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Abstract: We consider the relation between the attractors for the simplified magnetic
B\’enard system(SMBS) and the Lorenz system(L). (SMBP) is a extension of (L), which
contains a parameter $\mathrm{Q}$ associated with the magnetic field. In the previous work we
showed the upper semiconvergence of attractors of (SMBP), $A_{Q}$ to that of (L), $\overline{A}$ in the
Hausdorff sense as $Qarrow \mathrm{O}$ . However the numerical computation of Lyapunov dimensions
showed they do not converge. We carried out the computation by the 4th order Runge-
Kutta method. In this talk we shall show the computation of dimensions by the spectral
collocation methods in the quadruple precision. We obtain the same results, i.e., the
fractal dimension does not converge.
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$0$ . Introduction
Controlling the chaotic phenomena is the very interesting and important problem both

in mathematics and engineering. The various differential systems derived from the phe-
nomena in the engineering have the chaotic attractors, which have finite fractal dimensions
[16].

We consider the attractors of the 2-dimensional simplified magnetic B\’enard system(SMBS)
[8, 9, 4, 5]. That is derived from the 2-dimensional magnetic B\’enard system as the exten-
sion of the Lorenz system(L) [12, 10, 8, 9]. We studied the relations of the attractors for
(SMBS) and (L) [5].

In $ 1 and $ 2 we introduce the magnetic B\’enard system and (SMBS) [2, 13, 14]. In $3
we summarizes the attractors for the systems and in $4 we will prove the theorem about
the Hausdorff $\mathrm{u}_{\mathrm{P}}\mathrm{p}\mathrm{e}\mathrm{r}-\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}$ -convergence of the attractors of (SMBS) to that of (L) as $\mathrm{Q}$

tends to $0[5]$ . In $5 we will show the numerical computations of Lyapunov dimensions
of attractors with various values of $\mathrm{Q}[11,5,15,17]$ . We used the spectral collocation
method with 11 collocation points in the quadruple precision [1, 3, 5, 6, 7].
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1. Magnetic B\’enard system
We consider in $R^{2}$ , an layer of a homogeneous, viscous and electrically conducting fluid

filled the region $0<x_{2}<1$ , limited by the surfaces $x_{2}=0$ and $x_{2}=1$ . The fluid layer
is heated from below in such a way that the lower plane is maintained at a temperature
$T_{0}$ while the upper one is maintained at $T_{1}(<T_{0})$ , where $T_{0}$ and $T_{1}$ are two constants.
Furthermore the layer is permeated by an impressed uniform magnetic field $H_{0}$ normal to
the layer. Then in the Boussinesq approximation the velocity $u=(u_{1}, u_{2})$ , the pressure
$p$ , the temperature $\theta$ of the fluid, and the magnetic field $h=(h_{1}, h_{2})$ are governed in the
region $0<x_{2}<1$ by

(1) $\frac{\partial u}{\partial t}+(u\cdot\nabla)u-\mathrm{p}m(h\cdot\nabla)h+\mathrm{p}_{m}(\frac{1}{2}\nabla|h|2)=\triangle u-\nabla p+\mathrm{R}\theta e+\mathrm{Q}\{\frac{\partial h}{\partial x_{2}}+\nabla h_{2}\}$,

(2) $\mathrm{P}_{m}(\frac{\partial h}{\partial t}+(u\cdot\nabla)h-(h\cdot\nabla)u)=-\overline{\mathrm{r}\mathrm{o}\mathrm{t}}$ rot $h+ \mathrm{Q}\frac{\partial u}{\partial x_{2}}$ ,

(3) $\mathrm{P}_{r}(\frac{\partial\theta}{\partial t}+(u\cdot\nabla)\theta)=\triangle\theta+\mathrm{R}u_{2}$ ,

(4) $\mathrm{d}\mathrm{i}\mathrm{v}u=0$ ,
(5) $\mathrm{d}\mathrm{i}\mathrm{v}h=0$ .

where $\mathrm{R}$(square root of Rayleigh number) $=\sqrt{\frac{g\alpha\beta d^{4}}{\kappa\nu}},$
$\mathrm{Q}(\mathrm{s}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{r}\mathrm{e}$ root of Chandrasekhar

number) $=\sqrt{\frac{\mu H^{2}d^{2}}{4\pi\rho\nu\eta}},$
$\mathrm{P}_{r}$ (Prandtl number) $= \frac{\nu}{\kappa},$ $\mathrm{P}_{m}$ (magnetic Prandtl number) $= \frac{\nu}{\eta}$ .

