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Parallel computation of interfacial dynamics
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Abstract: Parallel computers become available now in a lot of research institutes and they
will take the most important part in scientific computation instead of vector computers in
near future. jFrom theoretical point of view, on the other hand, the domain decomposition
method has been carefully studied. Under this situation, we planed to develop a parallel
computation scheme for reaction-diffusion phenomena based on the domain decomposition
method and a preconditioned conjugate gradient method.

1 Introduction

We are concerned with the pattern evolution far from equilibrium, and treat of the dy-
namics of sharp transition internal layers arising from reaction-diffusion systems. Reaction-
diffusion systems have been utilized for describing various nonlinear phenomena and have
contributed to understanding the mechanism of pattern formation in wide fields of natural
sciences. Many mathematicians have developed advanced analytical tools for studying the
pattern evolution and for tracking its asymptotic behavior. Rigorous treatments, however,
are not sufficient for this purpose except a few cases. It is hard to extract essential features
of layer dynamics by investigating the full system of nonlinear equations in mathematically
rigorous way.

One of reasonable approaches is to track the pattern formation and evolution by numerical
simulation using high speed computers. You may find completely new behavior of solutions
through numerical computation. You may also find a new rigorous approach and get a
method of proof by checking numerical results obtained by computer simulation.

Parallel computers become available now in a lot of research institutes and universities.
Because of their potential for both high-performance and cost-effectiveness parallel comput-
ers will attract much more attention of researches, and they will take the most important
part in scientific computation instead of vector computers in near future. ;From theoreti-
cal point of view, on the other hand, the domain decomposition method has been carefully
studied. Under this situation, we planed to develop a parallel computation scheme for a
system of reaction-diffusion equations based on the domain decomposition method and a
preconditioned conjugate gradient method.

1This work is supported in part by J oint Research Center for Science and Technology, Ryukoku University.
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2 Numerical computation of reaction-diffusion systems

In the present paper, we deal with the following general type of reaction-diffusion systems
in two-dimensional space: -

% = d,Au + f(u,v)

inQCR?*and t >0, (2.1)
ov
5 = d,Av + g(u,v)

where Q is a bounded domain, A denotes the Laplace operator, d, and d, are diffusion
coefficient of u and v, respectively. The nonlinear terms f(u,v) and g(u,v) express the
reaction effects between v and v. The unknown variables u(t,z,y) and v(¢,z,y) stand for
the density of biological species in a case and the density of chemical substances in another
case. So the homogeneous Neumann boundary condition

Ou Ov

— =0 and

n n =0 on 0N (2.2)

is suitable for the unknowns in many models, where n denotes the unit outer normal vector

on the boundary 99 of 0.

Patterns are formed by a delicate balance between diffusion effects and reaction dynam-
ics, and the time increment At may play a crucial role in the numerical computation for
some reaction-diffusion systems. In fact, subtle patterns like traveling breathers ([3]) are
reproduced only for a very narrow range of A¢. By this reason many researchers prefer the
implicit approximation for the diffusion terms, and choose the explicit one for the nonlinear
reaction terms to avoid unpredictable iterations:

1
E(u”+l —u") = d,Au™ + fug,v,)

inQCR?*andn=0,1,---. (23)
i(v"+1 —v") = d,Av"tY 4+ g(up,v,)

Thus the numerical computation of (2.1) with (2.2) is to solve a sequence of the following
Helmholtz type equations subject to the zero-flux boundary condition:

u—dAu = f(z,y) in Q, g—z =0 on 0. (2.4)

3 Domain decomposition method

There are two types of parallel computations for (2.4):

(1) one discretizes (2.4) by the conventional finite element method, finite difference method
or boundary element method, and devises a parallel code solving the resulting system
of linear equations, '
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(2) one derives a new formulation of (2.4) that permits to devise an effective parallel algo-
rithm easily.

