
Mesh Adaption and Automatic Differentiation for
Optimal Shape Design

Bijan Mohammadi
INRIA, BP 105, 78153 Le Chesnay, France

Bijan.Mohammadi@inria.fr

Abstract
A new approach for optimal shape design based on a CAD-free framework for shape and

unstructured mesh deformations, automatic differentiation for the gradient computation
and mesh adaption by metric control is presented. The CAD-free framework is shown
to be particularly convenient for optimization when the mesh connectivities and control
space size are variable during optimization. Constrained optimization for transonic regime
has been investigated.

Keywords: Shape Design, Unstructured Mesh Adaption, Automatic Differentiation.

1 Introduction
Local mesh adaption by metric control is a powerful tool for getting mesh independent
results at a reduced cost [1, 2, 3]. However, mesh adaption has never been used in opti-
mization procedure because it implies a change of the desi $g\mathrm{n}$ space and mesh connectivities
after each adaption and this is difficult to take into account. Moreover, these procedures
are not differentiable at all. Therefore, optimization is usually performed on meshes with
fixed connectivities and on a given control space (i.e. no control parameters are created
during optimization). However, as for direct problems, the need for adapted meshes is
clear in design processes.

The aim of this paper is to show how to couple mesh adaption and shape optimization
tools. Here, not only the mesh in the computational domain, but also the number and
repartition of the control parameters over the shape will change during optimization.
Therefore, general shape and unstructured mesh deformation tools $\mathrm{a}\mathrm{l}\cdot \mathrm{e}\mathrm{n}\mathrm{e}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{S}\mathrm{a}\mathrm{l}\backslash \mathrm{y}$. In
particular, these tools have to be as much as possible CAD-free, in the sense that: the
only geometrical $entit?J$ available during $optimi_{\sim}^{\sim}ati_{\mathit{0}}n$ shonld be the mesh. Another reason
which j ustifies this requirement is that CAD-based shape deformation tools $\mathrm{a}\mathrm{l}\cdot \mathrm{e}$ quite
complicated to use and also difficult to take into account when evaluating the Jacobian.
In [4] we showed that we can consider all the mesh points on the body (in both 2 and
$.3\mathrm{D})$ as $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{l}_{1}$) $\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}_{\mathrm{S}}$ as far as we preserve the initial local regularity of the shape during
the design process. This makes possible and easy to consider all kind of shapes.

As we use a $\mathrm{g}_{1\partial \mathrm{d}\mathrm{i}\mathrm{e}\mathrm{n}}\mathrm{t}$ method in our shape optimization, it is necessary to have a
good $\mathrm{e}\mathrm{v}\mathrm{a}1\iota\iota \mathrm{a}\{\mathrm{i}_{0}11$ of the Jacobian of the ’

$\mathrm{c}\mathrm{l}\mathrm{i}\mathrm{S}\mathrm{C}\mathrm{l}\cdot \mathrm{e}\mathrm{t}\mathrm{e}$

’ cost function with respect of control

数理解析研究所講究録
989巻 1997年 78-91 78

parameters. It is clear that if the number of control parameters is large, an adjoint
method is necessary $[5, 6]$. But classical adjoint methods are often built in continuous
level, after a linearization of the governing equations, and do not take into account for the
inconsistencies of the numerical schemes (like numerical dissipation). In this $\mathrm{w}\mathrm{o}\mathrm{r}\mathrm{l}\backslash ’$, we use
automatic differentiation in reverse mode $(\mathrm{A}\mathrm{D})$ to produce the Jacobian of the discrete
cost function. Hence, the non-consistencies of the $\mathrm{n}\mathrm{u}\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{r}\mathrm{i}_{\mathrm{C}}\mathrm{a}1$ schemes are naturally taken
into account in the Jacobian. Moreover, the cost of this evaluation is independent of the
number of control parameters as in a classical adjoint method. Using this approach, we
have studied [4, 7, 8] the impact of using different gradients based on different numerical
fluxes (Roe and Osher with and without a MUSCL type second order reconstruction
[14, 17, 15] $)$ used for the solution of the Euler equations, on the optimization procedure.
We also $\mathrm{s}\mathrm{h}\mathrm{o}\backslash 1^{\cdot}\mathrm{e}\mathrm{d}$ that this approach does $\mathrm{n}\mathrm{o}\grave{\mathrm{t}}$ suffer from a change in the nature of the
equations (from parabolic to hyperbolic). Viscous turbulent configurations have also been
considered by tacking into account of a $k-\epsilon$ two-equation turbulence model [9] and special
wall-laws (including pressure and convection effects [11, 10]) in the Jacobian. We noticed
that in an optimization procedure involving mesh deformation, wall-laws are more suitable
than low-Reynolds modeling (i.e. solving the flow up to the wall) as this former approach
requires much finer meshes for which conformal mesh deformation are hard to achieve.
In particular, we showed that once the difficulties coming from the nonlinearities of the
operators treated, it is easier to perform optimization for a turbulent flow configuration
than for the corresponding inviscid flow (i.e. at the sanle Mach number).

