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INTRODUCTION

An algebraic function is a plane algebraic curve $C\in \mathbb{C}\cross \mathbb{C}$ or in $\mathrm{P}\cross \mathrm{P}$. In this note we
assume always that $C$ is irreducible and the first and second projects of $C$ are not constant
maps.

Definition. Two algebraic functions are equivalent (respectively topologically equivalent,
quasi conformally equivalent etc) if there exist projective linear (resp. topological, quasi
conformal etc) equivalences $\psi,$ $\phi$ of $\mathrm{P}$ such that

$(\psi\cross\phi)(C)=^{c’}$ .

The main interest in this note is the topological rigidity defined as follows.

Definition. An algebraic function $C$ is topologically rigid (respectively weakly topologically
rigid) if $C,$ $C’$ are topologically equivalent then the equivalences $\psi,$ $\phi$ are projective linear
(resp. if $C,$ $C’$ are equivalent).

This problem was discussed in the papers [21], and already seen in a letter of Arnold to
$\mathrm{n}’ \mathrm{y}\mathrm{a}\mathrm{s}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{k}\mathrm{o}[1]$ which motivated the Russian school to develop the theory of local complex
dynamics independently of French works such as $\mathrm{E}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}[9]$ .

An algebraic function is seen as a dynamical object as follows. We explain this by the
following examples.

Example. Let $C\subset \mathrm{P}\cross \mathrm{P}$ be an ellipse defi..ned by

$(x/a)^{2}+(y/b)^{2}=1$ ,

which is Riemann sphere embedded in $\mathrm{P}\cross \mathrm{P}$ . The first and second projections are branch$e\mathrm{d}$

$c$overings with two bran$ch$ poin$ts$ . The monodromy of the projections extend to projec-
tive line$\mathrm{a}x$ involutions $f,$ $g$ of the sphere, and the composite $g\mathrm{o}f$ is also an involution.
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Next rotate the ellipse by an line$a\mathrm{r}$ mapping with the fixed point the origin. Then th$e$

monodromy actions remain involutive, while, the composite $g\mathrm{o}f$ is not involutive. The
coordinate $f\mathrm{u}$nctions restricted to the quadratic $c$urve is invarian$t$ functions of involutions
acting on the Riemann sphere. An$d$ the classification of plane quadratic $c$urves falls into
that of the pairs of the involutions.

In general the monodromy actions of the first and second projections of a plane curve
does not extend to a group action on the Riemann surface. So we introduce an alternative
way to formulate the problem.

Definition. The equivalence $relation\sim \mathrm{o}\mathrm{n}$ a plane algebraic curve $C\subset \mathbb{C}\cross \mathbb{C}$ is generated
by the following relations: $(x, y),$ $(x’, y’)\in C$ are equivalent if $x=x’$ or $y=y’$ .

Definition. An orbit $O(p)$ of a point $p\in C$ is the equivalence class of $p$ . And a subset
$K\subset C$ is invariant if it is a union of equivalence classes.

Clearly the orbit structure is topologically invariant. Our main interest in this note is

Question. $A_{SS\mathrm{u}}me$ generic orbits are dense. Then is $C$ topologically rigid 2

Definition. A point $p\in C$ is a critical point if one of the followings holds.
1 $C$ is non singular at $p$ and the first or second projection is critical
2 $C$ is singular at $p$

Definition. The critical orbit of $C$ is the union of orbit of the critical points. And an
algebraic function is critically finite if its critical orbit is finite.

Definition. An algebraic $f\mathrm{u}$nction is an algebraic correspondence if the source and target
are identified. Two algebraic correspondences of $\mathrm{P}$ are equivalent if $\psi=\phi$ .

