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-Heat convection of compressible fluid
Dedicated to the sixtieth birthday of Professor Hideo Kawarada
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1. Mathematical Formulation

We consider the heat convection prbblem for the compressible viscous and

heat conducting fluid in the layer between the upper plane X, = 0 and the

- lower ‘plane Xn = d, where we use the orthonormal basis {e1,€2,...,€,} in
R", n =2 or 3, and e, is considered in the vertically downward direction.
Using the velocity of fluid : u’ = (u}, u),...,u}), temperature: ', density

: p', the governing equations of motion are

a’t’,+\7'<">=0,. )
g | S
p (W +u'-V'Y) = -V'p +gple, +pA'd + %—yV’(V"u’) , (2)
! ' -
p'c,,(gel +u' - V') = kA +2uD' : D' - g-u(V' u')? . (3)

Here p’ is the pressure , ge, the acceleration of gravity, u viscosity,
heat conductio;i coefficient, ¢, specific heat at constant volume, D’ the

deformation tensor. We assume the equation of state for the ideal gas :

= R.pb , (4)
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where R, = ¢, — ¢, -is the gas constant and ¢, specific heat at constant

pressure . Let the temperatures on the boundaries be given as
=T, at X,=0 and =T, at X,=d, (5)

where 0 < T, < 1;, and 0 < B = (T1 —T,)/d is the constant gradient of the
temperature across the layer. Then the equilibrium solution sy = (pg, uo, 6o)

is the purely heat conducting. one and is given by

= 0 y 9 = ! , = , 6
Up 0 » :Bomn Po R*ﬁomn. | | ( )
where : o
- ' ’ ‘ B ! T'“- |
"131-=X,', 1<:<n-—-1, wn=—+Xn7
P is an integration constant and m is the polytropic index :
m = -1. 7

~ We consider the perturbation to the equilibrium solution in the following

dimensionless form :
W=i, pf=ptm, T'=0+6.
Defining Prandtl number and other constants as follows :

7 'P,’-;_:"Cv/‘_, '32130_7_'_.2’ b_—_ﬁ and y=-2,
K C

P ﬁo v Cy

we introduce dimensionless variables

L‘ - : T /
t=A, u=Bia, 60=C0, p=Dp, x,-:-‘;z,mign :
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where
R.fop P, \* 1 R.fo
A = — B = = - D= .
P, Pdm+2 ’ (gdb'y) » C Bod ’ Pdm
Then the layer becomes ) = { 20 <z, =2<2+1}, where 2 = ﬁlo"(i .

We also define the Rayleigh number for the upper plane z = 2

PZIBR*CP(m + 1)3d2m+3 z2m—1
0 .

Ra(zﬂ) = RZZSm—l = gg/ug

Thus we obtain the dimensionless system for the perturbation :

gf+7zv (z™u) = Ny, 8)
L w8 au—lywow = R {771V (27 p) + V(26)}
P, ot 3 by(m + 1)
+ N, (9
L AR, = RG-DFUV-u 4 Ny, (10)

where the nonlinear terms are the followings

Ny = - . =RV -(pu), : o (11)

Np= ——ﬁ:p%‘:-, — —pu Vu- % a2 Vu — h(:fH)V(pG) ,(12)
N; = -p% —Rpu-V0—-Rz™1-V—Rpu, —R(y—1)(p+ 2™)4V -u -
—R(y—-1)2pV -u+ 32D :D - Z2(V .u)* . (13)

The system is formulated and treated by [7] , [3] , [4] , [6] , [1] and many
others. Here we consider the instability and introduce a method to obtain

the critical Rayleigh number as a computer assisted proof.
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2. The linearized problem and the stability

We consider the linearized problem

dp
— = — RV (2™ 14
“ RV-(z™n), (14)
811 1 _ R m+1 —-m , m v
(15)
80 " | 1n+1
z E—AO = —Rz™u, —R(y-1)z""V.-u, (16)

in the strip Q = {20 < z =z, < 7 +1} , ‘where the s‘lip boundary condit_ion
for the velocity and Dirichlet boundary condition for the temperature are

assumed

Bu,- _
0z

at z=129 and z=1320+1 (17)

We can treat also the Dirichlet boundary condltlon for the veloc1ty We
consider the solution (p,u,6) in the strip Q , which is periodic in z; with

period ¢;, 1 <17 < n — 1 and satisfies the boundary condition.

