < [b— | + 8, < 1—% Let 5, > 0 be any number with

St el t b Ltlbcl . (52t lb— o+ bPm)b+leDm b
T Tot @ [lbam © 2 (= To+ 2l = Iel6am)(1 ~ 1olms) < 2
Then, according to (5.2), we can show that $2(T5(8,7,)) C Tﬂ%,.%m). O

Let C? = ]P’2\{t = 0} with the coordinates = = 2,y = %. Using 7, 63,72, 6y > 0 satisfying
le| + m < = define

Vi={lyl 2 1/51, |z| < 1/m2} —.{lyl 21/61, |z 4 ¢l < 771} U {52|:v| < lyls |zl 2 1/m},.

Va={lyl <&fel, o] 21/m}, Va={ly|2 IIB +cf <m},

so that C?\(V} U V2 UVs) = {lz| < -—, ly| < 1} Let Ql,ﬂg,ﬂg C M be the attracting
basins of ¢ at I, 1? at Iz and ¥? at X, respectlvely '

Proposition 5.5 Assume |b — ¢| < 1. We can choose M, 03, N2, 61 > 0 so that Lemma
(5.4) holds and furthermore we have Vi C 7(:)NC?, V2 C m(Q2)NC? and V3 C 7 (23)NC>.

Proof. We will define V{ C (U; UU;) C M by

Vi ={lpl <61, lal S 1/me} = {lp] < 61, lg+ el S mPU{lr] £1/6, |s| < na},

Vi ={lfI <&, lgl <} CCf,9) CP* and Vi ={lp| < 1, lg+ec| <m}CUpC M.
First we choose 7; and §; sufficiently small. Secondly, in view of Proposition 5.2 (2), we
choose 7, sufficiently small so that Lemma (5.4) (2) and {|r| < %, |s| <2} C Ny hold.
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Finally, in view of Lemma (5.4) (1)-and Proposition 5.2 (2), we can take 6, so that V{ C {}
hold. O ‘ . - - '

As an analogy of the theory of the Hénon map ([BS]), let
K, = {P e C%{¢*(P); k} is bounded in C?}.

Proposition 5.6 Assume |b—¢| < 1. For A > 0 with (4.1), it holds U, o~ *(Wa) =
C*\K,. a : o - ‘

Proof. By Lemma 4.1, it is clear that U2, o *(W4) C CZ\K+.F Converéely, let P ¢
C?\ K, be a point, and assume that P ¢ UL, o ¥(W,). Consider the configuration as in

Proposition 5.5. At this moment, we can assume that the point of indeterminacy J; of %
belongs to {|z| < i, lyl < 3-}. By Lemma 5.4, we can take mg € N such that

P ¢ ¢v™ (V2 U V3) for all m > my. ' (5.3)

Since the set {p*(P); k} C (C?\ V4) is unbounded, Proposition 5.5 assures the existence of

k > mg such that ¢*(P) € (V, U V3). Then we have P = ¢*(¢*(P)) € ¢*(V; U V3), which
is a contradiction to (5.3). :

Lemma 5.7 Assume |b—c| < 1. Let L be a compact such that LN K, # 0. Then {gx(q)}
converges to g(q) uniformly on L.

Proof. Take A with (4.1). Next take 1, 63,7, 6 > 0 satisfying the configuration of Proposi-
tion 5.5 and the conditions A < L, A < ﬂl:;—lbu < 31-1— and L C {|z| < A4, |y| < 511—} Set F' =

1
12

{lz| <A, |y| < %} Let S = FUQ(F)Up?*(F)U@®(F) andlet T = (mz)a,xs(log |z|, log |y|,0).
T,Y)ES
Since W4 N S is compact, Poposition 4.5 enables us to take M > 0 such that

g < M on WA N S for any k € N. (5.4)

Let us take any € > 0 and any ¢ € L. We will use the notation ¢ = (z4,yx) = ©*(q). Take
N > 0 such that Mﬁi—z < £ for all k € N. Take K; > 0 such that

. o , o R
T < — for all k¥ > K,. : (5.5)
Vgt - 13

First, when ¢ € L N K_F, since Proposition 5.5 guarantees ¢ € F for all k € N, we have

1 . -
0 < gi(q) = ;/;‘—_:max(log |zx|, log |yx],0) < % for all £ > K,. (5.6)

Secondly, Proposition 4.5 assures the existence of K3 > 0 such that

gx —gil <eon LN |J ¢ *(Wa) and for all & > [ > K. (5.7)
k=1
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Finally, it remains the case where ¢ € LN (C?\ UL, ¢%(W4)). We remark that Poposition
5.5 assures ¢*(g) & (VaU V3) for all k € N. We will prove that gx(g) < § for k£ > K3, hence

l9x(q) — gi(g)| < e for k> 1> K. (5.8)
Let k> N be the smallest integer with gx, € Wa. We will show that
QkEFOqu+1€FfOI‘1SkSk1—3. (59)

Let 1 < k < k; — 3 and assume g ¢ F. If g satisfies |z + ¢| > m1, |zx| < A and |yx| Z
then we have |zi1| = |yx| > A and |yksa| > |2k +cllye| — |bllzx] > n1lye| =[] A = A, which
implies gx1; € Wy, a contradiction to the definition of k;. So, |zx| > A. Since gx & Wiy,
it follows |yx| < A, hence |zx1| = |yx| < A. If Jzpqr + €| = 71, [Ye4a| 2 %, then the same
argument reaches g4 € Wy, which is a contradiction. Hence, gz41 € F'.

