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1. Introduction

A free boundary problem is a problem whose domain is unknown. We can see many problems
in practical phenomena as free boundary problems. They are nonlinear, so numerical simulations
are inevitable in analysis. Numerical methods for free boundary problems have been developed
and improved, so their numerical simulations are not so difficult recently. However, investigation
on reliability of numerical results is not easy. Reliability is usually checked by comparing nu-
merical results obtained in different precision. In the check distinction between round-off error
and truncation error is very important. Normal numerical simulations are carried out in double
precision arithmetic, so round-off error can be reduced by using quadruple precision arithmetic.
In the paper a numerical method which realize numerical simulations of free boundary problems
in quadruple precision arithmetic is considered.

In numerical simulations FDM or FEM are very popular as descretization methods. How-
ever,:changing order is not easy in these methods. From this view point spectral methods are
convenient. Numerical methods using spectral collocation methods in space and time were de-
veloped to free boundary problems[2-3]. In the methods order can be set easily and arbitrary|[3].
However, the methods are implicit in time, so they need adequate iterative methods and they
cost much[4]. This means that they are not easily applicable to higher dimensional free boundary
problems.

In the paper a numerical method to free boundary problems which is explicit in time and
realize numerical simulations in quadruple precision arithmetic is considered.
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2. Numerical method
2.1. H1gher order exphcn: scheme

As for accurate simulations of free boundary problems a method which consits of a fixed
domain method and spectral collocation methods in space and time was developed. The method
realizes arbitrary order in space and time[2-3]. This is advantageous for accuracy. However, it
is implicit in time, so it needs adequate iterarive methods and it costs much[4]. This means that
it is not easily applicable to higher dimensional free boundary problems. Hence in the paper an
explicit method is considered.

Here it should be remarked that many time evolutional free boundary problems have time
evolutional equations of motion of the free boudaries like the Stefan condition. This means that
it is possible to apply the Runge-Kutta method. As is written in the previous section our purpose
is development of numerical methods for the quadruple precision arithmetic. Therefore, usual
Runge-Kutta methods are not available. Higher order Runge-Kutta methods are necessary. As
for descretization in space spectral collocation methods are used. They are not applicable to free
boundary problems directly. So, a fixed domain method using mapping functions is combined.

The concrete procedure of the above method will be shown in its application to test problems. -

2.2. Test problem

We cosider the following one-dimensional free boundary problem as a test problem. This
problem is related to the free boundary problem describing the pattern formation in diblock
copolymer[6]. Here we should remark that our approach is not limited to this problem.

Test Problem(N-N) :  Find s(t) and u(zx,t) such that
d
Es(t) = F(s(t),t) t>0
s(0) = —x

where

Fls(t)t) = —ug(s(t),8) + uz(s(t),8)

4 t+u
u;_:c(xvt) :_2t+;

t+3

in (=1,s(t)) xt>0

s ug(z,t) =2 in (s(t),1) xt>0

t+2
uf (-1,t) =wu;(1,t)=0 (Neumann-Neumann B.C.) fort> 0
| ut(s(t),t) =u(s(t),t) =0 : fort>0
ut(@,0) =2 @+ )+ ) in (~1,5(0))

(60 =3@+3)E-3) in (5(0), 1)
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We also consider two more problems Test Problem(N-D) and Test Problem(D-D) by replacing
(Neumann - Neumann B.C.) by the following boundary condltlons (Neuma,nn D1r1chlet B.C.)
or (Dirichlet - Dirichlet B.C.), respectively. :

(Neumann-Dirichlet B.C.):
| ur(-1,t) =0 for t>0

_(E+DHE+3)?

uwm (L) (t+2)3

for t>0
(Dirichlet-Dirichlet B.C.):

t+ 1)t +1)?

ut(=1,t) = TR for t>0
3 2
SRS T

Exact solutions to these test problems are same and given as follows:

r s(t) = _t-l—% for t>0
_t+4
¢ ut(z,t) ~ 712 (z—s(t))(z+2+s(t)) m[ Ls()]xt>0
v (o) = b+ Lo—s@)@-2+s(t)  inls@)1]xt20