A parallel code of type (1) and its corresponding original serial code give the same results
of course, however, numerical solutions of parallel algorithm of type (2) are not always the
same as those obtained by a conventional serial scheme. In this article, employing the non-
overlapping domain decomposition method, which is a typical approach belonging to the
type (2), we propose a parallel computation scheme for (2.4).
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Figure 3.1: Domain decomposition into 9 non-overlapping subdomains

We explain our parallel computation scheme for (2.4) by assuming () to be a rectangle for
simplicity. We decompose § into N non-overlapping (rectangular) subdomains as shown in
Figure 3.1. The closure of additional boundary of sub-rectangle ™ contained in the interior
of (1 is denoted by I'* = closure of (3Q™ \ ), m =1,---, N. We put

E={(m,n):m #n, Q™ and Q" have the same side},

and denote internal interfaces between sub-rectangles by I'™* = I'™ N I, (m,n) € Z.
The decomposition of domain does not enable us to consider (2.4) independently in each
subdomain. The decomposition imposes artificial boundary conditions on internal interfaces,
but it increases very much the independence level of computation in subdomains nevertheless.
Adopting fluxes of u(z,y) as unknown boundary data ([4]), we define the following weak form
of (2.4) in our domain decomposition method: -
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Find v™ € H'(Q2™) and \™ € H-Y*(I"™"), m =1,---,N and (m,n) € E,
such that '

/ (Mo + dVum Vo)~ Y Amngm — /Q o v e HYQ™),

(mn)ez "
m:l,...,N, (3.1)
/ (um . un)umn =0 V#’mn € H—1/2(an), (m7n) c E,
AT 4 AP = () on ™7, (m,n) € E.

Here, n™" is the unit outer normal vector on the interface I'*" with respect to 2™ and
m
AT =d aumn is the flux of u(z,y) on I'"™" to be sought, (m,n) € =. The first equation in
(3.1) is the weak form of (2.4) in each subdomain Q™. The second one requires the continuity
of u(z,y) on I'"™" and the third one states only that n™" and n™" are in opposite direction.
Introducing an orthogonal lattice onto the rectangle ) and adding diagonal lines, we
decompose each subdomain 2™ into finite elements (triangulation of Friedrichs-Keller type).
Every finite element is a right triangle having sides parallel to the z- and y-axes. The
unknown function u™ is approximated by a piecewise linear continuous function u}* on 2™,
m = 1,---,N, and the flux A™" is also approximated by a piecewise linear continuous
function A" on I'™*, (m,n) € =. In Figure 3.2 for instance, @ expresses the lattice point
where uf* or AJ"" has its value freely. We have to take a special care for lattice points
corresponding to cross-points of sub-rectangles brought by the domain decomposition, that
is,

(*) at every cross-point I""?? = I'"* NI NI? N7 (n™" = n* and n™ = n™), three of
Apm  ART, ARt and A} have their values freely but exactly one of them has to take the
‘same value as that standing its opposite side.

At the cross-point I''?*® = T*'NT2NT*N T in Figure 3.2 for instance, A}%, A2® and A;° have
their values freely, however, A\}* has to take the same value as A?*. This restriction is derived
by noting the fact that all of u}, u?, u} and u} have the same value at I''?* if and only if

three of the following equalities hold:

u}L(I\1245) — u}21(111245), u}2z(1-\1245) — uZ(F1245),
U}L(I\1245) — u;ll(l-wl245) -a,nd uz(rl245) — ui(rl245)'

We also note that by this treatment the coefficient matrix BRAT'RTBY in (5.1) becomes
positive definite. .

