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Summary. In this paper, an effective multigrid algorithm is applied to the Wilson nonconforming
finite element, which has been extensively used to solve the second-order elliptic boundary value prob-
lems. We obtain good convergence rates for the V-cycle multigrid method with or without numerical
quadratures.
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1.Introduction

The Wilson nonconforming finite element has been widely used in computational mechanics and
structural engineering because of its good convergence behavior. It is shown in [10],[12], that the
convergence rate of Wilson element in the energy norm is of first order. The condition number of
its stiff matrix is O(h~2), resulting in a slow convergence rate in actual computations. Therefore
PCG or other preconditioned iterative methods must be carried out to speed up the convergence.

As we know, the multigrid method is a useful tool to solve linear systems arising from the
discretization of elliptic boundary value problems and can produce some good preconditioners.
We refer to [1,2,3,4,6,9,11] and references therein for a comprehensive treatment of this method.
However, most of multigrid methods is based on the conforming finite element approximation. In
the case of nonconforming elements, we must construct an intergrid transfer operator between fine
and coarse grids. On the other hand, the stiffness matrix of a conforming or nonconforming finite
element discritization is usually computed approximately using a suitable quadrature scheme.
The effect of numerical integration in finite element methods was analyzed in [7], where only
conforming elements are concerned. Based on the idea of [7], the V-cycle multigrid algorithm
with numerical integration on each grid level was analyzed in [8]. It was proved there that the
constructed preconditioner has a uniform convergence rate for the approximation of problems with
a full regularity and a quasi-uniform mesh, just the same as without using numerical integration.

However, there are no relevent results of the effect of numerical integration for nonconforming
finite elements. In this paper, an effective multigrid algorithm is applied to the Wilson noncon-
forming element. We obtain good convergence rates for the V-cycle multigrid method with or
without numerical integration.

We organize the paper as follows. In section 2, the error estimate of Wilson element approxima-
tion using numerical integration is obtained. In section 3, we consider a multigrid algorithm for the
Wilson element. Two intergrid tranfer operators are constructed, which produce good precondi-
tioners. Section 2 and Section 3 are independent. Based on the results of Section 2, Section 3 and
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[13], we apply. the multigrid algorithm to the Wilson element in Section 4, when the quadrature
schemes of Section 2 are used. We obtaln the optimal preconditioners as those in Section 3 without

using numerical integration.
2. Effect Of Numerical Integration On Wilson Element.

It’s shown in [7] that when a suitable quadrature scheme is used for the bilinear element approx-
imation, the first-order convergence rate can be guaranteed. In this section, we prove that this
first-order convergence rate can also be obtained when the same quadrature scheme is used for

Wilson element. 7
We consider the general second-order elliptic boundary value problem

—{0:(a110,u) 48, (a120z1) + Oz(a120,u)
+0y(a220yu)} +au=f in Q, (2.1)
u : =0 on 89, : ‘ S

where all funtions a;;,7,j = 1,2,a and f are smooth enough, and we assume that the differential
operator is uniformly elliptic, i.e., there is a positive constant ¢ such that

¢ €] + €3) < an€l + 20126165 + azatl
< c(€f +€3),
a>0
for all z € Q and real &, &;.
Let Ji be a rectangular partition of €, satisfying the regularity assumptlon (2], zo = (z0, %)

is the center of K € Jh, 2hy and 2hy are the lengths of two edges of K in x and y direction
’respectlvely, h = mazk(h, hy).

'The variational problem of (2.1) is to find u € H0 (R2) such tha.t
A(u,v) = (f,v) forall ve HYQ), (2.2)
where
A(u,v) = / (6110, u85v + a12(d;udyv + 8, udsv)
! + az20yudyv + auv]d:z-:dy' for all u,v € Hi(R).
The Wilson element solution w* € W), of (2.2) satisfies
An(w*,v) = (f,v) forall ve Wy, : (2.3)
where .

Ah(u v) = Z / (2110 ua,,-v + a120:u0yv + a1 0y udv + (1226 u0yv + auv)dzdy,
KeT

and the finite element space Wy, = {wa,wn|x € P2(K) is determmed by the functlon values at
the four vertices of K and the mean values of its two second derivatives 0;;wy and ayyw,, on K,
wy = 0 at vertices belonging to 69}

The bilinear element solution u* € BL, satisfies

An(u*,v) =(f,v) forall ve BL, ' (2.4)
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where BLy = {up,ur|k € Q1(K) is determined by its function values at four vertices of K,
uhlan‘= 0} ' ) '

In the following, we assume that c(with or without a subscript) is a generic constant which may
take different values at different places and is independent of the mesh size h and the solution u.

" The following lemmas are known or can be easily derived.