In other words, an algebraic correspondence is a union of plane algebraic curve and the
diagonal set $\triangle\subset \mathrm{P}\cross \mathrm{P}$.
Example. $Ass\mathrm{u}meC$ is defined by $(y-x^{2}-C)(y-x)=0$, which is the union of diagonal
line $y=x$ and a parabola $y=x^{2}+c$ . By the $eq$uivalence $\mathrm{r}\mathrm{e}l\mathrm{a}ti_{on}\sim the$ points $(x, y)$ on
the parabola are identffied with those points $(x, x)$ on the diagonal line. Therefore the first
projection of the orbits are generated by the relations $x\sim x^{2}+c$ and $x\sim-X$ , which are
the union of the forward orbit and its backward orbiis. It is known that the cluster point
set of any backwaxd orbit is Julia set of the dynami$csxarrow x^{2}+c$ .
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The following is a random orbit of the union of the diagonal set and a graph of the
function $y=x^{2}+0.7-0.3i$ , where $c=0.7-0.3i$ and $i$ stands for $\sqrt{-1}$.
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The projection of a random orbit on the curve (Julia set)

$(y-x^{2}+0.7-0.3i)(y-X)=0$

onto the $\tilde{x}$-plane, $\tilde{x}=1/x$ .
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After deformation of the defining equation $(y-x^{2}+0.7-\mathrm{o}.3i)(y-x)=0$ , we can still
see the Julia-like set.

-. $=...$ .
: ..

..
$..\backslash \cdot*$

The projection of a random orbit on the elliptic curve

$(y-x^{2}+0.7-0.3i)(y-X)+0.01=0$

onto the $\tilde{x}$-plane, $\tilde{x}=1/x$ .
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Critically finite algebraic correspondences are classified by Bullet [6], and some other
correspondences are studied by Bullet and Penrose [4].

Assume $C$ is a critically finite algebraic function. Let $\pi$ : $\mathbb{H}arrow C$ -critical orbit be the
universal covering. The composite $\pi_{i}0\pi$ with the i-th projection is the universal covering
of the complement $\mathrm{P}-D_{i},$ $D_{i}$ being $\pi_{i}$ (critical orbit). Denote by $G,$ $H$ the fundamental
group of the complement respectively for $i=1,2$ . $G,$ $H$ act naturally on the upper half
plane $\mathbb{H}$ . Clearly the image of the quotient map $\mathbb{H}arrow(\mathrm{P}-D_{1})\cross(\mathrm{P}-D_{2})=\mathrm{P}/G\cross \mathrm{P}/H$ is
the complement of the critical orbit in the algebraic curve. The following theorem is easily
seen.

Theorem 1. The classification of critically finite algebraic functions is $eq$uivalent to the
classification of the $p$air of Fuchsian groups $G,$ $H$ with only cusps and quotient spaces
isomorphic to finitely punctured sphere by M\"obius $t$ransformations. The indices of $G,$ $H$

over $G\cap H$ are respectively the degrees of the algebrai $\mathrm{c}$ curve in $y,$ $x$ . An orbit of $C$

corresponds to an orbit of the group $K$ generated by $G,$ $H$ .

Clearly the orbits are discrete if and only if $G,$ $H$ generate a discrete subgroup of $Aut(\mathbb{H})$ .
And then the group action is not topologically rigid, hence the algebraic function is not
topologically rigid. In general the closure of the generated group is a Lie subgroup of
$Aut(\mathbb{H})$ . The only non topologically rigid connected Lie subgroup is the hyperbolic sub-
group of dimension 1: hyperbolic, elliptic and parabolic. Therefore the quotient space by
$G$ , $H$ are foliated annuli with finite modulus or foliated tori or a punctured disks, which
are not isomorphic to a punctured sphere. Thus we obtain

Theorem 2. Assum$eG,$ $H$ genera$te$ a non discrete group, in other words, the orbiis of $C$

are not discre$\mathrm{t}e$ . Then the algebrai $c$ function is topologically rigid and all orbits are dense.

Next consider the non critically finite case. In this case the first and second projects of
the critical orbit are countable but non finite sets. Let $D_{i}$ denote the closure of the i-th
project. Here we may apply the same argument as above by taking the universal coverings
of the complement of the closures. The fundamental group of the complement is freely
generated by countably many elements. The closure $D_{i}$ contains the branch point set of
the i-th projection, and if the singularity is complicated enough, $D_{i}$ is a neighbourhood of
the branch points. So the natural inclusion of the fundamental group of the complement
of $D_{i}$ to that of the branch point set may not be surjective.

