
Large Scale Finite Element Analysis on
a Massively Parallel Computer

R. Shioya and G. Yagawa

School of Engineering, The University of Tokyo

7-3-1 Hongo Bunkyo-ku Tokyo 113, JAPAN
Tel: $+81- 3- 3812-2111$ ex. 6994 Fax: $+81- 3- 5684-3265$

E-mail: shioya@gen.u-tokyo.ac.jp

Abstract

This paper describes the parallel finite elements for MIMD type massively parallel com-
puters and clustered workstations. As a parallel numerical algorithm for the finite element
analyses, the present authors have utilized the Domain Decomposition Method (DDM) com-
bined with an iterative solver, i.e. the Conjugate Gradient $(\mathrm{C}\mathrm{G})$ method where a whole
analysis domain is fictitiously divided into a number of subdomains without overlapping. In
order to solve the issue of memory shortage, the present system has adopted a hierarchical
distributed data management system. The present method is successfully applied to over one
million d.o.f. scale 3-D structural problems with high parallel efficiency of more than 90%
with the 1,024 CPUs.

KEY WORDS: Parallel Finite Element Method, Domain Decomposition Method, Massively
Parallel Processors.

1 Introduction
During the last several decades there has been an exponential growth in computing technology [1].
From $40\mathrm{s}$ when the first developed computer, ENIAC, appeared, microprocessors have speeded up
10 times in performance every ten years. During the last decade they have doubled approximately
every 18 months [2] and they continue to increase in performance.

With such a progress of computing technology, a numerical simulation like a finite element
method (FEM), has been established as the third method followed by theory and experimentation.
Consequently, numerical simulations are replacing experimental studies in fields where it takes
enormous cost or time, or it is even impossible to carry out an experiment. In such fields, computer
technology itself have been a target for study or research and, because of it, new fields of study
have come out, being termed computer engineering, science and so on.

Computer technologies have solved many difficult problems which had never been solved without
a computer, and are still trying on more complicated problems. The fact that today’s technolo-
gies significantly depends on computer $\dot{\mathrm{h}}$ardware indicates that they could not have been realized
without computer developments.

As the scale and complexity of interest solved by a computer escalates, more computer power, i.e.
speed or memory size, are required. The more the computer technology progresses, the more then
they are used, thereby requiring more rapid progress. They repeat themselves, that is, computer
technology are fated to should be always in progress. To keep continuous progress and evolution
in the future, it has been said that they have to break through technical and basic concepts, that
is, changing the $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{u}\mathrm{p}_{\mathrm{U}}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ concept from sequential computing to parallel computing.

With a Neumann type computer, instructions and data streams are performed sequentially.
Speeding up themselves was the best way to develop a high performance computer, but, they

数理解析研究所講究録
989巻 1997年 132-147 132

encounter their physical limits, that is, they will never exceed a light speed. To overcome such
a problem, we needed a new type of computing concept, i.e. parallel computing and a parallel
computer. A parallel computer seemed to have infinite abilities and many parallel computers have
been developed during the last decades. Finally, a super parallel computer, i.e. massively parallel
processors (MPP), which include thousands of processors, have been developed and appeared on
the market.

On the other hand, in opposition to expensive super computers, more economical computers such
as workstations or personal computers, which we cannot classify these days have spread, and with
a computer network which also have spread with astonishing speed a virtual parallel conzputer,
sometimes called workstation clusters (WSC), which are a set of workstations or personal computers
connected through a computer network as a parallel computer, is being one of the most popular
and easiest ways to realize parallel processing [3].

Thus today’s parallel computers including virtual one have enough power to solve a large scale
and complicated problem that was considered impossible a few years ago. With these progresses of
hardware, software is also a versatile element for a parallel computer to realize a high performance,
but it is always behind the hardware. While many researches are being done these years, n)$\mathrm{o}\mathrm{r}\mathrm{e}$

applications or techniques for a parallel computer are needed to bring out the ability of a parallel
computer.

In this papaer, considering such trends of computing technology and requirements of solving large
scale and complicated problems, a parallel FEM system which adopts a domain deconlposition
$\mathrm{m}\dot{\mathrm{e}}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{d}$ (DDM) is developed and inlplemented on MPP and also on WSC. It is demonstrated that
the developed system can solve a three-dimensional structural problem of over one $1\mathrm{u}\mathrm{l}\mathrm{i}\mathrm{l}\mathrm{l}\mathrm{i}_{0}\mathrm{n}$ d.o.f.
(degrees of freedoms) in a high parallel efficiency.

2 Domain Decomposition Method
For finite element analysis, a variety of parallel computing algorithms for alarge scale problenl have
been studied by several researchers. Most of which take into account the node- or the elenlent-wise,
the column-wise, the domain-wise [4] concurrency, or their combination.

The domain-wise concurrency is found in the parallel substructure equation solvers [4-10] or in
some domain decomposition methods [10-20]. It is well known that the parallel $\mathrm{a}\mathrm{l}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\ln$ based
on the domain-wise concurrency has, in general, a large granularity of parallel tasks.

To achieve a high $\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{f}_{\mathrm{o}\mathrm{r}}\mathrm{n}\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{C}\mathrm{e}$ which does not depend much on computer architecture, a large$
granularity of tasks and a well-balanced workload distribution have been key issues.

The Domain Deconrposition Method; which the present study is based on, is originated in
the well-known Schwarz method for solving elliptic problems. Although the original lnethod is
substantially of a sequential type, Glowinski et al. extended it to a parallel $\mathrm{a}\mathrm{l}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\ln[11]$. Their
formulation, however, involves fully Neumann type calculations, which often generates floating
domains that do not have enough prescribed displacements to eliminate the local rigid body modes.