2.3. Fixed domain method

Descretization in space is performed by using spectral collocation methods. Here we should
remark that they are applicable only in the interval for one-dimensional problems ( or in the
.rectangular domain for higher dimensional problems ). So they are applied after mapping the
unknown domain of the problem into the interval [-1, 1] [2,5]. Test Problems have two intervals
[—1,s(t)] and [s(t),1] separated by the free boundary, so these two intervals are mapped into
[-1, 1] by different mapping functions. The mapping functions are given as follows:

t=1 for 720

( a:g'+£+(§+,'r) =0 in(-1,1)x7>0
. zH(-1,7) =-1 fort>0
{ zt(1,7) =s(7) forT>0
( xg_g_(f‘,T) =0 in(-1,1)x7>0
¢z (-1,7) =s(7) forT>0
. z=(1,7) =1 forT>0
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Here we should remark that mapping functions on spatial variables are given as solutions of
boundary value problems. This method is called numerical grid generation[8]. These boundary
value problems are one-dimensional, so we can solve them exactly. However, our purpose is
development of methods for higher dimensional free boundary problems. Hence we solve them
numerically. Using these mapping functions Test Problem(N-N) is transformed into the following
fixed boundary problem.

Test Problem(N-N)' :

4 sr) = F(s(r),m)

dr )
S(O) = _5‘
where
1 1
F ty=——ulf (1 —u,_(-1,7 >0
(S(T)3 ) wg_+(1’ T),U‘E‘F( ’T) + QE_(—]., T)ug ( ) fOT T
( + 11
1 Tete+ T+
e S Sk S 4 in (—1,1) x 7 > 0
GEReE TGt T ey M ObUXT
1 mg_—g— - _ T+ji'

G T g e

in (-1,1)x7>0

uZJr(—l,T) = uE‘_(l,T) =0 forT>0
(| vt(L,7)=uv (-1,7)=0 forT>0
[ wen0 =5 (€0 +3) (€0 +3) i (-150)
S : 4 ‘
@ 0=5 (€ 043) (€0-3) meo

We solve this using spectral collocation methods in space and the higher order Runge-Kutta
method in time. Test Problems (N-D) and (D-D) are solved in the same way.

2.4. Higher order Runge-Kutta method

The Runge-Kutta method is very popular in numerical computations of a system of ordinary
differential equations. Usually the fourth order formula is used, however it is not adequate here.
This is because that our purpose is numerical simulations in quadruple precision arithmetic.
So we use higher order Runge-Kutta methods. There are many formulae[7]. Here we adopt
formulae with the wide stable region and coefficients given by fractions. The followings are
formulae used here.

4th order Runge-Kutta method :

ki = At X F(tn,yn)

t—1
ti = Y B(,j)k; (i=2...,4
j=1



where

where

a(2) =

e 9

LY

~ ~—
T

- Oloo ol ©OIN Ol Sl

e 8 8
N N N
N O G
Il

a(8) =

ki = Atx F(tpn+a(i)Ayn+t:) (E=2,
4 . . .
Yntl = Yn+ Z C(Z)kﬂ
} B@L=} B@4)=0 CO)=3
i B(3,1)=0 B(42)=0 C0@2)=3%
B(3,2)=1 B(43)=1 C@B)=3%
C4)=3%
6th Runge-Kutta method( Verner vformula ):
ki = At X F(tn,yn)
i = ZB(Z] (1=2,...,8)
ki = At X F(t +a(i)A,yn+t:) (1=2,.
Yntl = Unt E C(i)k:
=1
B(2,1)=% B(6,1) = —38 B(8,1) =
B(3,1) = - B(6,2) = B(8,2) =
B(3,2) = % B(6,3) = 338 B(8,3) =
B(4,1) = — B(6,4) =128 p(8 4) =
B(4,2) = 5 B(6,5) = 283 B(8,5) =
B(4,3) = B(1,1)=-816  B(8,6)=0
B(5a 1) = % B(7’ 2) = 255)'6[ B(8’7) :
B(5,2) = — B(7,3) = 33320
B(5,3) = B(7,4) = -4
B(5,4)=-3%  B(7,5)=
B(7,6) =0
8th 617'der“Runge-Kutta method( Verner formula ) :
k= At X F(tmyn)
t; = ZB(z])k (i=2,...,13)
ki = At X F(t +a(i)Ayn+t;) (1=
Yn+l = Yn+ Z C(3)k;