Here $g$ is the gravitational acceleration, $\alpha$ the coefficient of volume expansion,
$\kappa$ the thermal diffusivity coefficient, $\nu$ the kinematic viscosity, $\mu$ the magnetic permeability,
$\rho$ the density, $\eta$ the resistivity, $d$ the depth of the layer and temperature gradient $\beta=$

$\tau_{0-}T_{1}$

$\overline{d}$
. $e$ is a unit vector in the $x_{n}$ direction.

This is the perturbation system to the equilibrium state which is the pure conduction.
We supplement the above system with boundary conditions for the free surface and

impose a periodicity condition.

(6) $u_{2}(x,t)= \frac{\partial u_{1}}{\partial x_{2}}=0$ at $x_{2}=0,1$ ,

(7) $h(x, t)=0$ at $x_{2}=0,1,$ $t\geq 0$ ,
(8) $\theta(x, t)=0$ at $x_{2}=0,1$ , $t\geq 0$ ,

(9) $p,$ $u,$ $h,$ $\theta,$ $\frac{\partial u}{\partial x_{j}},$ $\frac{\partial h}{\partial x_{j}},$ $\frac{\partial\theta}{\partial x_{j}}$ are periodic in the $x_{1}$ direction

REMARK 1.1

(10) rot $u= \frac{\partial u_{2}}{\partial x_{1}}-\frac{\partial u_{1}}{\partial x_{2}}$ for every vector function $u$ ,

(11) $\overline{\mathrm{r}\mathrm{o}\mathrm{t}}\phi=(\frac{\partial\phi}{\partial x_{2}}, -\frac{\partial\phi}{\partial x_{1}})$ for every scalar function $\phi$ ,

(12)

2. simplified B\’enard system (SMBS) and the Lorenz system (L)
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The Lorenz system is derived from the $2-\dim$ B\’enard convection and the system (SMBS)
is derived from the $2-\dim$ magnetic B\’enard convection as an extension of (L).
Lorenz system:

(13) $\{$

$\dot{x}=-P_{r^{X+}}P_{r}y$ ,
$\dot{y}=Rx-y-xz$ ,
$\dot{z}=-bz+Xy$ .

Simplified magnetic B\’enard system:

(14) $\{$

$\dot{x}=-P_{r}X+P_{r}y-P_{r}Qw$ ,
$\dot{y}=Rx-y-xz$ ,
$\dot{z}=-bz+Xy$ ,

$\dot{w}=P_{r}P_{m^{1}}^{-}QX-P_{r}P_{m^{1}}^{-}w$ ,

where $= \frac{d}{dt’}$ and $P_{r},$ $P_{m},$ $R$ and $Q$ denote Prandtl, magnetic Prandtl, Rayleigh, and

Chandrasekhar numbers, respectively. $b$ denotes the aspect ratio of the roll.
Remark; If $Q=0$, then $w$ of (SMBS) is independent of other components, and three

other components $(x, y, z)$ are governed by the Lorenz system.
3. Attractors for (L) and (SMBS)

Both systems (L) and (SMBS) have global attractors $\overline{A}$ and $A_{Q}$ respectively. We
studied the relation between the attractors when $Qarrow \mathrm{O}$ , and obtained the following
result.

First we shall show that there exist absorbing sets for both systems.
We denote by $v$ and $\overline{v}$ , the following norms,

(15) $v^{2}=x^{2}+y^{2}+(z-P_{r}-R)^{2}+P_{m}w^{2}$ for (SMBS),

(16) $\overline{v}^{2}=x^{2}+y^{2}+(z-P_{r}-R)^{2}$ for (L).

Then we can obtain the following inequalities,

$\frac{d}{dt}v(t)^{2}$ $\leqq-2\min\{1, P_{T}, PP-1\frac{b}{2}m’\}rv(\iota)2+b(P_{r}+R)^{2}$ ,
(17)

$\frac{d}{dt}\overline{v}(t)^{2}$ $\leqq-2\min\{1, P_{r}, \frac{b}{2}\}\overline{v}(t)2+b(P_{r}+R)^{2}$ .