In this paper, a new domain decomposition [18-20] formulation based on a displacenlent-based
weighted residual method, which can avoid the fully Neumann type calculation is described.

2.1 Fundamental Equations using Lagrange Multipliers
The present DDM is summarized in the following. To explain its theory, let us consider an elastic
problem concerning a domain Ω , as shown in Figure 1. Here, $\overline{\mathrm{T}}$ is the traction force applied on
the boundary $\Gamma_{\mathrm{T}},$

$\overline{\mathrm{B}}$ the body force applied in the domain $\Omega,$ and $\overline{\mathrm{u}}$ the prescribed displacement
on the boundary r_{u} .

Fundamental equations of this elastic problem are summarized in an infinitesimal displacenlent
mode as follows: ,. r

$\epsilon_{ij}=\frac{1}{2}(u_{i,j}+u_{j,i})$ in Ω (1)
$\sigma_{ij}=\overline{C}_{ijmn}mn^{\mathcal{E}}$ in Ω (2)

$\sigma_{ij,j}+\overline{B}_{i}=0$ in Ω (3)

133

$\sigma_{ij}\nu_{ji}-\overline{T}=0$

$u_{i}=\overline{u}_{i}$

on r_{T}

on r_{u}

(4)
(5)

where i,j take the value 1 to 3, u_{i} is a displacement vector, ϵ_{ij} a strain tensor, σ_{ij} stress tensor,
C_{ijmn} a coefficient tensor of the Hooke’s law and ν_{j} an outer normal vector on the boundary Γ ,
respectively. $()_{j}$, denotes the first order derivative with respect to the coordinate x_{j} .

The above variational form is equivalent to the following minimization problem which finds the
displacement funct\’ion u which is a stationary point of the energy functional:

$J(v)= \frac{1}{2}\int_{\Omega}\sigma_{ij}\epsilon_{ij}d\Omega-\int_{\Omega}\overline{B}_{i}v_{i}d\Omega-\int_{\Gamma}\overline{T}_{i}v_{i}d\mathrm{r}$ (6)

As shown in Figure 2, after dividing domain Ω into N_{d} subdomains, $(\Omega^{(\dot{d})})_{1\leq}d\leq N_{\mathrm{d}}$ with γ_{pq}

being the interface between $\Omega^{(p)}$ and $\Omega^{(q)}$, solving the above problem is equivalent to finding the
displacement functions $u^{(d)}$ which are stationary points of the energy functional:

$J’(v^{(1)}, \ldots, v^{(N_{d})(1})=’\dot{J})(v^{(1)})+J^{(}2)(v^{(})2)+\cdots+J^{(N_{d})(}(\dot{v})N_{d})$ (7)

with additional conditions on the interface boundary γ_{pq} :

$u^{(\mathrm{p})}=u^{(q})$ on γ_{pq} (8)

$\sigma_{ij}^{(p)}\nu^{(\mathrm{p}}jij)+\sigma^{(}\nu=0q)i(q)$ on $\gamma_{\mathrm{p}q}$ (9)

where the superscripts $()^{(d)}$ designate variable defined in the subdomains $\Omega^{(d)}$.
Depending on the treatment of additional interface boundary conditions of equations (8) and

(9), the following two approaches are available : In the first approach, equation (8) is satisfied
exactly, while equation (9) is approximately satisfied, and vice versa in the second approach.

Although both the approaches are valid in principle, the first formulation involves fully Neumann
type calculations, which often generates floating domains that do not have enough prescribed
displacements to eliminate the local rigid body modes. The second approach is thus thought to be
more appropriate.

With the use of a Lagrange nlultiplier method, solving the equation (7) with the subsidiary
condition (9) is equivalent to finding the saddle-point of the $\mathrm{L}\mathrm{a}\mathrm{g}_{\Gamma \mathrm{a}}11\mathrm{g}\mathrm{i}\mathrm{a}\mathrm{n}$ functional:

$\mathcal{L}(v^{()},., v^{(N_{d}}1..),(1)\mu,$ $\ldots,\mu^{()})N.=\sum^{N}J(d)(v^{()})+\sum_{pd,q}^{N}d\int_{\gamma}\mathrm{d}d,$
$v\mathrm{p}q\mu\tau C(v(p)(q))d\gamma$ (10)

where
$c(v^{(\mathrm{p})},v)(q)=\sigma\nu^{(p}+i\mathrm{j}j\sigma(p))i(ji^{q}q)_{\nu^{()}}$ (11)

and $N_{:}$ is total d.o.f. on interface γ_{pq} . The above problem can be equivalently converted to finding
the displacement functions $u^{(d)}$ and the interface Lagrange multipliers $\lambda^{(i)}$ that satisfy:

$\mathcal{L}(u^{(1)}, \ldots, u(N_{d}),(1):))\mu,$$:..,\mu^{(N}$ \leq

$\mathcal{L}(u^{(1)},’.\cdot.\cdot.\cdot,’ u^{()}\mathrm{d},’\lambda^{(1})v(N_{d})N\lambda^{()}1,’.\cdot.\cdot.\cdot,’\lambda\lambda(N..\cdot)))(N.)$ (12)
\leq $\mathcal{L}(v^{(1)}$

for any admissible $(v^{(d)})_{1\leq}d\leq N_{d}$ and $(\mu^{(i)})_{1<i}<N.\cdot$

We can solve this saddle-point problem ($\overline{1}2\overline{)}$ by a saddle-point solver such as Uzawa’s $\mathrm{a}_{0}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{n}1$

or its CG variants. Let us describe the CG method to solve the equation (12) in next section.

