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1 Vortex sheet and its governing equation
We consider a motion of incompressible, inviscid fluid. Attention is restricted to a vortex
sheet motion. A vortex sheet is a surface, along which the velocity changes discontinu-
ously. The vorticity concentrates on the surface, outside which the flow is irrotational. We
assume a further simplification that the flow is two-dimensional. Mathematically, two-
dimensional vortex sheet is represented by a curve. When we identify the two-dimensional
space with complex plane, a vortex sheet in two-dimensional space is expressed by a com-
plex valued function $z(\Gamma,t)$ , where $\Gamma\in \mathrm{R}$ is a Lagrangian parameter along the curve,
which represents the circulation of the flow. $t$ represents time.

We consider the dynamics of a two-dimensional vortex sheet with a $\mathrm{p}$.eriodic boundary
condition;

$z(\Gamma+1, t)=z(\mathrm{r}, t)+1$ .

The equation which describes the motion of vortex sheet is known as the Birkhoff-Rott
equation([16]):

$\frac{\partial z^{*}(\Gamma,t)}{\partial t}=\frac{1}{2\pi i}\mathrm{p}.\mathrm{v}$. $\int\frac{d\Gamma’}{z(\Gamma,t)-z(\Gamma’,t)}$

The integral on the right hand side is Cauchy’s principal value. $i$ is the imaginary un\‘it.
$*\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{S}$ complex conjugate. Taking the periodic boundary condition into account, we
rewrite the equation and obtain$([8])$ :

$\frac{\partial z^{*}(\Gamma,l)}{\partial t}$ $=$ $\frac{1}{2i}\mathrm{p}.\mathrm{v}$. $\int_{0}^{1}\cot\pi(Z(\Gamma, t)-z(\Gamma’, t))d\mathrm{r}’$. (1)
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This is the equation which we are going to study numerically.
A flat vortex sheet of constant strength, $z(\Gamma, t)\equiv\Gamma$ , is an equilibrium solution of the

equation (1). This equilibrium is known to be unstable: even a small perturbation can
grows very rapidly and the vortex sheet shows extreme complexity for large $t([8,9,17])$ .
The following properties are known:

$\bullet$ Linearized stability analysis shows that perturbations of short wave length grow
exponentially. The shorter the wavelength is, the faster the perturbation grows$([16])$ .
(Kelvin-Helmholtz instability.)

$\bullet$ If the initial perturbation is an analytic function of $\Gamma$ , then the sheet remains analytic
for a positive time interval ([2, 20]).

$\bullet$ The vortex sheet loses analyticity in finite time$([14])$ .
$\bullet$ The initial value problem for (1) is ill-posed in the sense of Hadamard$([3])$ .
$\bullet$ A vortex sheet evolves into a complex form having spirals (see, for. instance, [8, 9,

17]).

Because of the ill-posedness of the equation, it is difficult to apply naive numerical
methods to the computation of a vortex sheet. We apply Chorin’s vortex blob method,
which we are going to explain in the next section.

2 Numerical method
Instead of the original equation, we consider the following smoothed equation. (This
equation is given by Krasny$([8])$ . ).

$\frac{\partial z^{*}(\Gamma,t)}{\partial t}=\int_{0}^{1}K_{\delta}(z(\mathrm{r}, t)-Z(\Gamma’, t))d\Gamma’$, (2)

where
$K_{\delta}(X+ \dot{i}y)=-\frac{1}{2}\frac{\sinh(2\pi y)+i\sin(2\pi x)}{\cosh(2\pi y)-\cos(2\pi x)+\delta^{2}}$.

This equation is well-posed for any time interval if $\delta>0$ . $\delta$ is an artificial parameter that
makes the equation well-posed. When $\delta=0$ , the equation reduces to the original equation.
The convergence of the solution of the smoothed equation to that of the Birkhoff-Rott
equation is proven as far as the solution of (1) is smooth. However, after the appearance
of the singularity, only convergence in some weak sense is proven ([12, 13]).
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2.1 Discretization
In order to compute (2), we approximate the vorte.x sheet by $N$ points.