Let Xx(D), D = Q™ and D = I, m = 1,---,N and (m,n) € =, be the space of
piecewise linear continuous functions on D, and denote the mass lumping operator by ~.
Then, our finite element scheme for (3.1) is define by



72

Find up’ € X,(2™) and A7 € X(I"™"), m=1,---,N and (m,n) € E,
such that ‘ ' ‘

/ﬂm(ah o+ dVUPVOr) - Y Amngm — /Qm fitp Yor € Xa(Q™),

(mn)eg ' T™"
m=1,---,N,
(3.2)
[ @ =@ =0 Vupm e XiT™),  (m,n) €5,
Am g Amm = on I'™n, (m,n) € E,

restrictive condition on AJ**’s corresponding to (*).
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Figure 3.2: Nodal points for u}* and A\7*"

The last condition in (3.2) may look curious, however, we obtain:

Proposition 3.1 (1) The problem (3.2) has a unique solution {uf', A7 }n=1....N; (mm)e=-
(2) Let up(P) = up*(P) for P € Q™. Then uy is the solution of the conventional finite
element approzimation: '
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Find uj, € X3(Q) such that

] ' (3.3)
/Q(ﬁhfih +dVupVu,) = /th'l_’h Vyh € Xin(0).

Although solutions of a parallel code of type (2) are not the same as those of (3.3)
in general as stated at the beginning of this section, Proposition 3.1 holds for (3.2) since
(3.2) is conforming in the sense that the meshes match at subdomains’ boundaries. On
the other hand, solutions do not always agree between a conventional serial scheme and a
non-conforming domain decomposition method, like the mortar element method ([1]) which
has the advantage to permit non-matching non-overlapping finite elements at interfaces of
subdomains.

4 Matrix representation

Denoting the lumped mass matrix and the stiffness matrix in Q™ by M,, and K,,,
respectively, we put A,, = M,, + dK,,, m = 1,---, N. For (m,n) € Z the lumped mass
matrix on I'™" is denoted by —B,,.,, and R,,,, is the matrix representation of the restriction
operator Ry, : X4(Q0™) — L2(I'™") defined by R (P) = 5*(P) for P € ™. We thus
obtain the following matrix representation of (3.2):

Find vectors U™ and A™*, m =1,---, N and (m,n) € Z, such that

A, U™+ Z(m,n)ea RmefmAm” =M, F™, m=1,---,N,
an(R’m"Um - anUn) = 07 (m> n) € Ea (41)
A™ 4 AT = 0, (m, n) €z,

restrictive condition on A™"’s corresponding to (*).

Here, U™, A™" and F™ are the matrix representation of uy', AP and the restriction of f
on (1™, respectively. We note that both M,, and B,,, are diagonal by virtue of the mass
lumping. We fix a subset Zo of = so that for each (m,n) € = exactly one of (m,n) and
(n,m) belongs to =, and denote by A the column vector consisting of A™", (m,n) € Z,. We
also introduce the diagonal matrix M = (My, - , Mn)T and the following block diagonal
matrix A (one block per subdomain) and column vectors U and F:

A, U! !
, U=| ° and F=

Ay uvN FN
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Then (4.1) can be rewritten as
Find vectors U and A such that

AU 4+ RTBTA = MF, BRU =0 (4.2)

restrictive condition on A’s corresponding to (*).

In the case where the rectangle { is decomposed into four rectangles as shown in Figure 4.1
and A is fixed as A = (A'? A2 A3 A*!)T| the matrices R and B are given respectively by

[ Ry, \
23
R34
_ Ry
R = Ry and
R43
\ Ry )
B12 -—B12
B23 _B23
B =
B34 _B34
B41 _B41
34
4
Q r Q’
41
r
23
r
Q
1 2
Q 12 Q

Figure 4.1: Domain decomposition into 4 subdomains
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5 Preconditioned conjugate gradient method

Rewriting the first equation in (4.2) as U = A™}(MF — RTBTA) and substituting this
into the second one, we obtain the following system of linear equations with respect to A
alone: :

BRA'RTBTA = BRAMF,
. (5.1)
restrictive condition on A corresponding to (*).

