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A STEFAN-LIKE PROBLEM IN BIOLOGY

Masayasu Mimura

Abstract: In this paper we consider the spatial segregation limit for a reaction-diffusion (RD) system to
describe the interaction of two competing species. We derive a new free boundary problem from the RD
system when the interspecific competition rate tends to infinity. The free boundary problem is the two phase

Stefan problem with reaction term where the latent heat is zero.

1. Introduction

Spatio and/or temporal patterns arising in ecological and biological problems have been theoretically
investigated by using partial and ordinary differential equation models. One of the contributors in this field in
Ecology would be the great mathematician V. Volterra who introduced different types of differential equation
models to understand the interaction of bioilogical species in ecological systems. Following his line, many
differential equation models have been proposed so far. In particular, for the situation where each individuals
randomely migrates, reaction-diffusion (RD) systems have been often used. One general form of the

equations for the population density u = (u1, Uy ...Up) is given by
ujp = didu + filu)u, (1.1)

where d; is thevdiffusion rate of u; and f(u) are the growth rate of u; which generally dependon u (i=1,

2,..,N). .
In this paper, we are concerned with mathematical treatment on the interaction of two ecologically similar
species which strongly compete each other and move by diffusion. The resulting model is described by the

following 2- component reaction-diffusion (RD) systems:

Uy =dyAuy + 1, (u)uy »
t>0, xEQ (1.2)

Upy = dpAU, + 5 (U)uy

The result shown here has been obtained by the joint wolrk with D. Hilhorstand L. A. Peletier[1].



32

with f, =1, -a1u1_-b1u2 and f,=r,-byu,-au, where r; is the intrinsic growth rate, g is the intraspecific

competition rate and b; is the interspecific competiton rate which are all positive constants[2]. Q isa

bounded domain in R”. For (1.2}, we impbse the zero-flux bdundary cdnditions on the boundary 9Q

U1V=O=U2v, (13)

where v is the outerward normal unit vector on Q. We define here strong competition for two species by

the following invequalies

a,/b, < rfr,< byfay. (1.4)

If both by and b, are much largerthan g and (i=1, 2), the inequalities (1.3) are always hold.

For (1.2) with the inequalities (1.3 ) in the absence of diffusion, one easily finds that there are four

. equilibrium solutions (0,0), (r1/a1, 0), (0, r2/a2) and (u*, v¥). The fourth solution is given by the intersection
point of two lines 1y -a,u;-byu,=0 and ry-byuy-au,=0,andthat (0, 0) and (u*, v¥) are unstable, while
(ry/ay, 0)and (0, ry/a,) are stable. Therefore, we find that the solution (uy(t), u,(t)) tends generically to
either (r1/a1, 0) or (O, r2/a2). In ecological terms, it ivmplies that two competing species can never coexist

under strong competition. Thisis called Gause's competitive exclusion principle in ecology.

On the other hand, in the presence of diffusion, the structure of exisitence and stability of equilibrium
solutions of (1.2)- (1,4) are different fromthe ODE version. lfthe domain Q is convex, any non-constant
equilibrium solutions are unstable, even if they exisi[2]. This indicates that stable equilibrium solutions of

(1.2)-(1.4) are (ry/a4,0) and (O, r2/a2) only, that is, the competitive exclusion principle still holds. On the

other hand, If the domain Q is not convex, the solution structure is more complicated, depending on the
shape of Q[3]. If Q takes suitable dumb-bell shape, for instance, there exist stable non-constant
equilibrium solutions, in addition to the above two trivial equilibria[3].. These solutions have spatial

distributions where u andv take nearly (ry/a4, 0) in one subregion, and take nearly (0, ry/a,) in the other,

that is, two competing species show spatial segregation in the whole domain .
From the ecological view point on regional segregating problem for competing species, itis interesting to
know how the time-evolution of segregting regions of two species is.
Our aim is to derive the evolutional equation to describe the segregating boundary between two

competing species from the problem (1.2)-(1.4). Inorder to do it, itis convenient to rewrite (1.2) as
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Uy =dqAuy+ry(t-uy)uy - bu,u,
t>0, x EQ (1.5)

Uy = d2Au2+ r2(1 ~u2)u2 - abu1u2

where b and a are positive constants. We assume that b is sufficiently large and the others are of order
O(1). Ecologically it means that the competition between two species is very strong andthat if o > 1, the

competition from u, to u, isstronger, whereas the situation is opposite if a < 1.