Hence if we define as follows

(18)
$\mathcal{U}$

$= \{(x,y, Z, w)|v^{2}<\frac{b}{\min \mathrm{t}^{1,P_{r},P_{r}}P_{\overline{m}}1b/2\}},(P_{r}+R)^{2}\}$
,

$\overline{\mathcal{U}}$

$=\{(x,y, z)|\overline{v}<2\overline{\min\{1,P_{r},b/2\}}(Pr+R)^{2}\}$ ,

then $\mathcal{U}$ , and $\overline{\mathcal{U}}$ are the absorbing sets for (SMBS) and (L) respectively.
Let us denote by $A_{Q}$ , and $\overline{A}$ , the attractors for (SMBS) and (L) respectively, then

they are obtained as the $\omega$ limit sets of the absorbing sets $\mathcal{U}$ , and $\overline{\mathcal{U}}$ .
(19)

$A_{Q}$ $=\cap \mathrm{C}1.\cup$ {$u(S)=(x(s),$ $y(s),$ $z(s),$ $w(s))|u(s)$ is a solution of (1), $u(\mathrm{O})\in \mathcal{U}$ } $.\}$

$\overline{A}$

$= \bigcap_{t\geq \mathit{0}}^{t\geq}O$ Cl. $\bigcup_{s\geq t}^{S\geq}$ {
$\overline{u}(S)t=(x(s),$

$y(S),\mathcal{Z}(s))|\overline{u}(s)$ is a solution of (2), $\overline{u}(0)\in\overline{\mathcal{U}}$ }.
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$u=(x, y, z, w)\in A_{Q}$ means that there exist the sequence $t_{1}<t_{2}<\cdotsarrow\infty$ and the
solutions $u_{i}(t)$ with initial values in $\mathcal{U}$ which satisfy $\lim_{iarrow\infty}ui(ti)=u$ .
4. Convergence of attractors

We studied the relation between the attractors when $Qarrow \mathrm{O}$ , and obtained the following
resuit. .

Define the projection $P$ of $\mathbb{R}^{4}$ onto $\mathbb{R}^{3}$ and the immersion $P_{0}^{-1}$ of $\mathbb{R}^{3}$ into $\mathbb{R}^{4}$ as follows,

$P(x, y, z, w)=(_{X},y, z)$ ,
$P_{0}^{-1}(x,y, z)=(_{X}, y, z, 0)$ .

Here we introduce the distance $d$ between $\overline{A}$ and $A_{Q}$ ,

$d(A_{Q}, \overline{A})=u\in A\sup_{qv\in}\underline{\inf}P1\lambda 0|u-v|$
.

REMARK 4.1 Above distance $d$ is a pseudo metric, so $d(A, B)=0$ means only $B\subset A$ .
If we set $\rho(A_{Q},\overline{A})=\max\{\sup \inf_{\overline{A},u\in A_{Q}v\in P_{0}}-1|u-v|,\sup_{v\in P_{0^{-1}}\overline{A}}u\in\inf_{Q}A|u-v|\}$

,

then $\rho$ becomes a metric between $A_{Q}$ and $\overline{A}$ , which is called the Hausdorff metric.
We obtained the following result with respect to $d$ .

Theorem
$A_{Q}$ converges to $\overline{A}$ upper semi-continuously in the Hausdorff sense as $Qarrow \mathrm{O}$ , i.e.

$d(A_{Q},\overline{A})arrow 0$ as $Qarrow 0$ .

REMARK 4.2 As the above remark, this theorem only means the following fact.
For any $\epsilon>0$ , there exists $Q_{e}$ such that

$N_{\mathrm{R}^{4}}(P_{0^{-}}1\overline{A},\epsilon)\supset A_{Q}$ $(0<Q<Q6)$ ,

where $N_{\mathrm{R}^{4}}(\cdot,\epsilon)$ is a $\epsilon$ neighborhood in $\mathbb{R}^{4}$ .
Sketch of the proof
(Step i) First estimate the fourth component $w$ by $Q$ .

For $u=(x, y, z, W)\in A_{Q}$ , we obtain

$|w|\leq C_{1}Q$ .

In particular for $u(t, u_{0}),$ $u0\in \mathcal{U}$ , and $t\geqq t_{Q}=P_{r}^{-1}P_{m}\log(1/Q)$

we have
$|w(t)|\leq C_{1}Q$ where $C_{1}=(1+ \frac{1}{\sqrt{P_{m}}})$ .

