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Abstract

We shall consider in this paper the problem of simulating flows over a rough surface
or flows with strong gadients near walls. We compare effective boundary conditions
on smooth surfaces obtained by domain decomposition and by asymptotic expansions.
Some numerical tests are presented.

1. INTRODUCTION

We consider the problem of simulating flows over rough surfaces or flows with strong
gadients. As many points must go into the mesh to resolve strong gradients such
simulations are expensive. This problem is as old as the Euler/Boundary layer decom-
position but it happens also in other circumstances :

- a badly polished flat plate or a surface with periodic ridges like the tiles of a re-entry
vehicle or the effect of trees and buildings on a meteorological flow.
- Turbulent boundary layers where the viscous part of the flow dominates.

The usual answer to the two problems is given by the law ¢f the wall :
+_ 1 +
vt =—logyT + 0
X

on a mean surface ¥ above the physical boundary, with a different coefficient 8 when
the surface is rough (see Cousteix(1990)). This formula is used tn establish a numeri-
cally useful nonlinear Frechet boundary condition :

u.s 1 1 Ou,
n=0, ——m—— — =log(6y/—]|=—|)+8=0,
wn du X og( uTii)n.l)+'

vr|gal

where vp is the turbulent viscosity.
Here we wish to show that it could be also derived from another generalized Frechet
condition :

ong = vp(Vu + Vul)n — pn = ¢(ju))u
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which comes from domain decomposition and has nothing to do with wall laws.

This work is an extension of Carrau-Le Tallec(1994) Mohammadi et al (1994) and
Achdou et al (1995).

The key idea is that when the solution near the rough boundary T is ”local” and known,
say u = f(z1,Z2,p) where z is the position in the domain and p is a parameter, then
to obtain a boundary condition on ¥ slightly above I' (assumed tangent to zo = 0)
one may differentiate f with respect to x5, the fast variable, and eliminate p between

the 2 equations.
6u _ . _ ; —1 ou
on ”f,z(x:p) = u = u(z, f,z (an’x))

2. ROUGH WALLS

Consider the Reynolds averaged Navier-Stokes equations with a turbulence model for
vr

uVu + Vp - V.(uop(Vu+ VuT)) =0 V.au=0

on a domain Q¢
[N .

potential flow

- -
e
- -

-
-

Domain decomposition: boundary ¥,

Figure 1.Domain decomposition of the flow over a rough surface

Following LeTallec (1991) Let us seek a solution by domain decomposition.
Let ¥ be parallel to I', 2 = Q, U Q;

Let u; be solution in Q; with u =v on X
Let u, be solution in 0, withu =von ¥

We have a solution to the problem if v is such that normal stresses match :
03N = 00.N

Now by definition of u;, we know that the solution is a function of v so its normal
stress on the upper wall is also a function of v :

oi;.n = F(v)
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and the continuity of ¢ gives the desired boundar condition on ¥
Tp. = F (uo)

The trouble however is that F is in general a nonlocal operator.

Periodic irregularities

For periodic irregularities ' becomes approximatively local, because the solution u;
can be found by translation of the solution u’ on a single cell problem with only
one irregularity at the lower boundary, periodic conditions on the vertical bounda-
ries and matching conditions v’ = v at the top boundary. Then this cell problem is
solved for all values of v and a table is made of vr(Vu; + Vul )n — p;n)|s versus v.

1.66440+00
6.65760400
1.49800+01
2.33010+01
3.1623a+01

S

Figure 2 :The cell proble2D Navier-Stokes eqs at Re = v~ = 50 (Gfem(1995)).
Remark

Notice that by the divergence theorem and Green’s theorem,
/ [vr(Vu + Vul)n —pn] = / [V.(vr(Vu + VuT)) - V]
o0, Q; ’

=/ V.(u@u)z/ uu.n =0
(o8 a9;

Therefore
- / [vr(Vu+ VuT)n —pn) = / [vr(Vu + VuT)n — pn)
N, )

So F(u)is also the drag of the rough surface per unit length. This means that tabula-
tions of F' could also be done experimentally.