Lemma 2.1.[7]. .
lu— |15 < chllullz,a, (2.5)

lu—u*lo,0 < ch?*|lullz,, (2.6)

where the semi-norm

1
s = Q1B &3
K

Lemma 2.2.[10]. ~ .
lu—w*|1,n < chllull2a, (2.7)

|u—w*lo,0 < ch?||ull2. (2.8)

We approximate the exact integrals in A;(u,v) by defining a quadrature scheme Qx over each
element K € J. To be specific, we first consider the reference rectangle K and approximate the
integral [ ¢(&)d as follows:

' L
/K é(2)di =~ ; wi(by),

where w; are positive weights and b; € K are quardrature points. We then define the quadrature
rule on each K by

L
/K $(z) ~ Y wid(bk,) = Qx 9],
. =1 -

where ¢(z) = ¢(), the weights wk,; and quadrature points bg; are defined in terms of the w; and

b; by means of the affine mapping Bx from K onto K that takes each z in K into z in K. .
The quadrature error functional is denoted by

Exld] = /K 8(z)dz — Qi[d] = det(By) E[3). (2.9)

Using the quadrature scheme, we approximate Ax(.,.) ,(f,.) by 4x(.,.),(f, .)n as follows:

An(u,v) = ) Qk[a110:u:v + a12(9sudyv + 8y ud,v)
KeJ,
+ @220, u0yv + auv)], , - (2.10)

(fiv)n= ) Qk(fv).

KeTx

Now we define the Wilson and the bilinear element solution wy, and u; with the quadrature scheme
Qi being used in the approximation of (2.3) and (2.4):

Ap(wp,v) = (f,v)p forall ve Wh, 7 (2.11)

Ah(uh,v) = (f, ’U)h for all v € BL;. (212)
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Following [7], we use three assumptions in the deriviton of quadrature schemes.
Assumption 1. The union of all quadrature points b; on K contains a P;(K) unisolvent subset.
Assumption 2. The quadrature scheme Qg satisfies:

Ek[g) =0 forall ve Qi(K).

Assumption 3. The quadrature scheme Qg satisfies:
the weights wg ; > 0.

It will be seen later that by a proper choice of b; and wj, there exist schemes satisfying all three

assumptions.
The following lemma states a convergence result for the bilinear element solution of (2.12).

Lemma 2.3[7]. Suppose a;j,a € W1'°°(Q),f € Wh4(Q),q > 2, and the quadrature scheme
satisfies Assumption 1,2,3. Then

2
lu— unlon < ch[( D laijlio + llallyo)llullz + fulz + 111,41,

i,j=1
where u, u, are the solution of (2.2),(2.12) respectively.
Now we prove that the similar result holds for the Wilson element.

Theorem 2.1. Suppose a;;,a € W1°(Q), f € W4(Q), ¢ > 2, and the quadrature scheme satisfies
Assumption 1,2,3. Then

2
lu = wnlun < ehl( Y Najllz,oo + lally,oo)llullz + luls + 1£11,q],
4j=1

where u, wy, are the solution of (2.2),(2.11) respectively.
The proof will be given later. Before proving Theorem 2.1, we need some lemmas.

Lemma 2.4.

[k (vh, wh) — An(vh, ws)|

)

|u — whl1,n < cfinfo,ew, (llu — vall1p + supw, ew,

”wh”l,h
+ SUpw, ew, | (wn) — fu(wn)l + suDu, W, [Ap(u,ws) — f(wh)l]
“w"””‘ ”whnl,h

Lemma 2.4 can be proved by using nearly the same arguments as in the proof of the first Strang
Lemma [7].

Lemma 2.5[7].
inforewn v — vallin < llu—Maullyp < chlfull2,
where Il u is the interpolant of u in Wh.

Lemma 2.6[7].

An(u,wp) — f(wn
SQPwheW;.I ( ’||wh)||1,, (wa)]

< chllu|2.

Lemma 2.5 and 2.6 are, respectively, the interpolation and the consistency error estimate of Wilson
nonconforming element.
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Lemma 2.7. Suppose the quadrature scheme satisfies Assumption 1,2,3, then there exists a
constant ¢ independent of K € J and h such that for all a € W1®(K),p,p’ € Py(K),i,j = z,y

|Ex (adipdip’)| < chellally,co kPl rcllP ||z,

|Ex (app')| < chillally,oo,klIPll1,k |12 l}1,k -
Proof. (1) Let v = dxp/, w = 0;p,¢ = av, then v,w € Q;(K). We have

Ex (avw) = det(Bg)E (av),

|E(abd)| = E($u)
L

=| / pindz — Y wi(w)(br)|
K =1

S é|¢1i)|0,°°,f(

< 6”45”1,00,12"@'0,1{'-

According to Assumption 2,
E(¢w) =0 forall ¢ e Py(K).
Then applying Bramble-Hilbert Lemma gives
|E($)| < 1y o0 g |l £

that 1s, :
|E(adw) < é(jaly o0 g 101y g +18l; 00 & 910,8)1Pl0 & -

Therefore,

. 1
|Ex (avw)| < édet(Bk)()_ 1al; o0 £18],-; &)1®lo &

i=0

< chflaly,co x|Vl i [w]o,x -

(2.13) follows by replacing v,w with Jip’, 0;p in the last inequality.
(2) Let ¢ = ap’, we have
Ex(ap'p) = det(Bg)E(ap'p).