2.’2 Conjugate Gradient Algorithm for DDM
Defining the positive definite and symmetric operator A :

$A\mu^{(i)}=C(u((\mathrm{p})\mu), u^{(q})(\mu))$ (13)

134

where
$u^{(\mathrm{P})}(\mu)=\mu^{(}q)(\mu)=\mu^{(i})$ on γ_{pq} (14)

the CG algorithm for solving equation (12) is summarized as follows:
Step 0 : Initialization

$\mu^{(i)^{0}}$: arbitrarily given (15)
$g^{(i)^{0}}$

$=$
$A\mu^{(i)^{0}}$ (16)

$w^{(i)^{0}}$
$=$

$g^{(i)^{0}}$ (17)

The $g^{(i)^{0}}$ of equation (16) is obtained from the traction forces on γ_{pq} which are calculated by
solving equations (1)$-(5)$ in each subdomains with the following constraint:

$u^{(p)}=u^{(q)}=\mu^{(i)^{0}}$ on $\gamma_{\mathrm{p}q}$ (18)

Step 1: Steepest descent
$\mu^{(i)^{n+1}}=\mu-(i)n\rho^{n}w(i)n$ (19)

where
$\sum^{N}.\cdot g^{(i)}ng^{(i)}n$

$\rho^{n}=.\cdot\frac{i}{N}$ (20)

$\sum_{:}w^{()^{n}}Aiw^{(}i)^{n}$

Step 2: Calculation of the new descent direction

$g^{(i)^{n+1}}=g-(i)^{nn}\rho^{n}Aw^{(i})$ (21)
$w^{(i)^{n+1}}=g^{(i)^{n+n}}1+\kappa wn(i)$ (22)

where
$\sum^{N}.\cdot g^{(i)}gn+1(i)n+1$

$\kappa=.\cdot\frac{i}{N}$ (23)

$\sum_{;}gg(i)^{n}(i)n$

The $Aw^{(i)^{n}}$ of equations (20) and (21) is obtained from the traction forces on γ_{pq} which are
calculated by solving the following equations:

$\sigma_{ij,j}(d)=0$ in $\Omega^{(d)}$ (24)
$\sigma_{ij}(d)\nu j^{(d})=0$ on $\mathrm{r}_{\mathrm{T}^{(d)}}$ (25)

$u_{i}^{(d)}=0$ on $\mathrm{r}_{\mathrm{u}^{(d)}}$ (26)
$u_{i}(d)=wn$ on. γ_{pq} (27)

Step 3: Judgment of convergence
If $\mu^{(i)^{n}}$ has not converged yet, return to Step 1 by setting n to be $n+1$. Here the convergence

criterion is defined as:

$\frac{\max_{i}|g^{()^{n}}|i}{\max_{\dot{\iota}}|g^{(i)^{0}}|}<Err$ (28)

in which the $\mathrm{n}\mathrm{u}\mathrm{a}_{d}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{u}\mathrm{m}$ component of force imbalance along the interface boundary, i.e. residual
value, is monitored.

135

The flow chart of the present DDM algorithm is illustrated in Figure 3. It should be noted here
that the finite element analysis of each subdomain can be performed without any data communi-
cation among subdomains. Namely, the finite element analyses of subdomains can be performed
in parallel, once the displacement values on the inter-subdomain boundaries are given. Since the
workload for each finite element calculation is much larger than those of other tasks including data
communication and modification of boundary values, the so-called overhead due to parallel calcu-
lation is estimated to be very small. In addition, owing to the decomposition of a large scale finite
element system into a number of smaller sub-systems, only small computation storage is needed
for each finite element calculation.

2.3 Preconditioning for CG
In matrix formulation, problem (6) are given by:

$I\mathrm{i}^{r}u=f$ (29)

where $I\mathrm{i}^{r},$ u , and f are respectively the stiffness matrix, the displacement vector and $\mathrm{t}1_{1}\mathrm{e}$ force vector
associated with the finite element discretization of Ω .

For each subdomain problems of equations (24)$-(27)$, the matrix formulations are written as:

$I\mathrm{i}^{r}(d)u=(d)f(d),$ $d=1,2,$ $\ldots,$
N_{d} (30)

Let us use the i and b subscripts to designate internal and interface boundary d.o.f. and if the
internal d.o.f. first and the interface boundary d.o.f. are numbered last, equation (30) can be
written as:

$[I\mathrm{i}_{ib}’I\mathrm{i}^{\prime(d)}(d)^{T}ii$ $Ii_{bb}I\zeta_{i,(d)}^{()},bd][u_{\iota^{d}}^{()}u_{i}^{(d)}]=[f_{b}^{(d}f_{i}^{(d)})]$ (31)

that is:

$Ii_{ii}^{\prime()}u_{i}^{()}dd+I\mathrm{i}_{ib}^{r}u_{b}^{()}(d)d$
$=$ $f_{i}^{(d)}$ (32)

$I\mathrm{i}_{i\iota^{d)}i}u^{(}’(\tau d)’+I\mathrm{i}_{b\iota b}(d)_{u^{()}}d$

$=$ $f_{b}^{(d)}$ (33)

From equation (32):
$u_{i}=I(d)(di’ii)^{-1}(f_{i}(d)-IC_{i}(d)d))bu^{(}b$ (34)

From equations (33) and (34):

$(Ii_{bb}^{\prime(d}-)’(Ii_{i})dd))u_{b}(d))-IbI\iota^{\nearrow(d)^{-1}}\tau\tau(\mathrm{f}_{i}d\rangle I\zeta^{(d})-1iiI_{\dot{1}^{r(}}ibf_{b}^{(d}=biif_{i}(d)$ (35)

Considering the condition (24), equation (35) is written as:

$S(d)u_{b}(d)=f_{b}(d)$ (36)

where
$S^{(d)}=I\mathrm{i}_{bb}^{r()}d-I\mathrm{i}I’(d)ib\tau-1\mathrm{i}^{\prime(}ii\mathrm{A}_{i}^{(d)}bd)$

,
(37)

$S^{(d)}$ is known as the local Schur conuplement [21].
Now the operator A of equations (20) and (21) is written as:

$A= \sum_{d}^{N_{\mathrm{d}}}B(d)s^{(d})B(d)^{T}$ (38)

where $B^{(d)}$ is a boolean symbolic matrix which localizes a internal quantity to the interface bound-
ary.