where

22

4)
- 8)
% ow-g
Cc(2)=0
4219 0(3) —
= o=l
539 0(5) — _%%
C(6) =0
s CO) =g
c(8) =
.+, 13)
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a2=% B(21)=1 B(9,1) = {118 B(12,1) =-ZXL  C(1) =
a(3)=3% B@B,1)=3 B(9,2) =0 B(12,2) =0 C(2)=0
a(4) =1 B(3,2)=3% B(9,3)=0 B(12,3) =0 C(3)=0
a(6)=% B4,1) =3 B(9,4) = —41% B(12,4) = 4248 C(4)=0
a(6)=1 B(4,2)= B(9,5) = 1328 B(12,5) = —138T8  C(5) =0
a(f)=% B(4,3) = % B(9,6) = — 5132 B(12,6) = 17662 C(6) =12
a(8)=%  B(51)=1% B(9,7) = 22T B(12,7) = -lgggggo C(7) = 3380
a(9)=2 B(5,2)=0 B(9,8) = 312 B(12,8) = 225 C(8) = 18801
a(10)=2 B(53)=-1¢ B(10,1)=-28%  B(12,9) =L Cc(9) = &2
a(11)=1 B(5,4) = 352 B(10,2) =0 B(12,10) = 273 C(10)=0
a(12)=3% B(6,1) =% B(10,3) =0 B(12,11) =0 Cc(11) =
a(13)=1 B(6,2)=0 B(10,4) = — ;7582 - B(13,1) = 11208 c(12) = &%

B(6,3) =0 B(10,5) = =888 B(13,2) =0 C(13) = 2L

B(6,4) = & B(10,6) = 2398 B(13,3) =0

B(6,5) = 12 B(10,7) = ,1085;) B(13,4) = 3814

B(1,1)=-128  B(10,8) = B(13,5) = 23425

B(7,2) =0 B(10,9) = 3372;43 B(13,6) = 8046

B(7,3) =0 B(11,1) = 12138 B(13,7) = S0

B(7,4) =393 B(11,2) =0 B(13,8) = 41

B(7,5)=-81%  B(11,3)=0 B(13,9) = %

B(7,6) = gggg B(11,4) =-%%2  B(13,10) = - X2

B(8,1) = & B(11,5) = 455485 B(13,11) =0

B(8,2) =0 B(11,6) = —422  B(13,12) = 12

B(8,3) =0 B(11,7) = 33922

B(8,4) =0 B(11,8) = — 192

B(8,5) = 182 B(11,9) = 1%

B(8,6)=—-% B(11,10) = 348
B(8,7) = 6720

3. Numerical results

Numerical results to Test Problems (N-N),(N-D) and (D-D) are shown here. Gauss-Lobatto
collocation points and Chebyshev polynomials are used in the spectral collocation methods][1].
Numerical computations are carried out for several orders in spectral collocation methods and
Runge-Kutta methods, in both double and quadruple precision arithmetic. Error = |segac(t) —
Scal(t)| is shown as a function of time ¢, where Sezqc(t) is an exact solution and s.y(t) is a

computed value. N + 1 collocation points are used[1]. Numerical computations are carried out
on SUN ULTRA. '
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a1 002 +— dt=1.08-2' o—

'di=1.00-3' - ‘dta1 083" ——

dt=1.00-4' -8 ‘dtu1 004’ -8
10 F 10

ToglErrorl

5
Time

(a)

Figure 1. Error for Test Problem(N-N).
Double precision, 4th order Runge-Kutta method, (a) N =4, (b) N =6.

T
‘dt=1.00-2' +— ‘di=1.06-2 +—
'dt=1.0e-3' 'dt=1.08-3'
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Figure 2. Error for Test Problem(N-D).
Double precision, 4th order Runge-Kutta method, (a) N =4, (b) N =6.
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dt=1.00-2' +— di=1.00-2" o—
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Figure 3. E'rror for Test Problem(D-D).
Double precision, 4th order Runge-Kutta method, (a) N = 4, (b) N 6.
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T T
'dt=1.00-2' *— ‘dt=1.00-2" +—
'dt=1.08-3" ~—+ ‘dt=1.08-3" —+
'dt=1.0e-4' -0 'dt=1.0e-4' -8

loglEmor

Figure 4. Error for Test Problem(N-N).
Double precision, 6th order Runge-Kutta method, (a) N =4, (b) N =6.

T 10

'dt=1.00-2" -e— » 'di=1.06-2! o—
'dt=1.06-3" ~+-- 'dt=1.0e-3' —~+
'dt=1.0e-4’ -B K

logtError

Figure 5. Error for Test Problem(N-D).
Double precision, 6th order Runge-Kutta method, (a) N =4, (b) N =6.