(2.13)

(2.14)

(2.15)

Let II denote the orthogonal projection from the space L2(f( ) onto the subspace Ql(f{ ). Then

E(ap'p) = E(¢p)
= E(¢11p) + E((p — [p)).

Using the same technique as in the first part (1) and the fact that 5|, i < |Bl, z, We get

1
E($11p)] < D al; oo 18 11—i 2)IBlo &

i=0

(2.16)

(2.17)
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From the definition of II, we have
|6 — [ply g < élpl &
Therefore,
|E(¢(p — Tp))| < &lé(p — TD)y o0 &
< 18l oo k1P — TBly 2
< élaly o,z 17'lo, 2 1P & - _ (2.18)

[x3

Combining (2.16),(2.17),(2.18) with (2.15) yields

1
|Ex (app')| < edet(Br)(D_Nak oo 218']1—: 2)1Blo &
1=0 ) -

+ lalo,m,R'ﬁ'|o,Rlﬁl1,K]
< chillally co, x lIpll & |1Pll1 K

Lemma 2.7 immediately implies Lemma 2.8.

Lemma 2.8. Suppose a;j,a € Wi (), u € H%(S), and the quadrature scheme satisfies Assump-
tion 1,2,3.Then

2
[An(Mau, wa) — An(au, w)]| < ch( Y llasjllioo + llallsco)llwnllnllull2-
ij=1

Lemma 2.9. Suppose the quadrature scheme satisfies Assumption 1,2,3. Then there exists a
constant ¢ independent of K € J, and h such that for all f € W, ((K),p € Po(K),

|Ex(fp)| < chi|det(Bx)|5™ || fll1,o.x|l2ll1.5-

"Proof. o
Ex(fp) = det(Bk)E(fp)-

Like (2.16), we have
‘ E(fp) = BE(fllp) + E(f(p - 11p)), (2.20)
where
\E(ffip)| < élfliply o 2
< C||f||1,q,fc|13|o,li"
(From assumption 2, we have
E(flip)|=0 forall fe Py(K).

Thus Bramble-Hilbert Lemma gives

|E(f1ip)| < clfly 4 &1Blo & (2.21)



109

On the other hand,
\E(f(p—11p))| < elflo , z 16— TBl, &
- Zelflog kPl & (2.22)
Therefore, by applying (2.21),(2.22),(2.20) to (2.19), we get

1
|Ex (fp)| < cdet(Bk) Z |f|i,q,klﬁll-£,k

=0
1_1 |
< chi|det(Bg )|~ || fll1,¢,x|lPll1,K -

Proof of Theorem 2.1. ‘
Applying Lemma 2.5,2.6,2.8,2.9 to Lemma 2.4 directly yields Theorem 2.1.

Now we give some quatdrature schemes satisfying Assumption 1,2, 3 . For simplicity , we choose
the reference rectangle K = [—1,1]? with the vertices 4;(1,1), Ay(1, —1), As(—1,-1),A4(-1,1).

Scheme 1. .
[ $()dz 3 dan).
K =1

It is a widely used scheme in numerical integration, which satisfies Assumption 1, 2, 3. Let
A12(1,0), A23(0, 1), A34(~1,0), A41(0,1) be the midpoints of four edges of K , A;As , AyAs,
A3A4 ,A4A; respectively. Using one of the four midpoints together with the two vertices of its
opposite edge, we derive a new scheme as follows:

Scheme 2.

[ #(@)de ~ 26(412) + (45) + (40)

It satisfies also Assumption 1,2,3. Similarly, we can derive another three schemes using the mid-
points of A3 A3, A3A4, A4A; respectively.

3.Multigrid Method for Wilson Nonconforming Element

In this section we describe the V-cycle multigrid method for Wilson nonconforming element. We
construct two multigrid algorithms, which have the same convergence property as for conforming
elements [1],[2]. ' '

Let Jho, -+, Jn, be a sequence of rectangular partitions of Q, satisfying the regularity assump-
tion[2]. Suppose J4, is obtained by dividing each rectangle K € Jhy_, into four equal rectangles,
k =1,---,J. The corresponding Wilson element space Wy, on J;, is denoted by Wy, then we
get a sequence of nonnested finite-dimensional vector spaces Wy, Wa, --- , W;. Let Ax(., D Ae(s, )
denote respectively Ap,(.,.), Ax,(.,.) defined in Section 2.

