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FUZZY OPTIMIZATION
FOR CONTROL OF FREE SURFACE
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1 Introduction

This paper deals with control of free surface arising in steady flow, which obeys
Navier-Stokes equations. This control problem is transformed into the mini-
mization problem. As a technique to solve the minimization, Fuzzy Optimiza-
tion Method (FOM) and Mountain Crossing Algorithm (MCA) are applied
to obtain a global minimizer, which means the target control. FOM seeks a
local minimizer and MCA searchs for all local minimizers to obtain a global
minimizer.

Here, as an example, the coating process of magnetic paints on a running
film is studied. From a view point of quality control, it is desired that the free
surface of coated paints is as flat as possible. On the other hand, from a view
point of efficiency, it is desired that the speed of film is as fast as possible.

Magnetic paints inlet Coated

Figure 1: Coating process of magnetic paints

The minimization problem is constructed to describe the engineering desires
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mentioned above and is solved numerically by means of the unified method
equipped with FOM and MCA. The other important skill to treat the mini-
mization problem is how to solve numerically the free surface problem for the
flow of magnetic paints. As an algorithm for it, the fictitious domain method
is applied by an aid of singular perturbation. Finally, the numerical controls
are shown together with the searching paths. '

2 Free Surface Flow Problem

2.1 Notations

u = (u, v, w) : Velocity field of fluid

P S : Pressure of fluid

eij(u) = g%'} + g—:{ :  Rate of strain tensor

o = {(—pbi; + 7z e (u))n;} :  Stress field

0n = {(—pbi; + gz€ij(w))}nin; : Normal component of o

Or =0—0-n :  Tangential component of o

n = (ny,ng, n3) . Qutward unit normal vector at the
boundary '

7 = (71,72, T3) :  Unit tangential vector at the boundary

Re ‘ :  Reynolds number |

g ' :  Gravitational acceleration

Py ' A : Atmospheric pressure

F; . Pressure at inflow boundary

Viim . X-component of velocity of film

Qo =Q, :  Domain (C R3) occupied with fluid

| :  Free surface of fluid '

| P . Inflow boundary

Cout :  Outflow boundary

I fitm : Surface of film

Lip ' . Wallof lip

Loir o :  Extra boundary added by use of the fic-

titious domain

2.2 Free surface Problem

The steady free surface problem defined in Qy C R?2 for the flow of magnetic
paints is to find u, p and I';, such that
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—ﬁEAu+(u-V)@:—Vp+g in o,

divu =0 " in Qo,

0n = (=pbij + gz€i)nin; = —Poo  on Ty,

U, =0 on I'p, (1)
u=0 on Iip,

U= (Vf'ﬂm, 0, 0) . on Ffilm,

0n = —Py on oy U Lin,

ur =0 _ on Iput Ul

In this problem, Reynolds number Re based on Vsam and the gap between
lip and film is about 10.

3 Numerical Solutidn of Free Surface Flow Prob-
lem

We apply a fictitious domain method via singular perturbation to solve numer-
ically the free surface flow problem. We leave how to apply concretely it to the
- problem to the other literatures[10-12]. A lot of numerical experiments show
that this method is very efficient to solve free surface flow problems.

In practice, we solve time-dependent distribution Navier-Stokes equations
in an analyzed domain which is composed of Qy and a fictitious domain by
using finite-difference method and MAC algorithm, that makes it possible to
“adopt a time-independent mesh system. Also distribution evolution equation
for free surface is solved similarly in the analyzed domain.

[air

Fictitious domain
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Figure 2: Projection of analyzed domain into  — z plane
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4 Description of Minimization Problem

- Here, the minimization problem to control free surface arising in the flow of
magnetic paints is defined.
As control, let us adopt;

1. Pip(> Pso), which is the pressure at the inflow boundary.
2. Vium(> 0), which is the x-component of the velocity of the film.