136

For the above operator, a good preconditioner $P[22]$ can be constructed by assembling the
primal subdomain operators as follows:

$P^{-1}= \sum_{d}^{N}Bd(d)B^{(d)^{T}}$ (39)

and it’s lumped preconditioner $P’$ is advocated in [23], that is:

$P’-1= \sum BNdd(d)B^{(d)^{T}}$ (40)

This preconditioner does not require any additional storage and involves only matrix-vector prod-
ucts of sizes equal to the interface.

3 Implementation on MPP
As mentioned in the previous section, a large granularity of tasks can be obtained through the
DDM. To achieve high performance of parallel algorithms, a technique to balance workload well
among processors is demanded.

With a SIMD type of MPP, in order to do so, we must divide a domain of concern and provide and
a uniform distribution with data to all processors in a regular fashion, although for a complicated
problem, it is not easy.

To keep the load balance for an irregular decomposition problem such as a complicated nlodel,
dynamic data allocation, which can be performed by MIMD type of MPP, is desirable. With
SIMD type of MPP, only data is distributed among processors, while with MIMD type of MPP,
instructions can be also distributed, that is, it can perform more advanced or complicated parallel
technique such as the dynamic data allocation.

This fact thus motivated us to use the MIMD type of MPP with dynamic data allocation
technique, and in addition for a large size problem, to avoid a limitation $\mathrm{f}\mathrm{r}\mathrm{o}\ln$ the memory size
of each processors, the hierarchical data management technique is developed and implemented on
MPP.

3.1 Data Allocation
In each sub structuring or domain decomposition method, a physical problem, i.e. a domain
to be analyzed, is fictitiously divided into a number of subdomains. There are two approaches
in allocating parallel tasks, i.e. calculations of subdomains, on multiple processors. The first
approach is the so-called “Static Workload Balancing” and the second is the “Dynamic Workload
Balancing”.

In static workload balancing, task allocation is performed a priori considering workload balance
among processors.

For simplicity, let us consider a problem which is divided into nine subdomains and allocated
to nine processors as shown in Figure 4. Considering how to allocate the divided data to each
processor, a simple idea allows one subdomain data to be allocated to one processor when the
nunlbers of subdomains and processors coincide. Therefore, in static workload balancing, it is
important to divide domain into the same number of subdomains with processors.

With this nuethod, when all subdomain’s data are equal in size and the abilities of all the
processors are equivalent, all processors can start and end the analysis of each subdomain at the
same time and then change needed data among processors and start the next iteration step. In
such’ a case, as shown in Figure 5 wherein the vertical and horizontal axes denotes $\mathrm{t}\mathrm{l}\mathrm{l}\mathrm{e}$ number of
processors and $\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{l}\mathrm{e}$, respectively, well workload balancing can be obtained easily.

Such a static workload balancing process is easy to implement when the $\mathrm{d}_{01}1\mathrm{u}\mathrm{a}\mathrm{i}\mathrm{n}$ can be divided
regularly into the same number of subdomains with processors on a parallel computer which have
an identical performance like MPP. However, it is often troublesome, and does not always work

137

well when the geometry of the domain is complicated or each processor has a different performance
as can be seen in a clustered of different workstations.

When each size of subdomains are irregular (Figure 6) or processor’s abilities are different,

workload balance can not be obtained similarly to the above case and it is getting lack of balance
as shown in Figure 7.

To handle this problem, another technique is needed to allocate the task to processors well,
which is so-called the dynamic workload balancing technique, and is described as follows.

In dynamic workload balancing, task allocation among processors is performed automatically
and dynamically during calculation.

For an irregular decomposition problem, it is clear that allocating one subdomain to one processor
can not obtain well workload balance as shown in Figure 7.

By combining small and large subdomains for each processor, the total workload balance can be
attained well as shown in Figure 8,

When the calculation time of each subdomain can be estimated prior to the calculation, task
allocation can be performed beforehand statically, but usually it is not easy to estimate accurately
and sometime it is changed during calculation. Therefore, to perform such an allocation, the
dynamic allocation is needed.

In dynamic allocation, data of another subdomain is provided as soon as the analysis of one sub-
domain is finished. An efficient workload is thus obtained if the whole domain is decolllp into a
large number of subdomains in comparison to the number of processors In Figure 8, twenty domains
are analyzed with nine processors where each processor deals with two or three subdolnains.

To take advantage of such dynamic workload balancing, the parallel finite element algorithnl
described in chapter 2 is implemented on the MIMD type of MPP.

3.2 Roles among Processors

To implement the DDM which incorporates the dynamic workload balancing on the MIMD type
of MPP, we have to provide some roles to each processors. To allocate the data of $\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{d}_{\mathrm{o}\mathrm{n}1}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{s}$

to processors, some processors have to manage data. That is, we need manager processors and
analyzer processors. With the MIMD of MPP, such tasks can be coordinated among processors.

Now, there are two types of management system, each consisting of either a manager and
analyzers set or one chief manager ‘Father-Child Model’, sonle managers $‘ \mathrm{G}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{d}_{-}\mathrm{F}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}$-Child
Model’ and analyzers set. The latter is required for a large scale model which can not be managed
by only one nlanager processor. These two types are described as follows.