Given f € My, find v € M;, satisfying

Ae(v,0) = (f,4) forall ¢€Wy (3.1a)

. We now define the V-cycle multigrid algorithm for (3.1a) as follows. First, we need an intergrid
transfer operator It : My_y — M,k = 0,1,---,J, which will be given later. We need also some
auxiliary operators. For k = 0,1,--. ,J, we define the operator Ay : Wi — W by

(Arw,¢) = A(w, @), forall ¢ € We. | (3.1b)

The operator Ay is clearly symmetfic and positive definite. Then we define the operator Pj_; :
Wi — Wi—1 and Q_, : Wi — Wi_; by

Ay 1(Pro1w,¢) = Ap(w, Iyg) forall we My, é € Wy_y. (3.1¢)
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and _
(Q_1w,98) = (w,I1¢) forall we M, é€ Wi (3.1d)
Moreover, We need a linear smoothing operator Ry : Wi — Wk for k=1,---,J, and in addition
we define o
RO = { Ry, iflis odd,
k R:  iflis even,

where R}, is the adjoint of Ry with respect to the inner product (.,.). The operator Rg satisfies
certain conditions which will be stated later. :
We can now define the multigrid operator B : Wi — Wk by induction.
The V-cycle Multigrid Algorithm.
Set By = A, ! Assume that Bi_1 has been defined. We define Big for g € W;, as follows:
(1) Set z° = 0.
(2) Pre-smoothing. Define z' for [ =1,---,m(k) by

' = z'."l + Rg"'m(k))(g —Apz'Y). (3.2)
(3) Correction. Define y™ k) = z™*) 4 Irq, where q is defined by
q=Br1Q,_1(9 - Zlc"’m(k))- (3.3)
(4) Post-smoothing. Define y' for I = m(k)+1,---,2m(k) by
y' =yt + RO (g - Ty,
(5) Set Brg = y*™(¥).
Here m(k) is a positive integer which may vary from level to level and determines the number
of smoothing iterations on that level. If m(k) is a constant for all levels, the algorithm is called

simply the V-cycle. Otherwise, it is the variable V-cycle.
It is straightforward to check that

=B = (B"®)[(I - LPio1) + Il - Beo1Bao1)Paa]Kp ), (3.4)
where
—(m) (KiKi)3, if m is even,
PO (KiKe) =T K:, if mis odd,

E)yu : . LI -
(-Kr( ) )* is the adjoint of —K‘:( ) with respect to (.,.), Kj = I — RLA;. For the convergence
analysis, we need some assumptions. The first one is refered to the ”regularity and approximation”
assumption as follows [3]:

_ _ Toall2 |
[Ak((I = It Pr—1)u,u)| < Cg(u—xk%)"flk(u,u)l"a for all u € Mg, (A1)
k

where Ap is the largést eigenvalue of Ai. C, is independent of k for k =1,--- ,J, and @ € (0,1).
The second assumption is about the smoothing operator Ry [2):
Let Ky = I — ReAg, Kpw =1 — w)\,jlzk, there exists w € (0,1) such that

A(Kgv, Kpv) < A(Kg,wv,v),
A(Kpv, Kiv) < A(Kg,wv,v). (A.2)
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Under the condition (A.2), the operator B corresponding to the variable V-cycle or the V-cycle
multigrid algorithm is positive definite and hence can be used as a preconditioner in an iterative
method for solving (3.1a).The convergence rate of the iterative method depends on the bounds
of the largest and smallest eigenvalues of the operator ByAy. Equivalently, we will provide two
positive constants 79 and 7;, which may depend on k and satisfy

oAk (u,u) < Ax(BrAru,u) < mAp(u,u) forall u€ M;. (3.5)

Note that if (3.5) holds, then the PCG method converges with an asymptotic rate of

-, /e
1=ym
[1e
Ly

per iterative step.
The next theorem provides estimates for 79 and 7, for the variable V-cycle algorithm.

Theorem 3.1[3]. Assume that (A.1), (A.2) hold and that m(k) satisfies
Bom(k) < m(k — 1) < Bim(k), (3.6)

where Bo, B, are positive constants, greater than one and independent of k. Then (3.5) holds with

Mo, M satisfying
> m(k)* M + m(k)*
= M+ mk)

d <

(3.7)
where M is a constant independent of k£ and m(k).
Corollary. The condition number of the matrix B A} is bounded.

It means the matrix B}, is a good preconditioner for the matrix Ay.

Now we construct the intergrid transfer operator Iy : Wi, — W; satisfying the regularity and
approximation assumption (A.1).

Let M be a rectangle in J;_, as shown in Figure 3.1. a3, a3, a3, a4 are its vertices , co(zo, yo) is
the center, by, by, b3, b4 are the midpoints of four edges. Joining b1, b3 and b, by, we get four equal
rectangles My, My, M3, M4 in Ji with ¢, ¢z, c3, ¢4 being their center. The length of alag, ajaq is
denoted by 2hy, 2hy, |M| is the area of M.

a b1 1-
M, M,
b2 Co 4
M3 M,y
as 4
b3

Fig.3.1.
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~ For every v € Wy-1, we define Ixv on M; as follows:
Ik'U(CQ) = ‘U(Co),
Irv(ay) = v(ay),
| :
Lev(b1) = 5(v(a1) + v(a2)),

Teo(ba) = 5(v(ar) + o(as),

ﬁ/M OzzIrvdzdy = ﬁ/M&,,vdmdy,

1 1
W—;—,-/M 6nykvdwdy= M/Mayyvdzdy. (3.8)

Similarly, we can define Iyv on M,, M3, My, respectively.
The following fact is obvious: given u € Wy, there exits f, € W;, such that

Zk(u,v) = (fu,v) forall veW,. (3.9)
Let u* € H}(Q), w € BLy, be the solution of the following equations, respectively:
A(u*,v) = (fu,v) forall ve HAQ), (3.10)

A(w,v) = (fu,v) forall ve BLy, (3.11)
where BLy C Wy is the bilinear element space.