3. VANISHING VISCOSITY : ANALYSIS BY ASYMPTOTIC EXPAN-
SION

Consider the stationary Navier-Stokes equations in a domain Q¢ with an oscillating
boundary with period € and viscosity 0(¢) :
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—veAu+uVu+Vp=f, V-u=0
ulage =0

In what follows the forcing term f can be replaced by a non homogeneous boundary
condition . The solution is seeked by the multiple scales expansion

u€ = u’(z) +5u1(: | )+€ u2( T) +

Let us assume that I'® = 90Q° converges strongly to I'® = 9Q° and that on the
oscillating part tends to a flat I'® (for the influence of the radius of curvature see
Achdou et al (1993). For clarity let us assume that the problem is bidimensional and
that I'C is on the line z5 = 0.
The solution u° of

—veAu+uVu+Vp=f, V-u=0

ulpgo = 0

does not approximate u® very well because the boundary condition is not satisfied on
Ie. ‘
A Taylor expansion of u® being

0 01 x
u(z1,0) = e +€——|pe +&°—
(1,0) = u[r sanlr+ €

on I = {z,25(z1)} we can correct u® by x°9ud/dn where x° is solution of a cell
problem in a semi infinite domain C of boundary 8C = SUW

—VAyXO + Vyno =0, V- x°=0

XCls = yael, Xx° y1 — periodic on W,  limy,400x® = C°

where Cj is the only constant for which x? exists. Note that we do not need a corrector
for Ouf/On because it is zero by the divergence equation.

Remark Note that the divergence equation implies that C = 0, because
O=/ Vy-xo=/ xo-nz/ x°-n—CY.
CNy2<m 8CNya<m yo=m

Finally notice that u® — x98u®/dn ~ u® — x%8u®/8n when z, >> €. So if we introduce
u! solution of

—veAu+uVu+Vp=f, V.u=0

00
u. S’ago + ECl gns = 0_, u.n]ago =0



46

the error 5
r* = uf(z) - ul(g) - e((3) - C) 5 a’j; (21,0)

P€=p€($)—p'1(x)—€(n°( ) - C°)——($1,0)

is likely to be small. In effect when the v1scosﬂ:y is of order 1 we can show (see appendix)

that the error is O(e%/2).
To compute the second order corrector we notice that on the oscillating boundary we

have ) -
1€° T3,20%u

€ —
: =y ( £ ) on?
So we need to correct it by x*(£)8%ui/0n? with x*,n! solution of

—vAX + V' =0, Vy-x'=0

—

xls=2el, x' y1 - periodicon W, limy,toox* = C"
9 Y2

Moreover 7€, p¢ satisfy the linearized Navier-Stokes equations with a right hand side
whose leading term is : '

el 3n) +(f6")(6—n) 55;]6

So we need another corrector x? solution of

0
—vAyX? + Vyn? = 61[X2 +y 6’;12] v, x=0

X’ls =0, x* y1 —periodic on W, limy, oo X’ = C?

Finaly to approximate u® we are led to introduce u? solution of

—veAu+uVu+Vp=f, V-u=0

o0 ou.s op

€
u.s+¢€ 1_6—71— +Cl( )2+Cl 65 = OlaQO, u.n =013Q0.

Example

Consider the case where the oscillating boundary does not oscillate but is just a flat
plate at a distance ¢ above the limit flat plate I'°. Then the cell width is zero so the
3 cell problems are 1D and they have an analytical solution :

1
X’ =1, x1=5, x2=0, (m*=uy2)

and the constants are C® = 1,C! = 0.5, C? = 0. The effective boundary condition

on u? is

us+€8u.s- € Op
' on  2v0s
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which is another form of the Taylor expansmn on the boundary mentionned before
since’ lgz = ¢ 0%u?/0n?.

4. NUMERICAL TABULATION FOR A WAVY SURFACES

Carrau (1992) and Morrisset (1995) tabulated the cell problem for a compressible flow

at high Mach number. We reproduced their simulations at low Mach number with
another code. The results are summarized in this table : :

He=10 000 wall y=0.01 y=0.05 y=0.1
tangent sitress -0.003179 -0.003512 -0.003115 -0.002876
n%magos%gss - 7.75155 7.93776 7.93790 7.93794

=
tangent stress -0.004627 -0.004872 -0.003931 -0.002728
normal stress -~ 1.75261 7.93822 7.93893 7.9390

BFe=100 000 '
tangent stress -0.004858 -0.005122 -0.004326 -0.002744
normal stress 175147 - 7.93654 ' 1.93776 7.93802

Ee=1000 000
tangent stress -0.003845 -0.003876 -0.004079 -0.003008
normal stress 7.75035 7.93501 1.93634 71.93653

Figure 4.This tabulation of the stress tensor versus the Reynolds number shows also
the independence of the mean stress with respect to height
The geometry and flow visualization are shown on figure 13 and 14 at the end of the

paper.