In ‘Father-Child Model’ system, one processor is set as a manager which is called ‘Father’ and
the others each as a analyzer which is called ‘Child’. Figure 9 shows the schematic data flow among
processors of the present system. The role of the ‘Father’ is to manage data and that of the ‘Child’
is to execute finite element analysis of each subdomain. The data flow anlong these two kinds of
processors are summarized as follows.

The ‘Father’ reads nuesh data which is previously divided into some subdonlains and prepares
initial values on the interface boundaries. After reading data from a disk ‘Father’ provides subdo-
main’s data to any idling tChild’.

Now, any ‘Child’ can receive any subdomain’s data to reduce the idling time. As mentioned
in previous section , if subdomain’s data which are not of regular size are allocated to ‘Child’s
statically, some ‘Child’s have to wait until other ‘Child’ which is allocated to a larger subdonlain
complete the analysis of the subdomain. To handle this problem, in this $\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{l}\mathrm{n}$, the ‘Child’
allocated to a smaller subdomain can get the next unsolved subdomain’s data as soon as the
previous analysis is over.

The ‘Child’ which receives $\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{d}_{0}1\mathrm{n}\mathrm{a}\mathrm{i}\mathrm{n}’ \mathrm{s}$ data from a ‘Father’ executes the finite element analysis

of.’ the subdomain and, after the analysis, sends its result to the ‘Father’. After receiving all the
results of the subdomains, the ‘Fatller’ adjusts the values on the interface boulldaries so as to hold
the balance among subdomains. These operations are iterated until the convergence is achieved.

Figures 10 and 11 show the flow chart of ‘Father’ and ‘Child’ processors, respectively. Owing to
the present data flow mechanism, the whole workload of analysis can be well-balanced alllong all

138

the processors dynamically as well as automatically.
In the previous system, all the data is first read by one ‘Father’ processor. Since in the case of

large scale problem, the data exceeds one processor’s memory, the system obviously has a limitation
in analysis in terms of its memory size. To handle this problem, in (Grand-Father-Child Model’
system, one processor is set as a chief manager which is termed ‘Grand’, some processors as a
nuanager termed ‘Father’ and the others as a analyzer termed ‘Child’.

Figure 12 shows the schematic data flow among processors of the present system. The role of
the ‘Grand’ is to manage values on the interface boundaries and status of ‘Father’ processors, that
of the ‘Father’ is to store and manage data while (Child’ executes the finite element analysis of
each subdomain. The data flow among these three kinds of processors are summarized as follows.

The ‘Grand’ prepares initial values on the interface boundaries. Each ‘Father’ reads the whole
mesh data previously divided into the same number of parts as ‘Father’s and each part data is
divided into some subdomains. After reading the data from a disk (Father’ provides subdomain
data to any idling ‘Child’. The ‘Child’ which receives subdomain’s data from a ‘Father’ executes
the finite element analysis of the subdomain and after the analysis sends its result to the (Father’.

Now, every ‘Child’ can receive any subdomain’s data in the same way as the previous method,
and communicate with any ‘Father’ to reduce the idling time. That is, if one of ‘Father’s 1) $\mathrm{a}\mathrm{s}$

no data for analysis, ‘Child’ which previously received data from the ‘Father’ can ask to another
‘Father’ for more data. As long as the ‘Father’ has the data of the subdomain for analysis, any
‘Child’ keeps working without idling. After receiving all the results of subdomains, the ‘Father’
sends results of interface boundaries to the ‘Grand’. The ‘Grand’ then adjusts the values on the
interface boundaries so as to hold the balance among subdomains. These operations are iterated
until the convergence is achieved.

Owing to the present data flow mechanism, the proposed system can avoid a limitation of’prob-
$\mathrm{l}\mathrm{e}\mathrm{m}’ \mathrm{s}$ size which depended upon the memory size of the father processor, and the whole workload
of analysis can be well-balanced among all the processors dynamically as well as automatically.

3.3 Hierarchical DDM
Ill this parallel DDM, as shown in Figure 3, calculation time is in proportion to the number of CG
iterations. In CG method, its iteration nunuber much depends on d.o.f. of problem, i.e. in this
case d.o.f. on interface boundary. As the number of subdomains escalates with the scale of the
problem, the calculation time increases simply as well as d.o.f. on interface boundary.

In CG method, there exists a limit of d.o.f.) over which the iteration number increases rapidly.
The limit depends on the colnple.\ity of the problem; i.e. for a large scale and complex $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{l}\mathrm{n}$,
calculation time could be enormous. To reduce the CG iteration number, it is needed to divide
problem into a small number of subdomains to reduce d.o.f. on the interface boundary. Since the
size of each subdomain depends on the number of subdomains, decreasing the $\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{d}\mathrm{o}\mathrm{n}$) $\mathrm{a}\mathrm{i}\mathrm{n}’ \mathrm{s}$ number
causes increase of the subdomain’s size. Each subdomain’s size is, however, restricted in terms of
the memory size of a processor which analyze the subdomain. To handle the above problem for a
large scale analysis, a hierarchical DDM is developed in this paper, as described in the following.

In this new method, a whole analysis domain is first divided into a number of large subdomains
in a rough manner. To do this, the total d.o.f. on the interface boundary can be set small, but
each subdomain’s size is over the domain that can be analyzed with one processor. To analyze
each subdomain, each subdomain is divided hierarchically into a number of sub-subdomains and
apply the DDM to each subdomain. It means, in each $\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{d}_{0}\mathrm{n}\mathrm{l}\mathrm{a}\mathrm{i}\mathrm{n}$, FEM analysis is $\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{f}_{\mathrm{o}\mathrm{r}}\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{d}$

by the DDM with iterative calculation. After achieving convergence in all subdomains, the values
on the interface boundaries of all the subdomains are adjusted until the convergence in the whole
domain is achieved.