Lemma 3.1[7]. _ ’
Ar(v,v) < Cyllully,k o]l e,

Collull} . < Ak(u,u),
’\k = O(hl-:-z))

where u,v € Wi, A is the largest eigenvalue of Ay. Cy, C, are constants independent of X,. ||.||1 k
is the discrete H! norm on W;. :

Lemma 3.2. _
Hev|ie <clvfix-1 forall ve Wi_;.

Proof. Let v = vI + Z, v/ is the bilinear interpolant of v in Qk, Z is the nonconforming part of v,
M be a rectangle in J_;.
By a simple computation, we get

/» vvlVZ =0,
M
therefore,
ol k-1 = o'} + 1213 - . (3.12)
iFrom the definition of I, we have
' IkZ(bl) =0.

Let ¢, ¢y denote the terms appearing in the right side of the last two equations of (3.8). We have

Y
2(b) = -y,



thus
h
(Z - 1x2)(by) = —?%‘
Similarly,
. h3
(2 = 12)(b) = —24y.
Moreover,

(Z — Ik Z)(a2) = (Z — I Z)(c0) = 0,

and its two second derivatives on M5 are also zero, thus on M, we have

Z-1,7 = hl ¢a: (Z’ — ZU)(y Yo — h2)

hih
2¢ (z =20 —h1)(y -y — 2h2)
v hihy
A further computation gives
2hk3 2h3k

1Z = L. 213 pr, < 2(63 + 62)(
=123 ur-

7)

Similarly, we can prove
|Z - 1212y, <1203 4, i=1,3,4.

Therefore,
|Z - It Z|1,k < c|Z]1 k-1

Meanwhile, the continuity of v/ implies
o'y = o1
Using (3.12),(3.13) and (3.14), we have
[eolf e < 215" + 11215
<2y +22E +212 - 23,
< c(|vllf,k_1 + lzlf,k—l)

= clvﬁ,k—l)

which completes the proof.

Lemma 3.3.

[Ju — Ikﬁk_lu”l,k < chi|[Akullo for all u e W;.

Proof. Let wy_1,up_1 denote respectively the solution of the following equations:

A(wg-1,v) = (fu, v) forall ve BLp_;,

Ap—1(up—1,v) = (fu,v) forall ve Wi_y,

where f, = Azu and u* are defined in (3.9) and (3.10). The elliptic regularity follows

[w*ll2.0 < cllfullo-

113

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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Therefore,

llu = BPk-rufle

< 1w = wr—1ll1 %+ [ Te(wk-1 = Pe—1)|}1

< Jlu* = ullye + llv* — we—allye-1 + ellwi—1 — Pryulliz-1

< lw* = ullye + llv* — we—alye-2

+ e(llur—1 — wr—1ll1.k—1 + |Jue—1 = Pr—1ulls e-1)- (3.18)

The finite element error estimates and (3.17) give

llu* — ullye < chllu*|lz < chflfullo = chl|Axullo, (3.19)
llu* —wi-alle-1 < chllu*|l2 < chl[Arullo, (3.20)

uk—1 — we=1l1e=1 < |Ju* — vr-1fl1,e-1 + |Ju* — wr_1ll1,k-1

_ (3.21)
< chl|Arul|o-
From the definition of Pr_1, we have
Zk_l(—lsk_lu,v) = Ak(u,Ik‘U)
= (fu,Irv) forall veE Wi-y, (3.22)
which together with (3.16) gives
— Ap_1(Pr—1u —ug_1,v
Huk-l - Pk—l““l,k—l = SUPveW,_, l i 1( ik kol )I
llvll1e-1
I(fu,'U — Ikv)l
= SUDyew,_, ———————
A P P
v—Iv
< supyew -, L= Teelloy ey (3.23)
”v”llk—l
where
llv = Levllo < [lv = (Zev) Mo + kv — (Txv) o
< ch|vll1 k=1 + ch||Ixv||1x
< ch|v]|1,k-1- (3.24)
Therefore, we get _
||uk_1 - Pk_lu”],k_l S Ch”Aku”o. (325)

Combining (3.19),(3.20),(3.21),(3.25) with (3.18), we complete the proof of this lemma.
Lemma 3.1 and Lemma 3.3 immediately imply

Lemma 3.4. Let I; be defined as before, then (A1) holds with o = 1.
From Lemma 3.4 and Theorem 3.1, we obtain the main result of this section as follows:

Theorem 3.2. The multigrid algorithm is defined as before with Ry, m(k) suitably chosen and
the integrid transfer operator I is defined as (3.8). Then (3.5) holds with 7o, 7: satisfying (3.7),

where a = 1.
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Now, we construct another integrid operator Ir, which has a better convergence property than
the previous one, I;.
Let Ik be such that at the center cg, it takes the value

Tu(co) = %(u(al) + v(az) + v(as) + v(aq)),

and the other five definitions are the same as those of I; in (3.8).
For this new intergrid transfer operator I;, we have

— 2hy)

Z—-1;7Z = (Z IkZ) + (__ z "22¢y)(z xO)(:lhzyo ’

thus _
|Z - IkZ|1 k < C|Z|1 k-1

Comparing with (3.13), it is seen that Lemma 3.2 is valid for I;. Therefore, Lemma 3.3 and 3.4
also hold for this new transfer operator.
We have a similar Theorem for I.

Theorem 3.3. The multigrid algorithm is defined as before with R, m(k) suitably chosen and

the intergrid transfer operator Ij is defined above. Then (3.5) holds with 7,7, satisfying (3.7),
where a = ;
It will be seen later that Ik has a better convergence property than I;. In fact it comes from

an important property which I} has but I hasn’t as follows:

Ap(Lu, Iu) < Ap_1(u,u) forall u € Wi_;. (A.3)

Theorem 3.4[3]. Assume (A.1),(A.2) and (A.3) hold. By, is defined as before and m(k) satisfies
(3.6). Then

]Zk((.[ - —B_kzk)u,u)| < 6kﬁk(u,u) forall ue W, (326)
holds with Y

Remark 3.1. If I; satisfies (A.3), then the new preconditioner Bx will satisfy (3.26), which is
obviously stronger than (3.5). Indeed, this Bj can be directly used as an iterative operator,
besides as a preconditioner, that will speed up the convergence procedure.

For simplicity, we assume that a;; = é;;,a = 0. It means that the original equation is Poisson
equation —Au = f.

Lemma 3.5. (A.3) holds for I;.
Proof. See Figure 3.1. Let ¢; = v(a;),1 < i < 4,60 = v(cp),v = v! + Z, then
ikv = 'UI + ka,
and

Ap-1(v,v) = Z / (02 v)2+(6 v)2dzdy

MeTk

= ( / (0e0")? + (3, sy + / (8:2)" + (8, 2)"dady).
METk-1 ‘
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The last equation is from (3.12), the term after ) is denoted by AM v
By a careful computation, we have :

A -1V = 1121 [($1 — ¢2)% + (¢3 — $4)® — (¢1 — $2)(d3 — ¢4)]
—i{wl—¢o?+w3—¢a*-w1—¢ow3—¢»]
+ 3h1h2(h 92 + h363).

Meanwhile,
Aliv, fiv) = Y Z / (s Tev)? + (8, L) 2dady.
: MeJx-, i=1

Let Ai” ‘ denote the integral on the right side of the last equation. we can calculate Aiw ! which
gives
(p2 — ¢3)% + 12(ba — 3)% + Th2(d4 — 4’1)2 + 7732 (¢2 — 1)

16
1h

(91— 92)(61 — 43)]

Aiw‘v 3[

- 062 = d0)+ 5

ﬁ"hhz(h 62 + h342).

Other Af‘ can be calculated similarly. Therefore,

Z Afv = 3%[(@ — ¢2)* + (¢a — ¢4)2 —~ (¢1 — $2)(¢3 — ¢4)]

i=1

J«m $4)% + (¢3 — 62)% — (¢1 — $4) (83 — $2)]

+ 3h1h2(h2¢, + h3¢%)

S Ak—lva

thus we have o _
Ap(Ixv, Iv) < Ag—1(v,v) for all v € Wi_;.

Lemma 3.5 implies

Theorem 3.5. The multigrid algorithm is defined as before with m(k), Ry suitably chosen and
the intergrid transfer operator Iy is defined as before. Then (3.26) holds with é; satisfying (3.27).

4.Multigrid With Numerical Integration Method for Wilson Nonconforming Element

Combining the results of Section 2 and Section 3, we can start our discussion on multigrid method
for Wilson nonconforming element, when a proper quadrature scheme is used for the approximation.
We will show that the preconditioner constructed by using a suitable quadrature scheme has the
same effect as that in Section 3.
It was proved in[8] that when a quadrature scheme satisfying
Assumption 4{7]:
Ek[g]=0 V ¢ € Py(K)

is used in the multlgnd method for a conforming element, we can get a good preconditioner as
without numerical integration. However, Assumption 4 is stronger than Assumption 1,2,. For
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example, the five integration schemes proposed in Section 2 for Wilson element don’t satisfy As-
sumption 4. However, we have proved in [13] that using a scheme satisfying the Assumption 1,2,3,
but not the Assumption 4, we can still get the same good preconditioner for conforming elements
as in [8]. In this section, we will prove that these five schemes defined above can also be used for
Wilson nonconforming element.