3.1 Test on a flat plate for laminar flow

The previous analysis should work even in the limit of a flat plate whose irregularities
tend to zero. Then the periodic cell becomes a vertical line and the computational
domain a half plane above the flat plate. So the cell problem is ob’camed by dropping
all tangential derivatives in Nav1er—Stokes €gs.

~v02iu+9sp = 0.
The solution is a parabolic profile when O;p is constant.

p o Y, Osp
= — Z (-2 =5)-

U=yt 6( + uly=s)

The relation between the normal derivative and itself is easy to find by differentiating

the above with repsect to y.

v  Osp.
u@nu+u5+ 26—0.

Notice that this boundary condition is the same as the second order condition obtained
above. Therefore Domain Decomposition yields a second order condition in this case !
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This boundary conditions has been tested for the flow over a flat plate for 2 values of
8,8 =0.01 or 0.1, with v = 0.003. (6t = § %’yiu—l =0.01,/106 0.02/9 = § x 0.1414 x-

103/3 = 506)

T ATATA YA TAT AN A AIrgpsiata
,é ;: et QLPODTAS
TR X
R J S
R S PR
PAVINITE0

4.5332e-0t
7.0517¢-01

5.03690-02
2.0148¢-01
9.5702¢-01

Figure 5 :Mésh & Navier-Stokes solution with u = 0 on a flat plate

5.0370¢-02
2.0148¢-01
4.5333-01

7.0517¢-01
9.5702¢-01

Figure 6 :Navier-Stokes solution with a laminar wall law and § = 0.01
3.79800-01
S5aredt

N 8.27660-01
9.7695¢-01

Figure 7 :Navier-Stokes solution with a laminar wall law and § = 0.01
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Figure 8 :Friction at the wall as a function of x

The numerical results show that it works for a y* < 0.5 which is much less than the
values used for turbulent boundary layers at Re=300 (i.e. ¥ =1/300, h =1, ueo = 1
where h is the height of the computational domain).

This small example also shows the limit of this wall law approach : it is a viscous
matching and it has not much to do with Prandtl’s boundary layer analysis.

We present also the result of a simulation on a rough flat plate by this method. It
amounts to study the dependency of the second order boundary condition with respect

to Cl
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.8153e-01
7671e-01
.7188¢-01
6706e-01
.6223e-01

Figure 10 :Level lines of up for C* =0.3
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Ploi of u_1 versus y: Influence of C*2
- C*2=03 ..Cr2=0
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Figure 11 : Vertical cross section of uy for 2 values of C?

Second order cond: sigma_n,s at y=b

No slip bdy cond: sigma_n,s at y=0.1 C*0 =1, C*1 = 0.5, C"2 = 0.7, eps = 0.1
0144 ; ]

> 0.02 + - -
] 0.015-F /"“\\fL ]
3 0.01 -enees {l : ]
b 0.005 - } ....................... .
] 0 . 3 1
] S . 3
-0.005 { } ;
7 0 1 2 3 4 5 6 7

Figure 12 :Skin friction o.n.s aty = 0.1 when the no-slip condition is used (left) and
at y = 0 when the second order condition is used with eps = 0.1

5. WALL LAWS AND LOW RE CORRECTIONS

5.1 Smooth surface
Let us apply the same idea to the k — € model with low Reynolds correction.

k2 .
HT=Cup— with D; = 0; +uV

1 2
E=;[Vu+ VuT |2 - 3V ul?
e 2_ k2

Ok
Dk — —=V . —+=-V.u)=c,—
¢ pV (uTVk)—l—k(k-l-BV u) C“EE
O¢ E 20 _
D;e pV-(uTV6)+e(czk+36“V-u)—c1kE

The LowR’eynoldé number corrections are -

¢, =fucu 1 =hiar ¢ = faca
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. 0 v VE
fu=(1-e °-°17y_ )(1+20 5k2)

f1=1+(005)3 fo=1-

We are in fact in the same situation as for the laminar flat plate : two scales, one due
to the strong gradients in the normal direction and the other associated with the other
gradients. Domain decomposition will give a boundary condition relating the velocity
and its gradient on a border at a small distance from the physical boundary.
As in the flat plate case there is no lateral oscillation so the cell problem is on a vertical
line, i.e. all tangential derivatives are drop. In the stationary case an analytical solution
is found ; it is the wall law when 5 < y’:— <50:

1 yu* + v Op
u*

xu*2 ds
Next eliminate u*, by differentiating the log law

1 Ou 1 1 Bp

w8y yx xu*0s

giving
Ou-s Op y? Bu s Op
ues = y(x o - D) log(L(x 2 - 2E)) + )
which, written at y = 9, gives the required boundary condition.