We first demonstrate some numerical simulations of the 1-dimensional problem of (1.2)-(1.4) for different

values of b. For not large (but notsmall) b, it is shown that u; and u, exhibitspatial segregation with an

overlapped zone, because of strong competition. When the value of b increases, the overlapped zone

becomes narrower ( see Fig. 1). Thus, taking the limit b 1=, one can expect thst u, and u, possess

disjoint supports (habitats) with only one common point, which seperates the habitats of the two competing
species. The purpose of this paper is to derive the limiting system as b t«, which is called the spatial
segregation limitto describe the time evolution of the supports of uy and u,. Aswillbe proven below, the
limiting system is a free boundary problem which is regarded as the two phase Stefan-like problem with
reactionterms. Forthe Stefan problem, the readers refer to [4], for instance. Only differency is that no latent

heat effect is included in the problem.
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Let T(t) be an interface which seperates two subregions
Qy(t)
Q) ={x €Q, uy>0 andu,=0}
and
Q,(t) ={x €Q,u,>0andu;=0}
in Q (seeFig.2).
Then uy and u, aredescribed by
u“=d1Au1+r1(1-u1)u1 t>0, x € Q) Fig. 2
(1.5)
Uy = dsAU, + (1 - Up)U, t>0, x € Q,(1)
uy,=0=u,, . 1>0, X € 9Q. (1.6)
On the interface,
U.1 = U2 = t>0, X € F(t) (17)
and
0=-ad,uy, -d2u2v t>0, x € I'(t), (1.8)
where v isthe outerward unit vector. The initial conditions are given by
u; (0,x) = u;5(x) x € Q,(0) i=1,2) " (1.9)

which is seperated by the curve

ro)=T (1.10)

0

The problem isto find (u4(t.x),us(tx)) and I(t) whichsatisfy (1.5) -(1.10). If this problem can be solved,

the interface I'(t) determines the segregating boundary between two strongly competing species. One
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could notice that the problem (1.5)-(1.10) is quite similar to the classical two phase Stefan problem except for
the following two different points: (i) the system (1.5) is not the heat equation but the logistic growth
equation which is well-known in theoretical ecology; (i) the interface equation (1.8) is such that the latent

heat is zero and it contains the strength ratio o of the interspecific competition between u, and U,.

2. Formulation of the problem

We rewrite the system (1.5) in more general form

uy = d4Au +{fu) - kviu
in Q= Q xRt (2.1)

vy = dyAv +{g(\)) - aku}v.
and make the following hypotheses on the functions f and g:
(H) Thefunctions f and g are loqally Lipschitz continuous on [0,+%) such that
f(s) >0, g(s)>0 for s€ (0,1) and f(s) <0, g(s) <0 for s> 1.
We shall Write
Po =max{f(s):0= s= 1} and p,=max{sf(s) +f(s) :0= s= 1},
Qg =max{g(s):0s s= 1} and py=max{sg'(s) +g(s) :0= s= 1}.
The boundary and in_itial conditions are
u=0=v on S = 4Q x R* | (2.2)
and

u(0,x) =ug(x),  v(0,x) =vy(x) xXE Q (2.3)
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where

Hy) Ug Vo € C?*1(Q) and 0sugs1, 0svys=1

By a solution of the problem (2.1)-(2.3), we shall understand a pair of functions (u, v} such that ug Vo €

CZ+y,1+y/2 Q).

3. The limiting problem
We shall refer to the solution (u, v) of the problem (2.1)-(2.3)as (uy, v,) to emphasize its dependency on

the parameter k contained in the reaction terms in (2.1). First we prepare some results on a-priori bounds

for the solution (uy, v,) of (2.1)-(2.3) which enable to study the prdperties of the family of solutions  (u, v, )
for large values of k. By using them, it is shown that the families {u,} and {u,} are boundedin W“(QT)
and hence in BV(Qq) where Q= Q x (0,T]. We find that there exists sequences {u,} and {u} and

functions u*, v* € L2(0,T: H'(Q)) suchthat 0s u*=1, 0< v*= 1 and
u, —>u* and v —>Vv* as k—> in L1(QT) . (3.1a)

and

u—>u* and v —>v* as k—® in L2(0,T; H1(Q)). (3.1b)

We now consider the function w, = u, - a'1vk and eliminating the interactionterms involving k from (2.1),

we have

w, =dAu - aldAv +uf(u) - alvg(v) in Qp : (3.2)
w =0 on ST, (3.3)

where S; = aQ x (0,T]. Furthermore, we find that the pair of functions (u*,v*) defined in (3.1) is a

distribuﬁonal solution of the equation
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(u*- o), = A(dyu* - a7 dgv*) + uHfu®) - o TvRg(ve). (3.4)

We now define the function w=u* - o~'v* and show that w is aweak solution of the following problem:

W, = div(d(w)w) + F(w) - in Q (3.5)
w,=0 ~on 9aQ x R* (3.6)
w(x0) =wol) = ugl) - alvy) x€Q (3.7)

where d(s)=d, if s>0 and d(s)=d, if s<0. F(s) =f(s)s if s>0 and F(s) = g(-as)s ifs< 0.

Definition. Afunction w is aweak solution of the problem (3.5)-(3.7), if

0 . wE L2(@ x RYNL%0,TH (@) N C([o,=]; L2(R))

@ Jy WM - g, Wb -dw) VWYe +Fw)d}=/,, woé (0)

hold for all ¢ € C}(@ x R*) andall T>0.