Introduce the cost function;

1 1 [ -
+ — / (n(z,y) — nave) dzdy + |T7‘We —hl, (2)
Yo .

In(Pin, Veiam) = Voam e
wm T Jxo

Ty Y1
/ / (2, y)drdy
__ JZo Yo

Tove = 0 o) (vt — vo)

where

(3)

z=7n(z,y) : Theshape of the free surface
on the domain (zo, 1) X (yo,¥1)
| expected to be flat. -
h (> 0) : A given constant, which is the
de31red thickness of coated pamts
€r, €n (> 0) Penalty parameters.
Nave :  Averaged thickness of coated paints.

(P ) Minimize Jh(P.,;n, sz'lm), fO'I' (Pin, V_film) eA
where

- A= {(Pin, Vsim ) IPin € (1,4), Veam € (L, 4)}.

(P) is solved by use of FOM and MCA.
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5 Fuzzy Optimization Method and Mountain
Crossing Algorithm

In this section, FOM and MCA are summarized. FOM is an algorithm of the
gradient type using stochastic fuzzy averaging to search for a local minimizer.
A lot of numerical experiments by means of FOM show its wide convergence
domain and low computational cost. MCA is proposed to search for a global
minimizer among not so few local minimizers.[12,13] The unified algorithm
equipped with FOM and MCA is implemented by repeating up- and down-hill
procedures in the following steps;

Step 1

Step 2

Step 3
Step 4

Step 5

Step 6

Search for a local minimizer by FOM, i.e.,, down-hill
algorithm.

Climb a hill of the target manifold up to the top of the
hill or the ridge by golden section algorithm(GSA) along
straight line started in stochastical direction from a local
minimizer already obtained , i.e., up-hill algorithm.
Choose a quasi-local maximizer obtained in step 2 as an
initial point for the next down-hill procedure.

Continue to find successively local minimizer by repeating
steps 2 and 3.

Sometimes revisits to old minimizers occur. If the number
of successive revisits to old minimizers is beyond the preset
one, stop steps 2 and 3.

Scan all local minimizers, compare all local minima and set
the lowest one as a global minimum.

6 Numerical Results

In figure 3, we see how the sequence of searching vectors to get to the global
minimizer through the up- and down-hill procedures mentioned in section 5.
Also the contours of cost function are shown here in order to understand the
functions of FOM-MCA.

Three local minimizers, (P, = 1.95, Viium = 1.68), (Pin = 243, Vium =
2.56) and (Pj, = 1.35, Viym = 1.96), are found. And global minimizer, i.e.,
optimal control, is the third one.
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Figure 3: Contours of cost function and searching path by FOM-MCA

The profile of free surface corresponding to optimal control is shown in
figure 4. Figures 5, 6 and 7 show the profiles of free surfaces due to the
following controls, (P, = 4.0, Viuym = 2.5), (Pin = 4.0, Vfium = 4.0) and
(P, = 1.0, Viam = 1.0). e T . . A

Figure 4: Profile of free surface (P, = 1.35, Vyjm = 1.96)
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Figure 6: Profile of free surface (P, = 4.0, Viym = 4.0)
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Figure 7: Profile of free surface (P, = 1.0, Viiam = 1.0)

7 Conclusion

After the description of the minimization problem with two parameters, we
solved numerically the free surface flow problem at each step of the iteration
of FOM by means of fictitious domain method. By application of FOM and
MCA, three local minimizers were found. However, the number of these local
minimizers are not guaranteed only by this method. Then this should be
checked by using another concept. That is our next problem in near future.

It should be noted that the numerical free surface has sometimes the un-
steady wavy patterns in spite of treating the steady boundary value problem
for Navier-Stokes equations. It may be originated from the numerical errors
based on discretization process and the evolution method to solve the steady
Navier-Stokes equations. On the other hand, the unsteady wavy patterns are
observed in this kind of physical experiments. However, it is unknown what
kind of relation exists between them. That is the challenging problem laid
between applied science and numerical analysis.