Now we will show that gry1(g) < § for all k with Ky < k < ky — 3. In fact, because of (5.5),

9k+1(‘1) 1 + I‘P(Qk)| S if ‘Zk € F, and gk+1(¢1) 108+ IQk+1| <z lf k41 € F.

l’k+3 Vk+3
Rephrasing thls statement gk( ) <2 when K +1<k< ki — 2.
Because of (5. 9) for k£ with K, < k1 — 1<k <k, qr € (p(F)U@*F)U @*(F)). So, (5 5)
yields gk(q) = < Vk+2T < 2.
Let k> k; + 1. Then gk( ) = gk kl(qkl)-"—mil:—z < ME%LLZ <3

Gathering three cases, we have proved (5.8). Now the assertions (5.6), (5.7), (5.8) complete

the proof of the Proposition. O
Proof of Theorem 5.1 We will concentrate on the proof of the convergence of (2.2).
After proving the convergence, we have (1) and (2) clearly. In view of (4.9), we have

Viys
V42 Ve43

| N
Gr(2(p)) = _—_ log |®(2x, W, k)| = —— log max(| 241, [Dr1ls k41 ]) + :10g i,

hence (3) follows by letting £ — oo.

First Step {Gx(p)} converges uniformly on every compact of of p~'(P?\{t = 0}).

By Propositions 4.5 and 5.6, {gx} converges uniformly on every compact of C*\ K*.
So, Lemma, 5.7 guarantees that {gx} converges uniformly on every compact in C2. Since
G(z,w,t) = G(2,%2,1) +log [t| = gr(%, %) +log [t| on p~1(C?), the first step is completed.
Second Step {Gx(p)} converges uniformly on every compact in p~*(P?\{Iy, I2})-

As a consequence of the first step, it suffices to prove the uniform convergence of {Gi(p)}
on the set D(a, f) = {a < |2| < 1/a, a < |w| < 1/a, |t| < B}, where 0 < @ < 1 and
0 < B < 1. Let us take any € > 0. Choose 0 < 6§ < 1 such that

o 3 o
(V]H'2 4 A2 1)log(l +6)<eforallk,leN. = - (5.10)
Vk+2 Vit2 .- :

Let us take Ay > 0 of (4.2) for this 6. Then estimates of Lemma 4.3 hold. By the notation

of Propos1t10ns 4 5 and 2.4, since T = t y Y = —f we have

(1+6)” (”"“‘”IZl”" 1le”" [t < 12| < (1 +5)(”’°+‘“”|Z|”" llwl""Itl”"
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(1+8)" D]z \”“le”"*‘ < lwkl < (14§)tmad lZl”klwl"’*1

on {A1|t| < 7|, Aqlt] £ |w|} Then, we can choose 0 < ‘B, < BB such that Gk(z w t)
(z,w,t) € D(e, B1). Let us take Ky > 0 such that

_ M log 2 <e, (2L Uty og D cforallk> 1> K, (511)
Viy2 Viga a V2 Viye,

Then we see that
IGe(p) — Gi(p)| < 3¢ for k> 1> Ky and p € D(a, B1). (512)

On the other hand, since D(a, B)\D(«, ﬂlb)i cC C\{¢ — 0},> First Step'a_,ssures'the existence
of K, such that ' : ‘ ‘

|G (p) — G,(p)|»§ e for k> 1> K, and p € D( ﬂ) \' D(a; By)- (5.13)

Now, (5.12) and (5.13) implies the uniform convergence of Gy on D( a,f), which completesv
the proof od Second Step. ' '

Final Step It remains to prove that {G(p)} converges “uniformly on p™'(W; UW,)N L,
where W; is a neighborhood of the point /; in P? and L is a compact of C3\{0}. Let us
take an arbitrary € > 0. Then, by Proposition 4.6, there exists g > 0 and K; > 0 such
that, ' o

exp(|Gk( <3 f01 pE p (Al( yu Ag( ) N L and for k> le o (5.14)

On the other hand, Second Step assures the existence of A2 > I&l such that for all
E>12> K,, '

|Gy — Gi| <eonp! VV \A1(p)) (Wg\Ag(u) YA Lin p~ (IF’ \{11,_72}) ©(5:15)

Now, (5.14) and (5.15) implies the assertion of Final Step, which completes the ploof 01

Theorem 5.1.
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