Theorem 1 If Rayleigh number is small, then the solution s = (po, o, 60)

-1s asymptotically energy stable.

See Coscia and Padula [1] for the slip boundary condition and Pyi Aye
[6] for the Dirichlet boundary condition.

3. Eigenvalue problems for the linearized SyStem

We notice that main dimensionless parameters are Rayleigh number,

Prandtl number, polytropic index m, periodicity ¢; and the shallowness of



173

the layer which is proportinal to 1/z. We want to consider the instability
of the purely heat conducting state,- which is given by the critical Rayleigh
number when we change Rayleigh number, ¢; and z.

The eigenvalue problem for the linearized system is the following :

Ap = —RV-(z™u) + f, (18)

2o AUt EV(Vou) = — R MY (™) £ V(276))
P, 3% =~ T y(m+1) p &>
(19)
Azm0—A0 = —Rz™u,—R(y—-1)2""V.u + h, (20)

in the strip @ = {20 < z =, < z+1}, with the boundary condition (17).

Theorem 2 The linearized system (18-20) forms a sectorial operator for

any Rayleigh number for f € H', geL?, he L?.
See Pyi Aye [6].

Hereafter we consider the two-dimensional problem and since we assume
the periodiéity with respect to the horizontal direction z, we may consider

the eigenfunctions in the form :

p = p(A2) cos(nz), wu; = u(} 2)sin(nz),

uy = w(A, z) cos(nz), 0 = 6(\ z)cos(nz) forzg < z < z+1.

Then the system for the eigenvalue problem becomes the following system

of ordinary differential equations.

D 3Rz ydo _ (2dm 3Rm ) L mn 3 du
\Rzm T dby(m+1) dz | Rz dbym+1) " T 2

4 dz
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32 .. 3, m(m+1)
3R 1 dé
™t m™— 21
4:l)’)((m_+_l)(mz + z ‘dz’) (21)
dw m A
aw - = e L 22
dz n zw Rz”‘p (22)
Pu Rnz +_()\ s )y
dz? - b'y(m+1)'0 P. 3
' 1 dw Rnz™
-n— - ——f 23
T3"% T Bm+ D) (23)
d29 m+1 m+1 dw
R V’R('y—l)nz u + R(y—1)z -
+Rz™w + (Az™ + n?)0, (24)
in the interval 2o < z=12z, < zy+ 1, with the boundary condifion
%:0,’ w=20=0 at z=12p and z=120+1. (25)
z : . ‘

By this formulation, the original problem of instability is reduced toinves-
tlgate the behavior of the real part of the ergenvalue A when the pa.rameters
’R 20 and n vary. In order to see the 1nstab111ty we use the method grven 1n
[5] to prove the existence of the purely i 1magmary elgenvalue and the critical
Rayleigh number in a small neighbourhood of the computed purely 1mag1—
nary eigenvalue and critical Rayleigh number based on the Newton method.
To obtain the eigenvalue and the eigenfunction for (21-25), we use the shoot-
mg method, i.e., we con51der the fundamental solutlons of the initial value

problem for (21 24) in 2> 2 and express the elgenfunctlon by them as

P =ap(z) + bpa(z) + cpa(2), u = aul(Z) + bua(2) +CU3(z)
w = aibl(,Z) + bwo(z) + cws(z), 8 = a91(z) + b0y(2) +cb3(z) (26)
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where p;(2), u;(2), w;(z), 0;(2), 7 =1,2,3 satisfy (21-24) in z > 2o and the

initial conditions at z = 2y

'U,;-(Z()) B 0, ’LU]'(Z()) = 0, 9]'(20) = 0, ] = 1,2,3,

pi(z0) = 1, w(z) = 0, 6i(z) =0, (27)
p2(20) 0, ux(z) =1, 65(z) =0,

Pa(Zo) =0, 'U»s(Zo) =0, 9'3(20) =1,

a , b and c are constants to be determined. In order that the function (26)
is the eigenfunction, it must satisfy the boundary condition (25) . This

condition is written as follows

%’;L(Zo -+ 1) %Z(ZO + 1) %’?(Zo + 1) a
’wl(Zo + 1) 'I.Uz(Zo + 1) ’LU3(Z() + 1) b =0. . (28)
91(20 + 1) 92(20 + 1) 93(20 + 1) ‘ Cc '
Then for the eigenfunction, we have to have
FRN; Pryzgn) = det A = 0, (29)

where the matrix in (28) is denoted by A = (a;;) . Thus, we come to the
position to search the values of R = R., A = iw, satisfying (29) for the

fixed parameters P,, 2o and n . Noting that (29) can be rewritten as

0F 0F
f(R,A) = .F(Ro,f)\o) +57—Q(R—RO) + EX(A_}\O) =0,

we can state our criterion for existence of the critical eigenvalue based on the

simplified Newton method as follows :
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Theorem 3 Suppose, for a smalle > 0, there exist Rq and Ag such that