From Fuchsian groups to Pseudo group actions.
The local structure of algebraic function at a critical point $p\in C$ is interpreted i.nto a

pseudogroup action on the Riemann surface $C$ with the fixed point $p$ .
Let $p$ be a singular point of $C$ of the second type: $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\dot{\mathrm{s}}$ of $C$ are singular at

$p$ and the local multiplicity of the first and second projections are respectively $d,$ $e$ . Let
$t\in \mathbb{C}$ be a local coordinate of the curve centered at $p$ . Then the monodromy actions $f,g$

of the first and second projections are respectively order $d,$ $e$ and generate a pseudogroup
of diffeomorphisms of open neighbourhoods of $0$ in the $t$ space. The orbit of $p$ under this
pseudogroup $\Gamma_{p}$ generated by $f,$ $g$ is contained in the $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{n}_{\wedge}\mathrm{c}\mathrm{e}$ class $O(p)$ of the algebraic
function.

Let $G_{p}$ be the group of germs of elements of $\Gamma_{\mathrm{p}}$ .
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Proposition 3. If $C$ is criti$\mathrm{c}$ally finite, the $gro$up $G_{p}$ is commutative for all critical points
$p$ .
Problem. Assume $G_{p}$ is commutative at a critic$\mathrm{a}l$ point $p$ . Then is $C$ critically fini $t\mathrm{e}$ .

Definition. The basin $B_{\Gamma_{\mathrm{p}}}\subset \mathbb{C}$ of $p$ for the pseudogroup $\Gamma_{p}(B_{p}\subset C$ for an algebraic
function $C$ ) is the set of those $q$ such that the topological closure of the equivalence class
( $O(q)$ of dynamics of $C$ ) contains $p$ .

It is easy to see

Proposition 4. If $G_{p}$ is not commutative, the basins $B_{\Gamma_{\mathrm{p}}}\subset B_{p}$ are neighbourhoods of $p$ .

On the basin $B_{p}$ , the dynamics of $C$ is seen by the pseudo group action $\Gamma_{p}$ .

Example. Here regard the singularity ofplane curve in the letter ofArnold. The first and
second projections are branch$ed\mathrm{c}$overing of multiplicity 2 at the origin. The monodromy
actions of the projections are idempotent and generate a subgroup $Aut(\mathbb{C}, 0)$ of germs of
holomorphi$c$ diffeomorphism$s$ of parameter $t\in \mathbb{C}$ . The classffication of the cusp singu-
laxities is equivalent to that of the group with generators. This was studi$ed$ by Voronin
[26].

Now recall a result on the $\mathrm{s}\mathrm{t}.$.ructure of non solvable pseudo groups. Let $\Gamma$ be a pseudo
group of diffeomorhisms of open neighbourhoods of $0\in \mathbb{C}$ . Assume $B_{\Gamma}$ is an open neigh-
bourhood of $0$ .

Definition. The separatrix $\Sigma(\Gamma)$ for $\Gamma$ is a closed real semianalytic subset of $B_{\Gamma}$ , which
possesses the following properties.

(1) $\Sigma(\Gamma)$ is invariant under $\Gamma$ and smooth off $p$ ,

(2) The germ of $\Sigma(\Gamma)$ at $p$ is holomorphically diffeomorphic to a union of $0\in \mathbb{C}$ and
some branches of the real analytic curve ${\rm Im} z^{k}=0$ for some $k$ ,

(3) Any orbit is dense or empty in each connected component of $B_{\Gamma}-\Sigma(\Gamma)$ ,

(4) Any orbit is dense or empty in each connected component of $\Sigma(\Gamma)-p$ .

Local separatrix theorem [22]. If a pseudogroup $\Gamma$ is non-solvable, then the basin $B_{\Gamma}$

is a neighbourhood of $0\in \mathbb{C}$ and $\Gamma$ a$dm\mathrm{i}$is the $sep$aratrix $\Sigma(\Gamma)$ .

The above density of orbits propagates to the basin $B_{p}$ of the algebraic function.

Definition. The separatrix $\Sigma_{p}$ of a critical point of an algebraic $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}_{\dot{\mathrm{O}}\mathrm{n}}p\in C$ is a closed
real semianalytic subset of $B_{p}$ , which possesses the following properties.

(1) $\Sigma_{p}$ is invariant under the dynamics of $C$ and smooth off $p$ ,

(2) The germ of $\Sigma_{p}$ at $p$ is empty or holomorphically diffeomorphic to a union of $0\in \mathbb{C}$

and some branches of the real analytic curve ${\rm Im} z^{k}=0$ for some $k$ ,

(3) Any orbit is dense or empty in each connected component of $B_{p}-\Sigma_{p}$ ,

(4) Any orbit is dense or empty in each connected component of $\Sigma_{p}-p$ .