T T T T
‘di=1.00-2' +— 'dt=1.00-2' +—
‘dt=1.08-3" -+~ 'dt=1.06-3' -+
‘di=1.00-4' -©: 'dt=1.00-4" -8

loglErrori

Figure 6. Error for Test Problem(D-D).
Double precision, 6th order Runge-Kutta method; (a) N =4, (b) N =6.
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Figure 7. Error for Test Problem(N-N).
Double precision, 8th order Runge-Kutta method, (a) N =4, (b) N = 6.
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Figure 8. Error for Test Problem(N-D).
Double precision, 8th order Runge-Kutta method, (a) N =4, (b) N = 6.
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Figure 9. Error for Test Problem(D-D).
Double precision, 8th order Runge-Kutta method, (a) N =4, (b) N = 6.
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Figure 10. Error for Test Probiem(N—N).
Quadruple precision, 4th order Runge-Kutta method, (a) N =4, (b) N = 6.

T T
'dt=1.08-2" o—
'dt=1.00-3' -
‘dt=1.06-4" -8-- 4

(a)

loglError

Figure 11. Error for Test Problem(N-D).
Quadruple precision, 4th order Runge-Kutta method, (a) N =4, (b) N =6.
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Figure 12. Error for Test Problem(D-D).
Quadruple precision, 4th order Runge-Kutta method, (a) N =4, (b) N = 6.
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15 - T 15 T
‘di=1.06-2' ~— 'dt=1.06-2' +—
'dt=1.00-3' —+—— dt=1.00-3" —-
10 th=1.06-4" -8 10 "dtet 004’ -B--. 1

loglEmmor!

(a)
Figure 13. Error for Test Problem(N-N).
Quadruple precision, 6th order Runge-Kutta method, (a) N =4, (b) N =6.

10 T 10 T T
‘dt=1.00-2" — 'dt=1.08-2' o—
'dt=1.08-3" —~+—- 'dt=1.0e-3' —+-
5fF 'dt=1.00-4" -8~ 38 'dt=1.06-4' -8-- |
[ 1]

(a)
Figure 14. Error for Test Problem(N-D).
Quadruple precision, 6th order Runge-Kutta method, (a) N =4, (b) N = 6.

o T T T T T T T T T 0 T T
‘di=1.00-2' e— 'dt=1.08-2" *—
‘dt=1.06-3" ~+-- 'dt=1.00-3' —+-
'dt=1.00-4' -8~ ‘dt=1.0e-4" -8--
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-5 25 |
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] 1 2 3 4 5 6 7 8 -] 10 [} 1 2 3 4 5 6 7 8 9 10
Time Time

(a) (b)
Figure 15. Error for Test Problem(D-D).

Quadruple precision, 6th order Runge-Kutta method, (a) N = 4, (b) N =6.
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Figure 16. Error for Test Problem(N-N).
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(b)

Quadruple precision, 8th order Runge-Kutta method, (a) N =4, (b) N =6.

T T T T T T T T T
'dt=1.00-2" —
‘dt=1.00-3" ~~
'dt=1.06-4' 8- 4

loglEror

(a)

" Figure 17. Error for Test Problem(N-D).
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T T T T T T T T T
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[
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1 2 3 4 5 7 B 9 10
Time
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Figure 18. Error for Test Problem(D-D).

5
Time

(b)

Quadruple precision, 8th order Runge-Kutta method, (a) N =4, (b) N = 6.

loglError

T T T T T

Vv
1

(b)

Quadruple precision, 8th order Runge-Kutta method, (a) N =4, (b) N =6.
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Numerical results in double precision arithmetic are shown in Figures 1-9. They are almost
independent of N because spatial order of exact solutions is low. We can see Neumann boundary
conditions are delicate in numerical computations. If you do not have any idea in such situations,
one answer is to carry out numerical computations in quadruple precision arithmethic.

Nurmerical results in quadruple precision arithmetic are shown in Figures 10-18. They are
almost satisfactory in accuracy. Of course additional considerations are necessary if you need
to carry out longer numerical computations for Nuemann boundary conditions.

4. Conclusion

In the paper a numerical method which is explicit and realize numerical simulations of
free boundary problems in quadruple precision arithmethic is presented. It consists of a fixed
domain method using mapping functions, spectral collocation methods in space and Runge-
Kutta methods in time. For evaluation of our method one-dimensional free boundary problems
whose exact solutions are known are solved. Numerical results are satisfactory in accuracy. Here
we should remark that test problems are one-dimensional, however our method is applicable to
higher dimensional free boundary problems.
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