Usually gf is dropped because it is small compared with —g—z, but in Mohammadi-

Pironneau(1996) it is shown that this terms helps capture recirculations numerically.

The implementation of this idea has been done using the Reichart law rather than just
the log-law because it is valid up to the wall and it is more convenient for recirculation
zones where y* goes to zero.

+
ut = freichare(yT) = 2.5log(1 + ky™) + 7.8(1 - e~V /11 _ 3’1’1 e—0-33y7 ).

Our implementation of wall-laws for adiabatic walls, for instance, is in weak form
(finite element or finite volume approaches) where the following boundary integrals
appear in the momentum and energy equations ( (§,7) denotes the local orthogonal
basis for a wall node) :

(S.7)do
|

/ (@S)fido,

where S = (u+ p¢)(Vu+Vul — 2V.ul) is the Newtonian strain tensor. We decompose
S.7 over (§,7) :
S.7 = (S.7i.7)7A + (S.7.8).t.



52

In our implementation, the first term (Sp,) in the right hand side of these integrals is
computed explicitely and the following relations are used :

u.n =0,
0u.§
S7.5)§ = p——35,
(S7.8)5 = pr— =S,
e ou.s
UST = puy——1u.S,
on

where 01.5/0n is solution of the above relation. This implementation is more suitable
for recirculating flows because the direction of the flow is naturally taken into account.
For k and ¢, we use the following expressions :

2 3 2
0.2x(1 —
k: u‘r a’ E= }fl-.mzn(l,a-*—__f_(__g)—),
M K6 VCu

where “
Ur = sqrt?tlaﬂ'.é'/an]

+
and a = min(1, ¥5) reproduces the behaviour of k when § tends to zero. The distance
§ is given a priori and is kept constant during the computation. Of course, the pressure
correction vanishes with the pressure gradient and we recover the Reichart law.

5.2 Turbulent flow over a wavy surface
When the drag of a wavy surface is assumed proportional to u?, the domain decom-

postion approach’s answer to the same problem is, as we have seen :

Ou
—-I/T%I = c(vr)ulu|
" But the wall law.being valid at the matching interface this boundary condition could
also be used with u given by the law of the wall. It gives

u*? = c(vp)u?® = c(uT)u*z(}lz log 6t + )2

ie. B=clur) - —lilog 6t

So the effect of the roughness is to change the value of ¢(v7) hence to shift the value

of B bY Cwavy(vr) ™ = cpiar(vr) ™2
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APPENDIX : Stokes Flow by domain decomposition

For Stokes flow the mean flow away from the rough surface is found by

—vAWL +VpP =0, V-u'=0 in Q,

1
— v(x)0nu’ + p°n + guo =0on %, v =g

where the matrix x = {x!, x2, x3} has x* solution of
—-vAx+Vn=0, V.x=0,

with periodic conditions on the lateral boundaries, x = 0 on the lower boundary, and
on the upper boundary S of the cell domain ’

—vOpx* +n'n = E*, with E; =6

Because V.x = 0 we have that (x.n)|s = 0 so that u®>.n =0 on X.

The main result (Achdou-Pironneau (1994)) compares the exact solution u® with the
solution u°® above a mean surface ¥ with a Frechet boundary condition

llu® ~ wllae < ClellBsxllo,s + %)

where x is the solution of the cell problem which defines the constant in the Frechet
boundary condition. This result shows that the smooth artificial boundary ¥ should
be sufficiently far from the wavy boundary so as to have ||0;x|lo,s = 0(e?) which is
possible because x tends to a function independent of s at infinity.
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Figure 13.Mach lines and zoom of the center part for the flow over a rough boundary
which was used to compute the table of figure 4
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Figure 14.Mach lines and zoom of the recirculating part for the flow over a backward
step with k-epsilon modelling and wall laws with o pressure term. The second vortex
s captured with the wall law which includes a pressure gradient.
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