8 Acknowledgment

The authors would like to thank Dr.Yutaka, Naka,ma (KAO corp.) for helpful
comments and suggestions.



10.

11.

188

References

Berggren, M., Glowinski, R. and Lions, J., L., “Controllability Issues
for Flow—related Models: A Computatlonal Appxoac " Technical Report
TR94-47, Department of Computational and Applied Mathematlcs Rice

University, 1994.

Beux, F. and Dervieux, A.,‘ “A Hierarchical Approach for Shape Opti-
mization”, Engineering Computations, 11(1), pp.25-48, Feb. 1994.

Fujita, H., Konno, H. and Tariabe, K., “Saitekika-hou”, Iwanami-shoten
(in Japanese), 1994. '

Glowinski, R., Kearsley, A., J., Pan, T.,W. and Periaux, J., “Numerical
Simulation and Optimal Shape for Viscous Flow by a Fictitious Domain
Method”, International Journal for Numerical Methods in Fluids, 20,
pp.695-711, 1995.

Glowinski, R. and Lions, J., L., “Exact and Approximate Controllability
for Distributed Parameter Systems (Part 1)”, Acta Numerica, pp.269-378,

1994.

Glowinski, R. and Lions, J., L., “Exact and Approximate Controllability

for Distributed Parameter Systems (Part 2)” Acta Numerzca pp- 159-333,
1995.

Gunzburger, M., D., Hoy, L., S. and Svobodny, T, P., “Boundary Veloc-
ity Control of Incompressible Flow with an Application to Viscous Drag
Reduction” ,SIAM Journal of Control and Optimization, 30(1), pp.167-
181, 1992.

Jameson, A., “Computational Aerodynamics for Aircraft Design”, Sci-
ence, 245, pp.361-371, 1989.

Kawahara, M: and Shimada, T., “Gradient Method of Optimal Control
Applied to the Operation of a Dam Water Gate”, International Journal
for Numerical Methods in Fluids, 19, pp.463-477,1994.

Kawarada, H., “Application of Fictitious Domain Method to Free Bound-

~ary Problems”, Indo-French Conf. on Mathematical Methods for Partial

Differential Equations, Bangalore, India, 1994.

Kawarada, H., Fujita, H. and Kawahara, H., “Wave Motion on Sloping
Beach”, ENUMATH, Paris, France, 1995



12.

13.

14.

15.

16.

17.

18.

19.

Kawarada, H. and Suito, H., “ Fuzzy Optimization for Control of Free
Surface”, ECCOMAS 96, Parls France, 1996.

Kawarada, H. and Suito, H. “Fuzzy Optimization Method”, Computa-
tional Science for the 21st Century, John Wiley & Sons, 1997(to be pub-
lished).

Lions, J., L. Optimal Control of Systems Governed by Partial Differential
Equatzons Springer, 1971.

Mohammadi, B., “Optimal Shape Design, Reverse' Mode of Automatic
Differentiation and Turbulence”, 35th AIAA Conference, Reno, 1996.

Neittaanmaki, P. and Tiba, D., Optimal Control of Nonliner Parabolic
Systems. Theory, Algorithms and Applications, Dekker, New York, 1994.

Pironneau, O., Optimal Shape Design for Elliptic Systems Sprmver—
Verlag, New Y01k 1984.

Sritharan, S., S., “Optimal Feedback Control of Hydrodynamics”, A
progress report. In Max D. Gunzburger, editor, Flow Control, pp.257-
274, New York, 1995, Springer-Verlag. Vol.68 in The IMA Volumes in
Mathematics and its Applications.

Temam, R., “Remarks on the Control of Turbulent Flows”, In Max D.
Gunzburger, editor, Flow Control, pp.257-274, New York, 1995, Springer-
Verlag. Vol.68 in The IMA Volumes in Mathematics and its Applications.

189