From the local separatrix theorem we obtain immediately
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The separatrix Theorem. Given an algebrai $cf\mathrm{u}$nction and a non solvable critical point
$p\in C$ , there exists the $sep$aratrix $\Sigma_{p}\subset B_{p}$ .

However the global structure of the separatrix is not known. One of the most important
problems would be

Problem. Study the boundary of th$\mathrm{e}b$asin $B_{p}\subset C$ (if $\overline{B}_{p}=C$).

Finally we give the only known example of a plane curve singularity for which the local
dynamics is solvable.

Example. Let a, $b\in \mathbb{C}$ be distin $ct$ and $p,$ $q$ positive and coprime integers. Let $X(t)=$

$(t-a)^{p},$ $\mathrm{Y}(t)=(t-b)^{q}$ . The image of the $m\mathrm{a}_{\mathrm{P}^{C(t)}}=(X(t), \mathrm{Y}(t))$ : $\hat{\mathbb{C}}arrow\hat{\mathbb{C}}\cross\hat{\mathbb{C}}$ is an
algebraic curve with only critic$\mathrm{a}l$ point at $\infty(=\infty\cross\infty)$ . At the $\infty$ the first and second
projections are respectively $p$ and $q$ sheeted branched coverings. The monodromy actions
are periodic of order $p,$ $q$ and generate a solvabl$egro$up of length 2.

Proof of local separatrix theorem and Ergodicity.
Let $\Gamma$ be a pseudogroup of diffeomorphisms $f$ : $U_{f},$ $0arrow f(U_{f}),$ $0$ of open neighbourhoods

of the origin in $\mathbb{C}$ . Assume that the germ $\Gamma_{0}$ of $\Gamma$ is non-solvable. Then $\Gamma$ contains
diffeomorphisms $f,$ $g$ with Taylor expansions

$f(z)=z+azi+1+\cdots$ , $g(z)=z+bz+j+1\ldots$ , $a,$ $b\neq 0,$ $i<j$ .

and the commutator

$[f,g](Z)=z+cZk+1+\cdots$ , $c\neq 0,j<k$ .

Let $\lambda_{n}=n^{(j-i)/i}$ . Define the vector field $\chi$ on the set (basin of $f$ ) $B_{f}$ of those $z$ for
which $f^{(n)}(z)arrow 0$ as $narrow\infty$ by

$\chi=\lim_{narrow\infty}\lambda_{n}\{f^{(-n)(n)}gf-id\}\partial/\partial z$

Define the vector field $\zeta$ on $B_{g}-0$ similarly replacing $f,$ $g$ with $g$ and another $h$ .

Theorem 5. The vector field $\chi$ is invariant under $df$ and induces a linear vector field on
each $E\mathrm{c}$alle-Voronin cylinder for $f$ .

Similarly, the vector field $\zeta$ induces a linear vector field on each cylinder of $g$ .
It is seen that

Lemma 6. $[\chi, \zeta]$ is non constant.

By construction of $\chi$ , (we obtain

Theorem 7. The set of uniform convergence limits on any compact set (Geometric $\mathrm{J}im\mathrm{i}t$)
of $\Gamma$ contains the real flow of $\chi$ . More precisely, the sequence $f^{(-n)}gf(m)(n)$ as $m,$ $narrow\infty$

converges to the $ti\mathrm{m}et\in \mathbb{R}m\mathrm{a}p$ of $\chi$ choosing $m,$ $n$ in a certain $m$anner.
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Definition. Let $\Gamma’$ be a pseudogroup. We say that $\Gamma$ and $\Gamma’$ are topologically equivalent
(respectively holomorphically equivalent) if there exists a homeomorphism (resp. holomor-
phic diffeomorphism) $h$ : $U,$ $\mathrm{O}arrow h(U),$ $0$ of open neighbourhoods of the origin such that
$U_{f}\subset U,$ $U_{g}\subset h(U)$ for $f\in\Gamma,$ $g\subset\Gamma’$ and a bijection $\phi$ : $\Gammaarrow\Gamma’$ , which induces a group
isomorphism of $\Gamma_{0}$ to $\Gamma_{0}’$ such that $U_{\phi(f)}=h(U_{f})$ and $h\mathrm{o}f=\phi(f)\mathrm{o}h$ hold for $f\in\Gamma$ . We
call $h$ a linking homeomorphism (resp. linking diffeomorphism).