$\Gamma_{i}=\frac{i}{N}$ , $z(\Gamma_{i}, t)=z_{i}(t)$ , $i=0,$ $\cdots,$ $N-1$ .

Then, we discretize the integral by trapezoidal rule and obtain the following system of
ordinary differential equations:

$\frac{\partial z_{n}^{*}(t)}{\partial t}=\frac{1}{N}\sum_{m=0}^{N}K_{\delta}(_{Z_{n}}(-1t)-zm(t))$ , $i=0,$ $\cdots,$ $N-1$ . (3)

In order to integrate the system of O.D.E, we use the fourth-order Runge-Kutta method.
The parameters we can change are as follows:

$\bullet$ $N\cdots$ the number of vortices

$\bullet$
$\triangle t\cdots$ time step size for Runge-Kutta method

$\bullet$ $\delta\cdots$ smoothing parameter of vortex blob method

This is a rough description of the vortex method. For more details, see, e.g., Puckett [15].
Numerical computation of the right hand side of (3) requires $O(N)$ multiplications for

each vortex point. Since there are $N$ vortices, $O(N^{2})$ operations are necessary to compute
the velocity fields at all the positions of particles. In order to obtain an accurate numerical
solution, we need a large number of vortices to discretize the vortex sheet. Thus the
computation becomes too slow when $N$ is large. This is the most serious disadvantage
of the vortex method. There are some algorithms which evaluate the velocity field in
$O(N\log N)$ operations within some errors$([4,6,7,18])$ . Although they are promising,
they have some defects, too$([7,18])$ . In the present paper, we would like to study another
method, Parallel Virtual Machine software, to evaluate the velocity field at the vortex
points. In the following section, we will explain how to implement this tool for numerical
computations and the efficiency will be examined.

3 Parallel Virtual Machine
The Parallel Virtual Machine (shortly PVM) is a software framework for heterogeneous
parallel computing in networked environments ([5]). PVM supports complete message
passing model and it emulates a distributed memory model in heterogeneous network.

Our virtual parallel machine consists of four computers. They have the following
CPU’s, memory, and operating systems, respectively

$\bullet$
$\mathrm{A}\cdots$ PA-RISC 7000, $32\mathrm{M}\mathrm{B}$ , HP-UX 9.0.5
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$\bullet$ $\mathrm{B}\cdots$ Pentium $120\mathrm{M}\mathrm{H}\mathrm{Z},$ $64\mathrm{M}\mathrm{B}$ , FREEBSD
$\bullet$ $\mathrm{C}\cdots$ Pentium $100\mathrm{M}\mathrm{H}_{\mathrm{Z},6}4\mathrm{M}\mathrm{B}$, FREEBSD
$\bullet$ $\mathrm{D}\cdots$ Pentium $60\mathrm{M}\mathrm{H}\mathrm{Z},$ $24\mathrm{M}\mathrm{B}$ , FREEBSD

These computers are connected through 10Base-T Ethernet.
We use the following master-slave type algorithm to implement the $\mathrm{c}$.omputation of

velocity field:

1. Divide $N$ points by $k$ group ( $k$ is the number of computers). $n_{j}$ is the number
of vortices, the velocities of which are computed in the j-th computer, whence
$\Sigma_{j=1j}^{k}n=N$ .

2. Send the position of $n_{j}$ vortices to each slave computers

3. Each slave computer evaluates the velocities at the positions of $n_{j}$ points

4. S.end back the results to the master computer

5. loop to 2

$n_{j}$ is determined by CPU speed to make the evaluation time of each computers as even
as possible.