We define the multigrid algorithm with numerical integration just the same as the multigrid
algorithm in section 3, with By, A; replaced by By, Ay, respectively. Ay, Py, Qx are defined in
(3.1b,c,d) with Ay replaced by Ag. By is the preconditioner for A\ is the largest eigenvalue of
- Ag.

Using the knowledge in [7], we can prove

Lemma 4.1. Let Assumption 1,2,3 hold. Then there exist positive constants ¢ and ¢ independent
of k, such that

c“lAk(u,u) < Ag(u,u) < cAk(u,u) forall ue W, (4.1)

() Hlulhe < e Hlullg, < cllulla, < clullg, < llullie for all € Wy, (4.2)
()R < eI < ed < 'R}, (4.3)

e Arulle < [[ulla, < cllArulls for all u € Wi, (4.4)

Lemma 4.2. Suppose Assumption 1,2,3 hold and a a,J € Wh*°(9Q),i,j = 1,2. Let u* denote the
solution of (2.2) with f = Agu, then

2
llu = ulle < chie Y (lasjllz,oo + llallz,eo)llu”l2: (4.5)
i,j=1
Proof. It is clear that ’
A(u*,v) = (Agu,v) forall ve HY(Q), (4.6a)
Ap(u,v) = (Agu,v) forall ve W, (4.6b)

where Ay, is the numerical integration approximation to A. Applying the first Strang Lemmal[7],
we have

| Ak (vh, wr) — Ag(vs, wh)l)
llwn |l

”u* - u”]-;k S c[inf‘thWk(”u* - 'Uh“lyk"{' Supw;,,EW)‘

Izk(u*’ wh) — (f) wh)l]_

|lwa l|1,e

(4.7)

+ Supwhewk

Let & be the interpolation of u* at the nodes. Applying the standard interpolation error estlmates
to the first term on the right side of (4.7), we have

llu® =gl < chiflu’|lz, (4.8)

lu* = Bllmax) < cllw’|lma)- (4.9)
Then, applying Lemma 2.7 and (4.9) to the second term on the right side of (4.7), we get

2
(8, wn) — Ax(@, wn)| < chi Y (lasjllneo + llalleo)( Y @) # lwalli e

.)j_l . KETk

< chy E (Nlaijllz,00 + Ilalll,mfty)llu*Ilzllwhlll k- (4.10)
ij=1
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On the other hand, the consistency error estimate in {7] gives

[Ai(u*, wp) — (f,w)|
e

SUDw, eW), < Ch"u*”'b

Combination of (4.7),(4.8),(4.10) and the last inequality completes the proof.
Lemma 4.3. Suppose a,a;; € W1*°(Q), and Assumption 1,2,3 hold. Then for all u,v € W,

|4k (u,v) — Ar(u, v)| < chillvllyil[Arullo, (4.11a)
[Ak(u,v) — Ak(,v)| < chellv]l1el|Arullo.  (411b)
Proof. From Lemma 2.7, we have
[k (u,v) = Ae(u,0)| < chillollie( D ullfra)?- (4.12)
Ti€T

Let u* denote the solution of (3.1a,b) with f = Au. Using Wilson element error estimate, we have
llu* = ully i < chllu’[l,. (4.13)

The full elliptic regularity yields _
¥l < el Ak ull. (4.14)

Let U be the interpolation of u* at the nodes. It follows that
lu* =8| g2 (k) < chellu*|lmack), (4.15)
@l < ellu [z © (4.16)
Hence
Nellfragry < 2w =gy + 2@l
< e(hg *llu = Tl k) + w12 x)) (4.17)
< ehi?lu* — ulld iy + 1w s i -

Taking the sum over all elements and using (4.13),(4.14), it follows (4.11a).
(4.11b) can be proved similarly by noting that (4.13) can be replaced by Lemma 4.2.
By application of the above three Lemmas, we can prove the following lemma easily.

Lemma 4.4. Suppose a,a;; € WH*°(R), and Assumption 1,2,3 hold.Then for all u € W;,
™ |Akullo < [Feullo < cflAxulo (4.183)
C [ Akullo < X (1 Axullo < edg? | Avullo- (4.18b)
Lemma 4.5. Suppose a,a;; € W1 (Q), and Assumption 1,2,3 hold. Then for all u € Wy,

1(P-1 — Pe—1)ull1,k-1 < chillArullo
< chk||Zk'u[|o, (4.19)

1Pe-1ull1,e-1 < ellulls,k, (4.20a)
1Pe—sull1e-1 < cllully,e (4.20b)
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Proof. From the definition of ﬁk_l;Pk_‘l, for all u € Wi, v € Wi_;, we have

Ae—1((Pr-1— Pe-1)u,v)
< [Ake1(Pr-11,v) = Ag—1(Pr-19,v)| + |Ar(u, Lev) — Ap(u, Ixv)).