Corollary 8. If $\chi,$
$\zeta$ are $\mathbb{R}- l\mathrm{i}n$early independent at a $z\in B_{f}\cap B_{g}-0$ , any or\’oit is dense

or empty on a neighbourhood of $z$ .
From which a part of Local separatrix theorem follows. Also From Theorem 7 it follows

Corollary 9. The clos $\mathrm{u}\mathrm{r}e$ of $\Gamma$-orbits are invariant under the flows of th $\mathrm{e}$ vector fields
$\chi,$

$\zeta$ . The real vector fields $\chi,$
$\zeta$ defined above are real-time-preservingly invariant under

topological $eq$uivalence of pseudo groups.
From which we obtain

Topological rigidity theorem [22]. $A_{SS\mathrm{u}}me$ that pseudogroups $\Gamma,$
$\Gamma’$ are topologically

equivalent and the germs $\Gamma_{0},$ $\Gamma_{0}’$ are non-solvable. Then the restriction of the linking home-
omorphism $h$ : $B_{\Gamma}arrow B_{\Gamma’}$ is a holomorphic (respectively anti-holomorphic) diffeomorphism
if A is orientation preserving (resp. reversing).

Now by using the above method, we can prove the separatrix theorem and even a more
strong theorem as follows.

Definition. The pseudogroup $\Gamma$ is finitely ergodic if any subset $A\subset U$ of a component
$U\subset B_{\Gamma}-\Sigma_{\Gamma}$ has a positive measure, then $O(A)$ has full measure in $O(U)$ . Similarly
the dynamics is ergodic on the basin $B_{p}$ is a subset $A$ of a component $U$ of $B_{p}-\Sigma_{p}$ has
positive measure then $O(A)$ has full measure in $O(U)$ .
Ergodicity Theorem. If a pseudo $gro$up $\Gamma_{p}$ is non solbavle, then the dynamics is finitely
ergodic on the $b$asin $B_{p}$ .
Teichm\"uller space of an algebraic function.

Teichm\"uller space is a canonical subject in the study of the complex structure of holo-
morphic dynamics as we as Riemann surfaces as introduced in [20]. Here we introduce the
definition.

Definition. A periodic orbit of length $\ell$ of an algebraic function is a chain of points
$p_{i}=(x_{i,y_{i}}),$ $i=1,$ $\ldots,l$ such that $x_{i}=x_{i+1}$ or $y_{i}=y_{i+1}$ for all $i$ and non trivial: it does
not retract to a point by replacing the subwords $p_{1}p2\ldots p_{k}$ with equal $x$ coordinate (or $y$ )
coordinate. These $p_{i}$ are called periodic points.

Definition. Denote by the clos$\mathrm{u}re$ of set of periodi $\mathrm{c}$ poinis and critical orbit by $\hat{J}$ .
By definition $\hat{J}$ is a closed invariant set, and on the complement $C-\hat{J}$ the first and

second projections restrict to coverings onto open subset $\mathrm{P}-\pi(\hat{J})$ of the first and second
P.

Let $O$ be one of connected components of $C-\hat{J}$ . The dynamics on $O$ is defined as
follows. Let $U_{i}\subset \mathrm{P},$ $U_{j}\subset \mathrm{P},$ $i,j=1,$ $\ldots$ , be the first and second projects of the orbit
$O(O)=\cup O_{k}$ of $O$ .
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Definition. The fundamental groups $G_{i}=\pi(U_{i}),$ $H_{j}=\pi(V_{j})$ act naturally on the $u$ni-
versal cover $\mathbb{H}_{k}$ of $O_{k}$ . Also deck transformations of the first and second projections lift
to isomorphisms to identify thos$\mathrm{e}\mathbb{H}_{k}$ , which are un$\mathrm{i}$que up to $G_{i},$ $H_{j}$ . Denote by $K$ the
Fuchsian group acting on an $\mathbb{H}_{k}$ genera$\mathrm{t}ed$ by those $G_{i},$ $H_{j}$ and the composites of the
isomorphisms along cycles from $\mathbb{H}_{k}$ to itself. The group $K$ is independent of $\mathbb{H}_{k}$ .