We now arrive at the following theorems:

Theorem 1.
() The problem (3.5)-(3.7) has exactly one weak solution w € C“’“/Z(sz x [0,)) forall a € (0,1);

(ii) The function w definedin w=u* - a~'v* is aweak solution of the problem (3.5)-(3.7).

Theorem 2. ,
Let w be aweak solution of the problem (3.5)-(3.7) such that there exists afamily of closed hypersurfaces T

= {UT({t), t € (0,T]} suchthat T'(t) in Q forall t &€ (0,T], w(t)> 0 in side I(t), sayin Qti”t and w(t) <0

outside I{t),sayin Qte"t foreach t € (0,T]. Thenif I is smooth enough and if the functions

u*=w, and VE=-aw_ (Ss_ =h1in(0,s))
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aresmoothupto Iy, u* and v* satisfy

ur =d,Au* + fuu* in U{QM, tE (T}

(3.8)

v=doAVE + gV in U{ QX t e (0T]}
u*=v*=0 on T (3.9)
0=-adyu* -dy u”'v on T (3.10)
v*v =0 on aQ € (0T} | (3.11)
u*(x,0) =up(x),  v*(x,0) =vpix) XE Q . (3.12)

where we suppose that uy> 0, v =0 in Qoi”" and uy=0, vy >0 in Qoe"t.

4. Cocluding remarks

We have considered the 2-component RD system for strongly competing species. In order to study the
dynamics of spatial segregation of two competing species, we have takes the spatial segregation limit in the
system, and have derived the corresponding free boundary problem which is quite similar to the classical two
phase Stefan problem. An essential difference with the classical Stefan problem is that the latent heat is

zero. Consider the free boundary problem (3.8)-(3.12) where (3.10) is replaced by

eV=-ad, u*v -d2u*v ~on T 4 (4.1)

where V is the normal velocity of the interface I' with asufficiently small positive paraemeter ¢, and let (u*e,
v*E) and 1"E be asolution of this prob-lem. This impies that the latent heat effect is included in the system.
W_ith (4.1)., we addvress.the‘ fol!owing quéstion: How is the relation between {(u*, v¥), I'} and {(u*e, v*e), I‘e}?
More defiﬁitely, how is the convergence of {(u*e, v*s), 1‘8} to {(u*, v*), I'} as e tendsto zero ? This

convergence problem has not yet proved, though numerical computation suggests that is plausible. Ifthis
convergence holds, we find that for small e and large b, the competition-diffusion system (2.1) can be
approximated by the classical two phase Stefan problem with reaction terms.

Inthis paper, we have restricted our discussion to the Neumann boundary conditions but the result is valid



39

for other boundary conditions as well.
Our method can be extended to the similar problem for more number of competing species. Let us show

one RD systems for three competing species which is described by
uy,=d4Auy + ry(1 -uq)uy - buyu, - Bcuug
Ugy = dzAu2+r2(1 -Uy)u, - abuyu, - eu,ug t>._o, XxE Q 4.2)
Ugy = dsAu3 + r3(1 -u3)u3 - CuylUg - Yeu,ly

where di' T b,c,e a, B, and vy afe positive constants. Of course, itis obvio_us that when u is identically

zero, the system reduces to the (1.5). The resulting limiting systems are classified into three cases:
() Only b is sufficiently large and the other parameters are of order O(1);
(i) Both b and c are sufficiently large and the other parameters are of order O(1);

(i) Allof b, c and e are sufficiently large and the other parameters are of order O(1).

Here we only demonstrate the limiting system of (4.2) for the case (i). One can expect that only uy and U,
are very strongly competing so that they exhibit spatial segregation, while ug is smoothly distributed in the

whole domain, though it competes with them. Let I';,(t) be aninterface which seperates two subregions
913(’[) ={x €Q, uy,ug>0 andu, =0} and st(t) ={x EQ, Uy ,uz >0 andu,=0}.

Then (u, ,u3)‘ and (u, ,us) respectively satiéfy the following RD systems for two competing species in

Q,(t) and Qza(t):

ugp=dqAuy +ry(1-uyuy - [‘30u1u3 _ t>0, x € Q1)
(4.3)

u3t=d3A‘u3+r3(1 -u:‘,‘,‘)tkl3 -c‘u1u3 t>0, x € 5213(t)

and

u2t=d2Au2+r2(1 -Up)u, - eUyUg t>0, x € Q1)
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 (44)
Ug, = dyAug + ry(1 -ua)u3 -yeu,uy ‘ t>0, x € 923(t).
The interface euqation is
u;=0=u, u; ECT 10, x € Tl ' (4.5)
and
where v is the outerward unit vector on the interface. The initial conditions are given by
u (0x) =upl) X € Q0 (=12 and  uz(0x)=ug,x) X E Q (4.7)
1200 = Topp- (4.8)

One finds that the free boundary problem derived from three species model is slightly different from the
classical Stefan problem arising in solidification. This just appears as the consequence of biological

problems. The analysis of anew Stefan problem (4.3)-(4.8) will be a future work for us.
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