Let I, I, denote the two terms in the right side of the last inequality. Using Lemma 4.3 and

Lemma 3.2, we have

Therefore,

and

Iz < chil|Arullo|Zev|l1 6 < chkllAkUIIOHPIh,k—h
L < Chk-l”Zk—lﬁk—l'u”()”vul,k-l
< chi||Qk—1Arullol]v]l1 k-1

< chi || Agullollv]ly k=1

IPr—1 — Pecallie-1 < challArullo < chel[Arullo

[Ak_1(Py_1u,v)|

Pe=1ll1,6-1 = supyew,_,

[ e
_ |Ag(u, I —kv)|
= T e
. cllully, k|| Iev]]1,5
i
S c”““l,k'

Similarly, (4.20b) can be proved.

Now we turn to the proof of the main condition (A.1) in Section 3, when a quadrature scheme
satisfying Assumption 1,2,3 is used. From now on, when we mention the condition (A.1) or (3.5),
we always suppose Ay, Pi_; are replaced by Ax, Pi_1, since only the numerical integration methods
are considered. If (A.1) holds and the smoother Ry is well chosen, then we can obtain the same
good preconditioners for the variable V-cycle algorithm as those in section 3.

Theorem 4.1. Suppose a,a;; € W1 (Q),the multigrid algorithm is defined as before, and As-
sumption 1,2,3 hold. Then (A.1) holds with o = 3.
Proof. Theorem 3.2, Lemma 4.1 and Lemma 4.4 give

[A(( = T Pr-1)u,u)| < Ca(y |1 Akul2) 3 A (u, u)’

< Ca(A7 M| Arull3)? Ak (u, u)?.  (421)

Using Lemma 4.3, Lemma 3.2 and Lemma 4.5, we have

|Ax((I = LePeor)u, u) = A((I = LPemr)u, u)] < chillulls ell drulo, (4.22)

which follows

[Ak((I = Pe—y)u, u)| < chillullyellArullz,

+|A((I - LPy-r)u,u)| + AL (Pr-y — Pe_1)u, u)]. (4.23)



120

Applying (4.21) to the second term, and (4. llb) Lemma 3.2 and (4.19) to the last term on the
right side of (4.23), we get

|Ab((I = T Pe-1)u, w)] < chellullyell Arullo +c(0g |l Axull}) Ae (u, ).

Finally, using Lemma 4.1, we can see (A.1) holds with o = %
The following theorem is a consequence of Theorem 4.1.

Theorem 4.2. Suppose a,a;; € WH*(Q), the multigrid aigorithm is defined as before and the
quadrature scheme satisfying Assumption 1,2, 3 is used in approx1mat10ns Then (3.5) holds with

10, ! satisfying (3.7).

Now we will examine whether the condition (A.3) holds for the intergrid transfer operator I
when the numerical quadrature schemes satisfying Assumption 1, 2, 3, for example, scheme 1
and scheme 2 in Section 2 are used in the approximation of Poisson equation. If it holds, the
corresponding preconditioner By has the same good convergence property as B without using
numerical integration.

Lemma 4.8. Assume the quadrature scheme 1 or 2 is used in approximations and [}, is defined
as before. Then

Ak(fkv,fkv) < Ag-1(v,v) forall veE Wi_;.

Proof. We prove the Lemma for the scheme 1. All notations are the same as Lemma 3.5. By a
careful computation, we have '

Ag-1(v,v) = Z Al v

MeTk-1
where
4
AM v = Z[@zv(a,) + Bzv(a,)]hlhg
i=1
2 VRY)
(4h2¢2 + 4h ¢2 ( : ¢2) 2',‘:2(454 ¢3)
(1 — ¢4)® + (d2 — ¢3)2,
+ 2k Yhihg
and
o 4
Ap(Ixv, I1v) = Z _ ZAim'”’
. MeTx-1 i=1
where

$2)? + 3(¢a — ¢3)2 + L(¢1 — $2)(¢4 — ¢3)
2h2 »

2(¢1— 04)? + 3(d2 — $3)? + 2(61 — $4)(¢2 — 63) h1h2
+ 2h2 ) 4

A v—(h¢z+h¢y+4(¢1

Similarly, other AY‘v can be calculated.
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Therefore,
: 3(¢1 — $2)? + 3(da — 3)% + (61 — #2)(¢a — &
2}4v4MW+M% 1= ¢2) (4;é(1 2)(¢4 — ¢3)
3(¢1 — 04)® + 3(¢2 — ¢3)* + (¢1 — ¢4)(d2 — qs_-,))hlh2
2h2 4
(¢1 = ¢2)° + (¢4 — ¢3)°

< 242 2
(W62 + 36} + o

MOEES SEes INY

S Aﬁl—lv’

thus we have L
Ag(Ixv, Iyv) < Ap_1(v,v) for all u € Wi_;.

Using the same idea, we can prove that the Lemma is valid also for the quadrature scheme 2.
Lemma 4.8 together with Theorem 3.4 imply

Theorem 4.3. Suppose a;; = 6;;,a =0, the multigrid algorithm and the transfer operator"f;c are
defined as before, and the quadrature scheme 1 or 2 is used in approximations. Then
Ar((I — BeAr)u,u) < b Ap(u,u) forall ue W
holds with ‘
6. = ._____A_J____
T Mm@
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