Definition. A connected component $O_{k}$ of $C-\hat{J}$ is a discrete component if $K\subset Aut(\mathbb{H})$

is a discrete subgroup. The other components are called foliated components.

To a non discrete component a similar argument to that for critically finite algebraic
functions applies. If the closure of $K$ is of dimension 2 or 3, the group action is topologically
rigid. If of dimension 1, the orbits of the closure give a foliation of $\mathbb{H}$ by curves, and the
components $O_{k}$ are the quotients of $\mathbb{H}$ which are foliated by the closure of the orbits.
Therefore those components are either annuli or the punctured disc, and the foliations are
invariant under the rotations.

Theorem 10 [20].
1 The foliat$ed$ discs (Siegel discs) are topologically rigid in weak sense.
2 The foliated $\mathrm{a}nn\mathrm{u}l\mathrm{i}$ (Herman rings) are not topologically rigid: The Teichm\"uller

space of the orbit of $O_{k}$ is
$TeiC\mathrm{A}(\mathbb{H}, I\zeta)=\mathbb{H}$

The definition of the Teichm\"uller space of the subgroup $I\iota’$ is defined by McMullen-
Sullivan [20].

First we give the definition of Teichm\"uller space of $C$ . A quasi conformal mapping of
algebraic functions $C$ to $C’$ is a product of quasi conformal mappings $\psi\cross\phi$ of the sphere
such that

$(\psi\cross\phi)(c)=^{c’}$

Denote by $Def(C)$ the set of quasi conformal mappings of $C$ to $C’$ (possibly C). The
restriction of the Beltrami differencial of $\psi\cross\phi$ to $C$ is invariant under monodromy action
of the first and second projections. By the fundamental theorem of Teichm\"uller theory,
De$f(C)$ corresponds to the space $M_{1}(C)$ of invariant Beltrami differentials with essential
sup-norm $<1$ .

Denote by $QC(C)$ the group of quasi conformal mappings of $C$ to its self, and by $QC_{0}(C)$

the subgroup of those quasi conformal mappings, which are isotopic to identity relative to
the ideal boundary. These groups acts naturally on $Def(C)$ by pull back by composite.

Definition. Teichm\"uller space of $C$ is

$TeiCh(c)=Def(C)/QC_{0}(C)$

and the modular group is
Mod$(C)=QC(C)/QC_{0}(C)$

Clearly Mod$(C)$ acts on $TeiCh(c)$ . The quotient $TeiCh(c)/Mod(C)$ is studied by
$\mathrm{M}\mathrm{c}\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{n}$ -Sullivan [20] for rational functions.
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The Teichm\"uller theory of algebraic functions is almost parallel to that of algebraic
correspondence. To see this define an algebraic correspondence of $\mathrm{P}_{x}\cup \mathrm{P}_{y}$ by the union of
$C\in \mathrm{P}_{x}\cross \mathrm{P}_{y}$ and its transpose $C^{t}\subset \mathrm{P}_{y}\cross \mathrm{P}_{x}$ . It is easy to see the various notions coincide
with each other: in fact Teichm\"uller space of the union as an algebraic correspondence is

$TeiCh(C\cup C^{t})=TeiCh(c)\cross TeiCh(Ct)=TeiCh(c)\cross TeiCh(c)$ ,

$TeiCh(C),$ $\tau ei_{C}h(Ct)$ being Thichm\"uller space of algebraic functions.

Theorem 11. Let $O_{k}$ be a connecied component of $C-\hat{J}$ . Then the Teichm\"ulier space
of the $d\dot{y}n\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{c}s$ on the orbit of $O_{k}$ is

$TeiCh(O(ok))=Teich(K)$ ,

where $K$ is the Fuchsian group defin$\mathrm{e}d$ above.

Now we interpret a basic result in the paper [20].

Decomposition Theorem.

$TeiCh(c)=M_{1}(\hat{J})\cross \mathrm{I}\mathrm{I}TeiCh(o_{k}^{f_{ol}})\cross\Pi\tau_{e}iCh(O^{d}\ell^{iS})$

$1v\mathrm{A}ereM_{1}(\hat{J})$ is the space of invariant Beltrami differentials on $\hat{J}$ and $O_{k}^{fol}(O_{\ell}^{diS})$ runs over
the set of all foliated (discrete) components of $C-\hat{J}$ .