3.1 Test problem : Two Vortex Sheets
Using PVM and vortex blob method for a vortex sheet, we compute the motion of two
vortex sheets. We consider two, nearly parallel, vortex sheets. We denotes upper vortex
sheet and lower vortex sheet by $z(\Gamma, t)$ and $w(\Gamma, t)$ , respectively. Then the equation of
motion of two vortex sheets is written as follows:

$\frac{\partial Z^{*}(\Gamma,t)}{\partial t}$ $=$ $\frac{\sigma_{1}}{2_{\dot{i}}}\mathrm{p}.\mathrm{v}.\int_{0}^{1}\cot\pi(Z(\Gamma, t)-z(\mathrm{r}’, t))d\mathrm{r}$’

$+$ $\frac{\sigma_{2}}{2i}\int_{0}^{1}\cot\pi(Z(\Gamma, t)-w(\Gamma’, t))d\mathrm{r}’$ ,

$\frac{\partial w^{*}(\Gamma,t)}{\partial t}$ $=$ $\frac{\sigma_{2}}{2i}\mathrm{p}.\mathrm{v}.\int_{0}^{1}\cot\pi(w(\Gamma, t)-w(\Gamma’, t))d\Gamma’$

$+$ $\frac{\sigma_{1}}{2i}\int_{0}^{1}\cot\pi(w(\mathrm{r}, t)-Z(\Gamma’, t))d\Gamma’$ ,

where $\sigma_{1}$ is the vorticity density of upper vortex sheet and $\sigma_{2}$ is that of lower vortex sheet.

161



The initial value of $z$ and $w$ is taken as follows:

$z(\Gamma, \mathrm{O})$ $=$ $\Gamma+\epsilon\sin 2\pi \mathrm{r}-i\epsilon\sin 2\pi\Gamma+i\frac{H}{2}$ ,

$w(\Gamma, 0)$ $=$ $\Gamma+\epsilon\sin 2\pi\Gamma-i\epsilon\sin 2\pi(\Gamma+\alpha)-\dot{i}\frac{H}{2}$

$(0\leq\alpha<1, H\neq 0,0\leq\Gamma<1)$ ,

where $H$ is average distance between two vortex sheets and a is the phase difference of
two vortex sheets.

The numerical parameters of the computations are

$\bullet$ $N\cdots$ the number of vortices

$\bullet$ $\Delta t\cdots$ time step size for Runge-Kutta method

$\bullet$ $\delta\cdots$ smoothing parameter of vortex blob method

$\bullet$ $\epsilon\cdot\cdot$

.
$\cdot$ the amplitude of the disturbance

$\bullet$ $H\cdots$ the average distance between two vortex sheets

$\bullet$ $\alpha\cdots$ initial phase difference of two vortex sheets

$\bullet$

$\sigma_{1},\sigma_{2}\cdots$ the vorticity of two vortex sheets.

3.2 Reduction of execution time
We show the execution time when we use PVM. The execution time (in second) is mea-
sured by one time step of Runge-Kutta method. (The time to evaluate velocity field four
times. ) Among four computers, machine $\mathrm{B}$ is the fastest of the four computers. The
ratio of CPU speeds is approximately equal to $\mathrm{A}:\mathrm{B}:\mathrm{c}:\mathrm{D}=9:10:8:5$ . We divide $N$ vortex
points according as this ratio. The following are the list of of performances.

3.2.1 The result for $N=2048$

1. Single processor $k=1$

$\bullet$
$\mathrm{A}\cdots$ 40.68 seconds

$\bullet$ $\mathrm{B}\cdots$ 33.79 seconds
$\bullet$ $\mathrm{C}\cdots$ 41.19 seconds
$\bullet$ $\mathrm{D}\cdots$ 67.22 seconds

2. Two processors $k=2$
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$\bullet$ $\mathrm{A}+\mathrm{B}\cdots$ 20.87 seconds $(\cross 1.62)$

3. Three processors $k=3$

$\bullet$ $\mathrm{A}+\mathrm{B}+\mathrm{C}\cdots$ 14.81 seconds $(\cross 2.28)$

4. Four processors $k=4$

$\bullet$ $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}\cdots$ 13.26 seconds $(\cross 2.54)$

Here and hereafter, $\cross 1.77$ , for instance, implies that the computation is 1.77 times faster
than the computation of single $\mathrm{B}$ processor.