[F(Ro, Xo)| < .  (30)
Put e
Ly = (27]; (Roy o) | gf (RO,/\O)) . (31)

where the bar means an appropriate approzimation of the quantity. Suppose

further that, for a small §, there is a p; such that the estimate
| DF(R, A) — Lo <.5 | (32)
holds for any (R , A\) such that
(R = Ro)® + |X = X|® < £
Fof g, p1, 6 and LO as above, if it hold$ that
11 (S +6) <1, (53

then there exist some R, and A, in the p;-neighborhood of Ry and Ao satis-

fying
F(Re, Ae) = 0. o (34)

To utilize this criterion to our problem, wé need to justify the foﬂowing
steps: | o | | |
(%) To find appropria,te values R and A, we use the numerical computation
by the shootmg method and Newton method. The fundamental solutlons are
obtained by the fourth order Taylor finite dlfference scheme .

(44) To estimate € we need the interval analysis by a computer software for the
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bound of round-off errors in the computation of the fundamental solutions

and the theory of pseudo trajectory to estimate the difference between the

genuine fundamental solutions a.nd'the numerically computed ones.

(7) At this pair of Ry, Ao, find an approximate derivative Ly and estimate

the norm | L,™! |;

(7v) Estimate 6 for which the estimate (32) holds in the p;-neighborhood of

Ro and Ag; | |

(v) For these values in (3, i, i3, 1), prove that the criteﬁon (33) holds.
Following these steps we see that there exist theﬂ eﬁca.ct eigenvalue A = iw,

and the critical -Rayleigh number R = R for (721-25) in the p; -neighborhood

of numerically cOmputed.values (Ro, Ao) in (3).

In order to see the motion of the eigenvalue crossing the imaginary axis
when R increases, we can apply such arguments as in [5] which uses the
adojoint system of the equations to (21—24). For notational convenience we
write the eigenvalue A, and the eigenfunction ® = (p, u,w, @) with the critical
Rayleigh number R, for the system of equé,tions (21-24) and the boundary
conditions (25) as o

L® =0 and B®=0. -~ (35)

Let us denote the eigenvalue ), and the eigenfunction ¥ = (p*, u*,w*,8*)

which satisfy the the adjoint probleni

L'V =0 and B*Y = 0.

Taking the derivative of (35) with respect to the Rayleigh number and the
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L?*(0,1):inner product with ¥, we obtain

_3_/1 — (%q”w)m
MRlpr,  (%e,9),

Example 1. We take y=5/3,¢,=1,¢,=06, m=14, P, =1,

and b=0.04 . :
20 n A Ro Rm

0.125 | 2.4797 | 0.0 | 54.8836 | 1292.61

- 0.25 2.3925 | 0.0 | 42.6609 | 1084.35
0.5 2.3136 | 0.0 | 29.7561 | 885.428
1.0 2.2614 | 0.0 | 19.0653 | 754.139
2.0 '2.2357 | 0.0 | 11.5268 | 691.377
4.0 2.2258 | 0.0 6.6749 667.851
8.0 2.2226 | 0.0 3.7447 660.399
16.0 2.2217 | 0.0 2.0581 658.276
32.0 2.2215 | 0.0 1.1176 657.708
64.0 | 2.22146 | 0.0 | 0.60306 | 657.561
128.0 | 2.22145 | 0.0 | 0.32429 | 657.523

Bouss. | 2.22144 | 0.0 657.511

Here ’R,m s the Rayleigh nufnber on the middle plane z =2y + 0.5
Rm = Ra(z0+0.5).

It approaches to that of Boussinesq approximation for heat convection as z,
gets large. | |

ThlS eﬁcample suggésts the occﬁrrénce of the stationary bifur_catidn ‘at the

critical Rayleigh number. However the uéual bifurcation theory does not

apply to the original system (8-13) , because the mass conservation law has a

: high nonlinea.rity and the sectorial properties of the theorem 2 is not sufficient

to gua.fantee the bifurcation. Further investigations are reqiﬁred.
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