The second and third components are already described above, and II denote the re-
stricted product with bounded essential sup-norm.

Conjecture by $\mathrm{M}\mathrm{c}\mathrm{M}\mathrm{u}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{n}$-Sullivan [20]. For a correspondense defined by $a$ rational
function, which is not covered by the dynamics $zarrow nz$ on a tolus $\mathbb{C}/\Lambda$ by a semi conju$ga\mathrm{c}y$

$p:\mathbb{C}/\Lambdaarrow\hat{\mathbb{C}}$ such that $p(-z)=p(z)$ , an invariant Beltrami differential is trivial:

$M_{1}(\hat{J})=0$

An invariant Beltrami defferential (invariant ellips field) on $\hat{J}$ defines a measurable line
field by the long direction, which is a base of $M_{1}(\hat{J})$ over the space of invariant functions
on $\hat{J}$ . The invariant line field may be supported on an ergodic component of $\hat{J}$ , which
is invariant under the dynamics of $C$ and does not intersect with the critical orbit. The
above is equivalent to

No invariant line field Conjecture [20]. For a correspondense defin$ed$ by a rational
function, which is not covered by the dynami$cszarrow nz$ on $a$ $tol$us $\mathbb{C}/\Lambda$ , there exists no
invariant measurable line field on $\hat{J}$ .

Although the conjecture remains open, our Topologically rigidity theorem gives an af-
firmative answer to this conjecture in some other cases. Namely

No invariant line field Theorem. There is no invariant $\mathrm{m}$easurable line field on th $\mathrm{e}$

$b$asin of non solvable critical points.

Here we give an elementary proof of the theorem. Loray [19], Belliart-Liousse-Loray [3]
and Wirtz [14] proved
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Density Theorem. On the $b$asin of a non solvable pseudo group $\Gamma$ , periodic points are
dense.

We give the local density of periodic points at a point $q\in B_{\Gamma_{\mathrm{p}}}-\Sigma(\mathrm{r}_{p})$ . Define

$\phi_{s,t}=\mathrm{e}\mathrm{x}\mathrm{t}-t’\chi 0$ ext $-s’(0$ ext $t\chi 0$ ext $s($

with the holomorhic vector fields $\chi,$
$\xi$ defined before, choosing a real $(S’,t’)$ close to $(s,t)$

so that $\phi_{s,t}(q)=q$ . Approximate it by a sequence of elements $f_{i}$ of $\Gamma$ uniformly convergent
on a compact neighbourhood of $q$ . Since $\phi_{s,t}$ has a non real and non nutral derivative at
generic point, $f_{i}$ has a fixed point close to $q$ with the derivative close to that of $\phi_{s,t}$ for
any sufficiently large $i$ . Clearly those fixed points of $f_{i}$ are periodic points of $\Gamma_{p}$ .

Corollary 12. On the basin $B_{p}$ of a non solvable critic$al$ point $p\in C$ of an algebraic
$f\mathrm{u}$nction, periodic poin$\mathrm{t}s$ are dense.

Problem. 1 Find infinitely many periodic orbi$ts$ in the $b$asin of a non solvable $pr\mathrm{u}$ do
group.
2 Find a periodic point in the basin of a non solvable prudo group, where the stabilizer
is not Z.

This argument shows also non existence of invariant line fields on the set of periodic
points, which is dense in the basis $B_{p}$ .

In order to show non existence of measurable invariant line field on $B_{p}$ , we use

Tangential Ergodicity Theorem. On the $S^{1}$ -bun$dlePT(B_{P}-\Sigma)p$ ’ the pseudo $gro$up
$d\Gamma$ lifted from $\Gamma$ is finitely ergodi $c$ .

It is easy to see that this implies

Theorem 13. All section of $PT(B_{p}-\Sigma_{p})$ invariant under the dynami$cs$ of algebraic
function $C$ is not meas$\mathrm{u}$rabl$\mathrm{e}$ .

Similar argument may apply to a rational function $f$ : $\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ . Let $J$ denote the Julia
set of the function $f$ . It is known $(\mathrm{c}.\mathrm{f}. [7])$ that $J\subset\hat{J}$ and $\hat{J}-J$ is of measure $0$ .

Recall the following classical result [7].