From the equation of $w$ , we obtain the following equality,

$w(t)=w(0)e^{-P_{f}}+P \overline{m}^{1}t\int_{0}^{t}P_{r}P_{m}-1Qx(s)e-P\mathrm{r}P\overline{m}^{1}(t-s)ds$ .

Because $\mathcal{U}$ is bounded in $R^{4}$ , we can get the estimate.
Here we must remark that this estimate means that when $Q$ converges monotonously

to $0$ , then $|w|$ also converges to $0$ .
So the immersion $P_{0}^{-1}$ which embeds the attractors $A$ into the hyperplane $\{w=0\}\subset R^{4}$

is well meaning.
(Step ii) Estimate of the orbits.
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Define $\delta_{Q}(t)$ which presents the distance between the orbits as follows.

$\delta_{Q}(t)=\sup_{u0\in^{u}}|u(t+tQ, u\mathrm{o})-P^{-}1\overline{u}(0t,Pu(t_{Q}, u\mathrm{o}))|$

Then there exist constants $C_{2},\mathrm{a}\mathrm{n}\mathrm{d}c_{3}$ which are independent of $Q$ , and satisfy the following
inequality,

$\delta_{Q}(t)\leqq C2^{\cdot}Qec_{3}t$

where $\overline{u}(t, Pu(t_{Q}, u_{0}))$ is a solution of (2) that satisfy Pu $(t_{Q}, u_{0})\in\overline{\mathcal{U}}$ when $t$ is zero.
Let $\delta_{Q}(t,u_{0})$ be defined as follows

$\delta_{Q}(t,u_{0})$ $=u(t+t_{Q})-P_{0}-1\overline{u}(t,Pu(tQ, u\mathrm{o}))$

$=(\delta x, \delta y, \delta_{Z}, \delta w)$

then $\delta_{Q}(t, u_{0})$ satisfies the following equation,

(20) $\{$

$(\delta..x)$ $=-P_{r}(\delta X)+P(r\delta y)-P_{r}Q(\delta w)$

$(\delta.y)$ $=R(\delta x)-(\delta y)-Z(\delta X)-\overline{X}(\delta Z)$

$(\delta.z)$ $=-b(\delta Z)+y(\delta X)+\overline{x}(\delta y)$

$(\delta w)$ $=P_{r}P_{m}^{-1}Q_{X}-PP^{-}1(rm)\delta w$

where $u(t+t_{Q})=(x, y, z, w),$ $P_{0}^{-}1\overline{u}(t,Pu(tQ, u0))=(\overline{x},\overline{y},\overline{z}, \mathrm{o})$ .
Hence the estimate can be easily verified from the estimate

$|\delta_{Q}(0, u0)|=|w(t_{Q})|\leq C_{1}Q$ .

(Step iii) From the definition of the $\omega$ limit set $\overline{A}$ , we can find $t_{\epsilon}$ which satisfies the
following relation,

(21) $N_{\mathrm{R}^{4}}(P_{0^{-}}1\overline{A},6)\supset N_{\mathrm{R}^{4(P_{0^{-1}}}}\overline{u}(t,\overline{\mathcal{U}}),$
$\frac{\epsilon}{2})$ for $t>t_{\epsilon}$ ,

where $\overline{u}(t,\mathcal{U})$ is the solution with initial value in $\mathcal{U}$ .
(Step iv) Take $Q_{\epsilon}= \frac{\epsilon}{4}C_{2}-1e-C_{3}t_{e}$ , then for any $Q<Q_{\epsilon}$ , there exists $t_{\epsilon,Q}$ such that

(22) $N_{\mathrm{R}^{4}}(u(t,u),$ $\frac{\epsilon}{4})\supset\omega(\mathcal{U})=A_{Q}$ for $t\geqq t_{\epsilon,Q}$ .

(Step v) Since $\mathcal{U}$ is positively invariant with respect to $S_{Q}(t)$ , we infer
for $t>t_{\epsilon}+t_{\epsilon,Q}+t_{Q}$ ,

(23) $S_{Q}(t)\mathcal{U}=S_{Q}(t_{\epsilon}+t_{Q}+(t-t\epsilon-tQ))u\subset S_{Q}(t_{\epsilon}+t_{Q}))\mathcal{U}$.