3.2.2 The result for $N=4096$

1. Single processor

$\bullet$
$\mathrm{A}\cdots$ 153.09 seconds

$\bullet$
$\mathrm{B}\cdot\cdot$ ‘ 134.98 seconds

$\bullet$ $\mathrm{C}\cdots$ 263.29 seconds
$\bullet$ $\mathrm{D}\cdots$ 159.49 seconds

2. Two processors

$\bullet$ $\mathrm{A}+\mathrm{B}\cdots$ 75.90 seconds $(\cross 1.77)$

3. Three processors

$\bullet$ $\mathrm{A}+\mathrm{B}+\mathrm{C}\cdots$ 55.29 seconds $(\cross 2.44)$

4. Four processors

$\bullet$ $\mathrm{A}+\mathrm{B}+\mathrm{c}+\mathrm{D}\cdots$ 49.19 seconds $(\cross 2.74)$

$3.2.3$ The result for $N=8192$

1. Single processor

$\bullet$ $\mathrm{A}\cdots$ 635.06 seconds
$\bullet$ $\mathrm{B}\cdots$ 521.05 seconds
$\bullet$ $\mathrm{C}\cdots$ 640.54 seconds
$\bullet$ $\mathrm{D}\cdots$ 1050.41 seconds

2. Two processors
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$\bullet$ $\mathrm{A}+\mathrm{B}\cdots$ 308.12 seconds $(\cross 1.69)$

3. Three processors

$\bullet$ $\mathrm{A}+\mathrm{B}+\mathrm{C}\cdots$ 219.82 seconds $(\cross 2.37)$

4. Four processors

$\bullet$ $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}\cdots$ 188.56 seconds $(\cross 2.76)$

The above results show that the usefulness of PVM at least when a small number of
computers are combined.

3.3 Numerical results
We choose $N=4096$ . Figure 1 is the long time evolution of two vortex sheets. Initial
average distance $H$ is 0.2, initial phase difference a is O,and $(\sigma_{1}, \sigma_{2})=(1, -1)$ . Figure 2 is
the long time evolution of two vortex sheets. Initial average distance $H$ is 0.2, initial phase
difference $\alpha$ is 0. $5,\mathrm{a}\mathrm{n}\mathrm{d}(\sigma_{1}, \sigma_{2})=(1, -1)$ . Both figures show complicated spiral structures.
Since the vorticity is not of distinguished sign $(\sigma_{1}, \sigma_{2})=(1, -1)$ , such complexities seem
to comply with what are predicted in [13].

4 Summary and acknowledgment

When the number of vortices exceeds a few thousands, the efficiency of PVM is satis-
factory. PVM is a useful tool for particle simulations. However, if PVM environment
consists of a lot of node computers, the rapid increase of data transfer may well make
it impossible for us to execute fast computation. To make more efficient computation,
we must choose algorithms with more effective data transfer. There is a possibility to
combine the fast algorithms $[4, 6]$ and PVM effectively.

Professor O. Pironneau advised us to try computations with adaptive increase of the
number of vortices. This attempt is in progress and will be reported elsewhere. We thank
him for the advice.

164



Figure 1: Long time evolution of two vortex sheets. The initial parameters are $H=0.2$ ,
$\alpha=0.0,\mathrm{a}\mathrm{n}\mathrm{d}(\sigma_{1}, \sigma_{2})=(1, -1)$.
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Figure 2: Long time evolution of two vortex sheets. The initial parameters are $H=0.2$,
$\alpha=1.0,\mathrm{a}\mathrm{n}\mathrm{d}(\sigma_{1}, \sigma_{2})=(1, -1)$ . ..
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