Theorem 14. Julia set is (complet$ely$) invarian$t$ , and all invariant subsets are dense. $On$

$J$ periodic points are dense and $J$ contains all repeling periodic points.

And also

Theorem 15. Let $z\in J$ and $U$ be a neighbourhood. Then the forvvord image of $U$ under
$f^{n}$ for an $n\geq 0$ contains $J$ .

Now we see

Proposition 16. $Ass$um$e$ the dynami$\mathrm{c}sdf$ restricted to the fiber $PT\mathbb{C}_{E}$ on an ergodic
comoponent $E$ of $J$ is ergodic. Then there exists no invariant $\mathrm{m}eas$urabl$\mathrm{e}$ line field on $E$ .

The tangential ergodicity is rather difficult to see, however we see
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Proposition 17. $Ass$ume there exists a periodic point $p\in J$ where the line$ar$ term of the
$ret$urn map $df^{(n)}(p)h$as the argument $\theta\pi,$ $\theta$ being non integer. Then all invariant sections
of $PT\hat{\mathbb{C}}$ defin$ed$ on an invariant subset of $J$ are everywhere discontinuous.

For simplicity assume that there is a periodic point $z\in J$ and the linear term $df^{n}(z)$

has a irrational argument. Let $U$ be a neighbourhood of a $p\in PT\hat{\mathbb{C}}_{z}$ . Then the union
$\bigcup_{m=1,k}\ldots,df^{m}n(U)$ contains the fiber over $J$ by the irrationality and the obove theorem on

$\mathrm{t}\mathrm{h}\dot{\mathrm{e}}\mathrm{d}\mathrm{y}\dot{\mathrm{n}}$amics on $J$ . This implies that $\mathrm{f}\dot{\mathrm{o}}\mathrm{r}$ any point $q\in PT\hat{\mathbb{C}}_{J}$ , the itterated preimage
$df^{-mn}(q)$ accumulates to $p$ . By the density of the grand orbit $O(z)$ of $z$ in $J$ , we see that
the grand orbit $O(p)\subset PT\hat{\mathbb{C}}$ is dense in $PT\hat{\mathbb{C}}_{J}$ . This implies

Corollary 18. If $\theta$ is irrational, then $\mathrm{a}\mathrm{J}l$ (grand) orbits are dense on $PT\mathbb{C}_{J}$ , and in
particular a graph of an ingariant line field is dense in $PT\mathbb{C}_{J}$ .
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In the following we present some generic random orbits of the dynamics on the various
algebraic curves.

.

. $\cdot$
$\vee\cdot$

$\backslash$.
-.

$=$

The projection of an orbit on the curve

$x^{3}+x^{2}+0.1xy+y^{2}+x=0$

onto the $\tilde{x}$-plane, $\tilde{x}=1/x$ . This is a perturbation of $x^{3}+y_{2}=0$ , for which the group
generated is $\mathbb{Z}_{6}$ .

49



The projection of an orbit on the curve

$x^{2}y+y^{3}+1=0$

onto the $\tilde{x}$-plane, $\tilde{x}=1/x$ . This is also very symmetric.
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The projection of an orbit on the curve

$(y-x^{2}+0.3)(y-X)-^{\mathrm{o}.3}=0$

onto the $x$-plane. A defoemation of Julia set for $c=-0.3$ .
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The projection of an orbit on the curve

$(y-x^{2}+0.3)(y-X)-^{\mathrm{o}.3}=0$

onto the $\tilde{x}$-plane, $\tilde{x}=1/x$ . $\mathrm{T}\mathrm{h}\mathrm{e}+$-shaped part centered at $0$ seems to be a bug.
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The projection of an orbit on the curve

$(y-x^{2}+0.3)(y-x)+0.1iy^{2}=0$

onto the $x$-plane. Another deformation of Julia set for $c=-0.3$ . The orbits seem to be
sense.
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The projection of an orbit on the curve

$(y-x^{2}+0.3)(y-x)+0.1iy^{2}=0$

onto the $\tilde{x}$-plane, $\tilde{x}=1/x$ . The center is a super attractive critical point, and ”real” non
random orbits are foliation-like.

54



:

The projection of an orbit on the curve

$(y-x^{2}+0.3)(y-X)-\mathrm{o}.03+0.03i=0$

onto the x-plane.
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