Our scheme solves the linear system (5.1) by a preconditioned conjugate gradient method
on a parallel computer. Let us explain our preconditioner here. In the case of the domain
decomposition in Figure 4.1 for instance, RARY is expressed as

A ' Ajz4 \
Az Aaa

RART =

\ A142 A144

where A,.; = R,..A.RT,. We construct a preconditioner by noting (5.2). For m =
1,---,N let A, = (&;) be a matrix obtained by deforming A,, = (a;;) as follows:

- if a row or column number : corresponds to a cross-point produced by the domain decom-
position, then we put &; = a;; and a;; = a;; = 0 (2 # j),

- if a row number ¢ corresponds to a vertex belonging to I'™\ {cross-points}, then we put

@; = a;; + )_;a;j, where the summation covers column numbers j corresponding to
vertices in Q™ \ ['™.

We thus introduce a block diagonal matrix A (two blocks per internal interface I'™") consist-
ing of A ppn = RmnAmRz;n, (m,n) € Z, and utilize A" asan approximation of RA_IRT
in the precondition process in our scheme. For the domain decomposition in Figure 4.1, A

is given by |
A. = (Alzg A233 A344 A411 A.2]_1 ‘&322 A433 A144) (blOCk diagonal), (53)
which approximates (5.2) in some sense.

A usual algorithm of preconditioned conjugate gradient method for (5.1) is stated as
below:

(parallel computation) solve the system of linear equations AG = MF
(parallel computation and data communication) calculate g = BRG
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(parallel computatlon and data communlcatlon)

solve BA™ BTy g and calculate the inner product yZg
(parallel computation) give the initial guess Ag
(data communication and parallel computation)

solve the system of linear equations AUy = MF — RTBTA,
(parallel computation and data communication) calculate rg = BRUj
(parallel computation and data communication)

solve BA_IBTpO = 19 and calculate p = pIr,
for k=0,1,2,--- until p < ey’ g
(e : a fixed positive constant giving the stopping criterion)
begm , : :
(data communication and parallel computatlon)
solve the system of linear equations AW = RTBTp,
(parallel computation and data communication) calculate ¢ = BRW
(data communication) calculate = pfq and put a = p/6
(parallel computation)
calculate Ag4y = Ax + apy, k41 = 1 — aq and Uk+1 = U — aW
(parallel computation and data communication)
solve BA™'BTs = Tky1, calculate p = sTryyy and f = p/p, and put p = p
(parallel computation) calculate py,, = s+ f8p;
end

In the procedures, one needs to take care of the restrictive condition on A corresponding to

(*) in Section 3 only when one solves the linear system BA—IBTP = r, which has a unique
solution due the restrictive condition. The above algorithm, however, requires frequent data
communication between subdomains. We note that the inner product pTr equals to pT¥ if
p = BTp and r = Bf ([2]). By using this feature, we can reduce very much the frequency
and amount of data communication between subdomains. The final form of our algorithm
is now glven by

(parallel computation) solve the system of linear equations AG = MF
(parallel computation) calculate g = RG
(parallel computation and data communication)

solve BA~ g Bg and calculate the inner product g7 g
(data communication) give the initial guess Ay and calculate AO =BTA,
(parallel computation) solve the system of linear equations AU, = MF — RTA,
(parallel computation) calculate ¥o = RUj :
(parallel computation and data communication)
solve BA—lf)O = B, and calculate p = pl¥,
for k =0,1,2,--- until p < g7g
' (€ : a fixed positive constant giving the stopping criterion)
begin
(parallel computation) solve the system of linear equations AW = R”p,
(parallel computation) calculate § = RW
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(data communication) calculate § = pf § and put o = p/6
(parallel computation) v
calculate [\k+1 = Ay + apy, tk41 =k —ag and Uy = Uy — aW
(parallel computation and data communication)
solve BA™'§ = Biy1, calculate p = §T¥%,, and 8 = p/p, and put p =
(parallel computation) calculate Py, = § + Bp;
end :
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