Notwithstanding the double loop of CG iteration, the hierarchical division can decrease d.o.f.
on interface boundary under keeping all the subdomains small in size. The flow of the hierarchical
DDM algorithnl is illustrated in Figure 13.

139

Table 1: Mesh sizes for pressure vessel analysis model

Model Elements Nodes Total d.o.f. Domains Interface d.o.f.
1

2

$37,537$

$220,245$

$66,796$

$348,369$

$200,388$

$1,045,107$

586

$6,076$

$66,699$

$543,663$

4 Analysis of Large Scale Elastic Problem
For solving a large scale model under the limitation of memory size, using very rough mesh which
cannot provide satisfied results or analyzing small part of the domain separately are the ways to
escape from its size problem. As supercomputers have enormous size of memory, this restriction
is getting removed and such a large scale model is becoming realistic for analysis though it was
considered impossible a few years ago. However, requirements for numerical simulation increases
much faster than the speedup of such supercomputers. The MPPs have the ability for large
scale analysis more greatly than single processor computers, but such hardware needs appropriate
software.

With the present parallel FEM system, not only it can achieve high parallel performance, but
also it does not much depend on hardware. That is, it has ability to apply to any kind of parallel
computer with a high performance. As an application of the present system to a large scale
and complicated model, a whole pressure vessel with nozzles nuodel is analyzed in this chapter.
The problem is solved with some different of parallel computer including workstation clusters to
estimate the robustness of the system.

4.1 Pressure $\mathrm{v}_{\mathrm{e}}.\mathrm{S}\mathrm{S}\mathrm{e}1$ Model
The geometry of the model is defined and we assume that the inner surface of the model is under
pressure. The model was expressed by 10-noded tetrahedron elements with the density of lnesh
around nozzles being set higher than the other part. For this model, two sizes of niesh are generated,
models 1 and 2, sizes of which are listed in Table 1.

Each model is divided into subdomains with parameters listed in Table 1. This division is
determined from the capacity of the memory of ‘Child’ processor. To analyze the sanle $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{u}$

with different $\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{l}\mathrm{P}^{\mathrm{u}\mathrm{t}\mathrm{r}\mathrm{s}}\mathrm{e}$, the menuory takes the value of the smallest processor’s n) $\mathrm{e}\mathrm{n}\mathrm{u}\mathrm{o}\mathrm{r}\mathrm{y}$, which
amounts to 4 Mbytes memory. Since it is small, the number of divisions has become large which
causes a large nunlber of interface d.o.f.

In dividing into parts, the division number of parts depends on the memory size of ‘Father’
processor and since the number does not have effect on the number of CG iterations and since
sometimes it is not needed to divide into parts, i.e. in case of simpler “Father-Child Model” is
available, it is set adaptive to a computer to be used.

Figure 14 shows an example for a mesh which is divided into 4 parts.

4.2 Comparison between Different Conuputers
To compare performance between different computers, the model 1 was analyzed using computers
listed in Table 2. The $\mathrm{n}\mathrm{C}\mathrm{U}\mathrm{B}\mathrm{E}2,$ $\mathrm{T}3\mathrm{D}$ and CM5 are commercial MPP, whereas WSC and PCs
are clustered computers substantially forming a parallel computer. The WSC is a workstation
cluster which consists of nine workstations having 15 processors wherein six workstations each
fine have two processors inside. The PCs are a personal computer cluster which consists of five
personal computers. These conlputers listed in Table 3 were connected through a network. The
WSC was connected through $10\mathrm{B}\mathrm{a}s\mathrm{e}5$ Ethernet, peak performance of which is 10 Mbps (Mega bit
per second), and the PCs are connected through $10\mathrm{B}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{T}$ Fast-Ethernet whose performance is 10
$\mathrm{t}\mathrm{i}\mathrm{n})\mathrm{e}\mathrm{s}$ higher than the WSC’s.

In Tables 2 and 3, as a yardstick of performance, it is referred to the LINPACK Benchmark [24]
and estimated $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{l}\mathrm{m}\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ time between processors. On $\mathrm{n}\mathrm{C}\mathrm{U}\mathrm{B}\mathrm{E}2$, their original conlmunica-

140

Table 2: Performance using some different computers

Table 3: Workstation list of WSC

tion library was used and on the others PVM library [25] was utilized to communicate between
processors. .

Calculation time of 2 CG iterations on these computers and parallel performances are shown
in Table 4. In the case of $\mathrm{n}\mathrm{C}\mathrm{U}\mathrm{B}\mathrm{E}2$, one processor was assigned as ‘Grand’, seven processors as
‘Father’ and the other processors, 24 or 248 as (Child’ considering small local memory size. For
the other MPP’s cases, one processor was assigned as ‘Father’ and the other processors as ‘Child’.
On the WSC and $\mathrm{P}\mathrm{C}\mathrm{s}$, one processor assigned as ‘Father’ as well as ‘Child’ using the time sharing
system which permitted to be used by several tasks at the same time and the other processors as
‘ Child’.

As a parallel performance, the rate of CPU usage was used. The rate of CPU usage R_{n} with n

processors is defined as follows:

$R_{n}= \frac{1}{n}\sum_{i}^{n}\frac{T_{w}^{(i}\circ rk)}{T_{wor}^{(i)}+^{\tau_{i}^{()}}kdil\mathrm{G}}$ (41)

where $T_{wotk}^{(i)}$ and $T_{id}^{(i)}\iota_{e}$ are the total time for working and idling of each processor during the whole
computation, respectively. As shown in Table 4, high parallel performances over 90 % are achieved
for all the cases except two cases, i.e. cases of $\mathrm{n}\mathrm{C}\mathrm{U}\mathrm{B}\mathrm{E}2$ with 32 processors and WSC. In the
former case, the reason is that number of ‘Father’s is too large compared with number of ‘Child’s.
Seeing CPU usage among only ‘Child’ processors, it achieved over 99%. In the latter case, the low
performance result from the slow $\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{n}\mathrm{m}\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{C}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ time using Ethernet.