So from the estimates of $\delta_{Q}(t_{\epsilon})$ , and the property $PS_{Q}(t_{Q})\mathcal{U}\subset\overline{\mathcal{U}}$ , we obtain the following
estimate

(24) $N_{\mathrm{R}^{4}}(u(t_{\epsilon}+t_{Q},\mathcal{U}),$ $\frac{\epsilon}{4})\subset N_{\mathrm{R}^{4}}(P_{0}-1(\overline{u}t_{\epsilon},\overline{u}),$ $\frac{\epsilon}{2})$ .

Thus from (22), (23) and (24), we obtain

$A_{Q}\subset N_{\mathrm{R}}4(P^{-1}\overline{A}0’\epsilon)$ .

5. Numerical Computation of Lyapunov dimensions
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$-\mathrm{Z}9$ $-19$ $\mathfrak{g}$ IS Z9
$\mathrm{x}$

Figure 1. Projection of the attractor $A_{Q},$ $Q=0.5$ .

$-\mathrm{Z}9$ $-19$ $\mathfrak{g}$ $10$ Z9
$\mathrm{x}$

Figure 2. Projection of the attractor $A_{Q},$ $Q=0.1$ .
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$-\mathit{2}9$ $-1\emptyset$ $\mathfrak{g}$

$\mathrm{x}$

1S 29

Figure 3. Projection of the attractor $\overline{A}$ .

We showed the theoretical result in the previous section, however it is only the partial
result. To know the difference between the attractors of the both systems, we shall study
the numerical convergence of the fractal $\mathrm{d}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{S}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}[1,16,17]$. We made the numerical
computation of fractal dimensions of both attractors as $Qarrow \mathrm{O}$ . There are three kind of
fractal dimensions of the attractors used as the characteristics of the chaotic $\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{S}[4]$ .
Among them we use the Lyapunov dimension as the fractal dimension of them. because
both attractors are derived from the ordinary differential systems.

The chaotic structure is very subtle, so the calculation of the dimensions demands both
the delicate computations and the higher accuracy.

Table 1. Lyapunov dimension( double precision).

Figure 1, 2 and 3 are the projections of the attractors computed by the 4-th order Runge-
Kutta method. It seems that $A_{Q}$ converge $\overline{A}$ continuously. However by our former
computations using the fourth order explicit Runge-Kutta method with time discrement
$\Delta t=10^{-3}$ in the double precision, dimensions appeared discontinuous as $\mathrm{Q}arrow \mathrm{O}$ . So we
must calculate in the higher order accuracy than the former one.

Because of the reasons above, we adopt the spectral collocation method with quadruple
precision using the Shimada-Nagashima’s method to calculate the Lyapunov dimensions.

For our computations we shall use the following fixed value as the non-dimensional
numbers, $(\mathrm{P}_{\mathrm{r}}, \mathrm{P}_{\mathrm{m}}, \mathrm{R}, \mathrm{b})=(10,5,25,8/3)$ . We made the computations using the system
(L) for the value $\mathrm{Q}=0$ and the system (SMBS) for the values, $\mathrm{Q}>0$ respectively.

By the above consideration, we should adopt the spectral collocation method(SCM).
In this method we can easily change the order of precisions by changing the numbers of
collocation points.
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Table 2. Lyapunov dimension by SCM with 11 $\mathrm{p}\mathrm{t}\mathrm{s}$ (quadrup precision).

$\ovalbox{\tt\small REJECT}_{5011}\mathrm{Q}1000-210^{-}30$

$\mathcal{L}_{d}$ $2.21$ $2.38$ $2.41$ $2.41$ $2.41$ $2.06$

6. Conclusion
We investigate the convergence of attractors for simplified magnetic B\’enard system(SMBS)

as $\mathrm{Q}$ tends to $0$ . Analytically we proved that attractors for (SMBS) converge to that of
Lorenz system in the sense of Hausdorff upper-semiconvergence.

To study the full convergence of the attractors, we carried out the numerical computa-
tions of Lyapunov dimensions of them in both double and quadruple precision arithmetic.

The numerical results show the discontinuity of the dimensions as $\mathrm{Q}$ tends to $0$ .
It is important to study the convergence of attractors both by the analytical investiga-

tion and by the numerical computation simultaneously.
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