4.3 Sorting Technique
To demonstrate the dynamic allocation system described in section 3.1, the model 2 was solved
again with the $\mathrm{n}\mathrm{C}\mathrm{U}\mathrm{B}\mathrm{E}2$ consists of 128 processors. In this example, one processor was assigned as
‘Grand’, seven as ‘Father’ and 120 as (Child’.

’Figure 15 shows the time chart of working sta.tes of 120 ‘Child’ processors during two different
iterative steps of CG iterations. In this figure, the length of each horizontal bar indicates the
analysis period of a subdomain and the blanks indicate the idling time of ‘Child’ processor waiting
subdomain’s data to analyze from ‘Father’ processor. The seven color means in which ‘Father’
subdomain data is stored. That is, the subdomain of magenta color is managed and provided by

141

Table 4: Calculation times of 2 CG iterations and parallel performances

magenta color (Father’. For example, No.l ‘Child’ is provided from magenta ‘Father’ and No.18
(Child’ is from red ’Father’, first.

However, as described in section 3.2, the relation isjust a default set, i.e. any ‘Child’ can get data
from any ‘Father’. For example, No.1 (Child’ is provided from first nine subdomains of magenta
‘Father’, but when it finishes the ninth subdomain, the magenta ‘Father’ can not provide next data
because he has no more unsolved data, so No.l ‘Child’ requires to another ‘Father’ and then can
get the next data from the blue ‘Father’.

In this figure, there is still a wide space of black which causes efficiency to be low. The reason
is that the subdomain which is finished to be analyzed last has a larger size. Sorting subdomains
data from large to small, the larger subdomains can be analyzed in the first period of one iteration
step. Figure 16 shows the new time chart after sorting subdomain’s data. As shown in the figure,
it clearly demonstrates that the work load balance among processors is fulfilled automatically and
$.\mathrm{d}$ynamically, thanks to the sorting technique.

In the model 1 case, one size of each subdomain is small enough $\mathrm{c}\dot{\mathrm{o}}$mpared $\dot{\mathrm{w}}$ ith the total $\mathrm{t}\mathrm{i}\mathrm{n}$) e

of each iteration $\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{p},$

$.\mathrm{e}\mathrm{V}\mathrm{e}\mathrm{n}$ without the sorting technique, it can perform with high efficiency.

4.4 Analysis of Pressure Vessel Model
For model 1, the $\mathrm{n}\mathrm{C}\mathrm{U}\mathrm{B}\mathrm{E}2$ consists of 1,024 processors was used to solve. As shown in Table 2, the
memory size $\mathrm{o}\mathrm{f}\mathrm{n}\mathrm{C}\sim \mathrm{U}\mathrm{B}\mathrm{E}2$ is 4 Mbytes and because of it, the model was divided into 25 parts to be
read by such processors. Therefore, one was assigned as ‘Grand’, 25 as ‘Father’ and the rest 998
as ‘Child’.

To estimate the convergence, the variations of the residual value, defined in equation (28),
against the number of the CG iterations of the two models 1 and 2 are shown in Figure 17
and 18, respectively. In each model, two cases are plotted, i.e. using normal CG algorithm
and preconditioning CG algorithm which is described in section. 2.3. As shown in. these figures,
preconditioning technic is useful and necessary.

To check the convergence of a physical value for this modei, a small scale of this model, which
has 71,022 d.o.f., was analyzed. Figures 19 and 20 show the variations of the residual value and
the displacement of one position which is on the inner surface of the vessel with respect to the
number of the CG iterations, respectively. As shown in these figures, despite the fact that the
residual values vibrate locally, the displacement value converges with the number of iterations.

For model 1, over one million d.o.f. problem has been solved with 1,024 processors, 6,698
iterations, 182 hours and 96.5% parallel performance, \cdot

5 Conclusions
The parallel finite element system based on the DDM, which works on

$\mathrm{a}..\mathrm{m}$.assively $\mathrm{p}\mathrm{a}\mathrm{r},\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{l}$ computer
were successfully developed in the present study.

This system can be applied to several types of parallel computers including clustered workstations
or personal computers with high parallel performance.

142

This system combined with preconditioning for CG was applied to a pressure vessel with nozzles
model with nonuniform mesh and irregular domain decomposition of over one million d.o.f. and a
parallel performance of over 90 with 1,024 CPUs was obtained.

References
[1] G.S.Almasi and A.Gottlieb, Highly parallel computing, The Benjamin $/Cummings$ Publishing Company

(1994).

[2] BBN, ParaUel computing past present and future, Technical rep ort, BBN Advanced Computers Inc., Cam-
bridge, MA 11 (1990).

[3] L.H.Turcotte, A survey of software environments for exploiting networked computing resources, Engineering
Research Center for Computational Field Simulation (1993).

[4] C.Farhat and L.Crivelli, A general approach to nonlinear FE computations on shared-memory multiprocessors,
Computer Methods in Applied Mechanics and Engineering 72 (1989) 153-171.

[5] C.Farhat and E.Wilson, A new finite element concurrent computer program ar&itecture, International Jour-
nal for Numerical Methods in Engineering 24 (1987) 1771-1792.

[6] O.O.Storaasli and P.Bergan, A nonlinear substructuring method for concurrent processing computers, AIAA
Journal 25 (1987) 871-876.

[7] C.Farhat, E.Wilson and $\mathrm{G}.\mathrm{p}_{\mathrm{o}\mathrm{W}\mathrm{e}}\mathrm{U}$, Solution of finite element systems on concurrent processing computers,
Engineering with Computers 2 (1987) 157-165.

[8] J.H.Hajjar and J.F.Abel, Parallel processing for transient nonlinear structural dynamics of $\mathrm{t}\mathrm{h}\mathrm{r}\mathrm{e}\mathrm{e}-\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}\backslash$

framed structures using domain decomposition, Computers and Structures 30 (1988) 1237-1254.
[9] J.Hajjar and J.Abel, On the accuracy of some $\mathrm{d}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n}_{-}\mathrm{b}\mathrm{y}-\mathrm{d}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n}$ algorithms for parallel processing of transient

structural dynamics, International Journal for Numerical Methods in Engineering 28 (1989) 1855-1874.
[10] 1.S.Doltsinis and S.Noelting, Studies on parauel processing for coupled field problems, Computer Methods in

Applied Mechanics and Engineering 89 (1991) 497-521.
[11] R.Glowinski, O.V.Dinh and J.Periaux, Domain decomposition methods for nonlinear problems in fluid dy-

namics, Computer Methods in Applied Mechanics and Engineering 40 (1983) 27-109.
[12] C.T.Sun and $1<.\mathrm{M}.\mathrm{M}\mathrm{a}\mathrm{o}$, A $\mathrm{g}\mathrm{l}\mathrm{o}\mathrm{b}\mathrm{a}\mathrm{l}- 1\propto \mathrm{a}\iota$ finite element method suitable for parallel computations, Computers

and Structures 29 (1988) 309-315.
[13] A.l$<.\mathrm{N}\mathrm{o}\mathrm{o}\mathrm{r}$ and J.M.Peters, A partitioning strategy for efficient nonlinear finite element dynamic analysis on

multiprocessor computers, Computers and Structures 31 (1989) 795-810.
[14] R.Glowinski, G.H.Golub, G.A.Meurant and J.Periaux (eds), First international symposium on domain dc-

composition methods for partial differential equations, SIAM. Philadelphiar PA (1988).
[15]

$3- 9\mathrm{G}.\mathrm{Y}$.agawa, ParaUel techniques for computational mechanics, Theoretical and A pplied Mechanics 39 (1990)

[16] J.C.Luo and M.B.Friedman, Implicit decomposition as a tool for solving large-scale structural systems in a
parallel environment, Computers and Structures 35 (1990) 215-220.

[17] Y.Zhang and R.S.Harichandran, Implicit subdommin integration for dynamic analysis of large-scale structural
systems, Computer Methods in Applied Mechanics and Engineering 81 (1990) 57-70.

[18] G.Yagawa, N.Soneda and S.Yoshimura, A large scale finite element analysis using domain decomposition
method on parauel computer, Computers and Structures 38 (1991) 615-625.

[19] G.Yagawa, A.Yoshiok, N.Soneda and S.Yoshimura, A parallel finite element method with a supercomputer
network, Computers and Structures 47 (1993) 407-418.

[20] G.Yagawa and R.Shio.ya, Parallel finite elements on a massively $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{u}_{\mathrm{e}1}$computr with domain decomposition,
Computing systems in Engineering $4(4-6)$ (1994) 495-503.

[21] P.E.Bjorstad and O.B.Widlund, Iterative methods for the solution of elliptic problems on regions partitioned
into substructures, SIAM J. Numer. Anal. 23(6) (1986) 1097-1120.

[22] J.Mandel, Balancing domain decomposition, Comm. Appl. Num. Meth. 9 (1993) 233-241.
[23] C.Farhat and F.X.Roux, A method of finite element tearing and interconnecting and its parallel solution

algorithm, International Journal for Numerical Methods in Engineering 32 (1991) 1205-1227.
[24] J.J.Dongarra, Performance of various computers using standard linear equations software, Technical Report,

Computer Science Department, University of Tennessee $\mathrm{c}\mathrm{s}_{-}89-8\mathrm{s}$ (1995).
[25] A.Beguelin, J.Dongarra, A.Geist, R.Mancheck and V.sunderam, A user’s guide to PVM : Parallel virtual

machine, Technical Report, Mathematical Sciences Section, Oak Ridge National Laboratory $\mathrm{o}\mathrm{R}\mathrm{N}\mathrm{L}/\mathrm{T}\mathrm{M}-$

11826 (1991).

143

Figure 1: Analysis domain Figure 2: Analysis domain split into subdo-
mains

Figure 3: Flow chart of domain decomposition Figure 4: Static data allocation of regular sub-
method domains

Figure 5: Regular workload balancing among Figure 6: Static data allocation of irregular
processors $\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{d}_{\mathrm{o}\mathrm{m}\mathrm{a}}\mathrm{i}\mathrm{n}\mathrm{S}$

Figure 7: Irregular workload balancing among Figure 8: Dynamic workload balancing among
processors processors

144

Figure 9: Schematic data flow among Father-
Child processors

Figure 10: Flow chart of Father processor

Figure 11: Flow chart. o.f Child pro.. cessor- Figure 12: Schematic data flow among Grand-
Father-Child processors

Figure 14: Pressure vessel model divided into
Figure 13: Flow chart of hierarchical DDM parts

145

Figure 15: Tinie chart of working states for model 1 without $\mathrm{S}.\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{n}\backslash \mathrm{g}\mathrm{t}\mathrm{e}\mathrm{c}_{\wedge}\mathrm{h}$
nique

Figure 16: Tinue chart of working states for model 1 with sorting technique

146

Figure 17: Residual vs number of iterations for model 1 with preconditioning

Figure 18: Residual vs number of iterations for model 2 with preconditioning

Figure 19: Residual vs number of iterations Figure 20: $\mathrm{D}\mathrm{i}_{\mathrm{S}}\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{n}\mathrm{t}$ vs number of itera-
tions

147