As this work includes several tools, only a short description of each of them is given. The
governing equations and the flow solver are described in section 2. Section 3 is devoted to
the shape and mesh deformation tools. A short description of our mesh adaption approach
is given in section 4. Our adaptive optimization algorithm and related details including
the Jacobian $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{u}\mathrm{p}\mathrm{U}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ by AD in reverse mode are described in section 5. Section 6
shows various results of adaptive shape optimization fronl transonic regime over airfoils.

2 Flow equations and solver
We denote by $J(x, U(X))$ the cost function we want to ninimize under geometric and
aerodynanlic constraints. Here, x indicates the geometrical description of a configuration
and the flow pattern $(U(x))$ around this shape is the solution of the steady Euler system
of fluid dynamics in conservation form:

$\nabla.(F(U))=0$, (1)

where U is the vector of conservative variables (i.e. $U=(\rho,$ $\rho\tau\iota\rho(arrow,C_{v}T+\frac{1}{2}|\vec{u}|^{2}))t$) and F

represents the advective operator. This system has 4 equations in $2\mathrm{D}$ and the system is
closed using the equation of state $p=p(\rho, T)$. For seek of simplicity, we only consider the
Euler equations but the extension is already available for viscous turbulent flows $[4, 7]$.

The flow solver is based on a $\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{e}-\backslash " 01_{11}\mathrm{m}\mathrm{e}- \mathrm{G}\mathrm{a}\mathrm{l}\mathrm{e}1\backslash \mathrm{k}\mathrm{i}\mathrm{n}$ approach on $\iota\iota \mathrm{n}\mathrm{S}\mathrm{t}\mathrm{l}\cdot n\mathrm{C}\mathrm{t}\iota \mathrm{l}\mathrm{r}\mathrm{e}\mathrm{C}\mathrm{l}\mathrm{t}\mathrm{l}\cdot \mathrm{i}\mathrm{a}\mathrm{l}\mathrm{l}-$

$\mathrm{g}_{11}1\mathrm{a}\mathrm{r}$ meshes ($\mathrm{f}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{h}\mathrm{e}\mathrm{d}\mathrm{l}\cdot \mathrm{a}$ in $3\mathrm{D}$). A Roe [14] approximate Riemann solver has been used
together $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}-\backslash \mathrm{I}\mathrm{I}\mathrm{T}\mathrm{S}\mathrm{c}^{1}\mathrm{L}$ reconstruction and Van Albada limiters [15]. The time $\mathfrak{c}1\mathrm{e}_{1}$) $\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}$

79

equ-.ation
$\frac{\partial U}{\partial t}+\nabla.F(U)=0$,

is marched in time to a steady state. Our time discretization is based on a 4-stage Runge-
$\mathrm{I}\nwarrow^{r_{\mathfrak{U}}}\mathrm{t}\mathrm{t}\mathrm{a}$ scheme. Inflow and outflow boundary conditions are of characteristic type [16]
and for outflow boundaries care has been taken to correctly treat subsonic $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{f}\mathrm{i}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}_{011}\mathrm{s}$.
More technical details can be found in $[12, 13]$.

3 Shape and mesh deformation tools
We describe the set of tools needed for shape and mesh deformation from a variation of
control parameters $(x_{c}(n_{c}))$:

$\delta x_{c}arrow\delta x_{w}arrow\delta x_{m}$,

where $x_{w}(n_{w})$ denotes the discretization points on the geometry and $x_{m}(l\mathrm{V})$ the internal
mesh nodes.

For $2\mathrm{D}$ applications, control points are usually fitted by splines. Splines have two
features:

1) They permit $n_{c}<<n_{w}$.
2) They smooth the variations of control points when propagating to body discretization

points.
But in this work, following the solution (through a local metric), $\mathrm{t}\mathrm{l}\mathrm{l}\mathrm{e}$ control space

changes during optimization as points may be created or removed on the body. $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{f}_{0}1^{\cdot}\mathrm{e}$,
the positions of the points have to be redefined after each adaption over the shape. Of
course, this is possible in $2\mathrm{D}$ but much lnore difficult in $3\mathrm{D}$. In all case, this increases the
difficulty by introducing another layer in the adaptive optimization. Moreover, general
$3\mathrm{D}$ surface splines are quite complicated to handle, especially on unstructured meshes. To
avoid $3\mathrm{D}$ difficulties and reduce the dependencies between two adaptions, we $\mathrm{i}\mathrm{n}\mathrm{t}_{1\mathrm{O}}.\mathrm{d}_{11}\mathrm{c}\mathrm{e}$

the following general framework for shape deformation in 2 and $3\mathrm{D}$:
1. All the nodes on the shape are control points $(i.e. n_{c}=n_{w})$.
2. To avoid oscillations, a smoothing opemtor is defined over the shape. This can be,

for instance, a few ’local ’ Jacobi $itet^{\backslash }ati_{\mathit{0}}ns$ to solve the following system:

$(I-\vee C\triangle)\delta_{\tilde{X}=}w\delta X_{w}$, (2)

$whe\uparrow\cdot e\delta.\tilde{\mathrm{t}}w$ is the smoothed shape variation for the shape nodes and δx_{w} is the variation
given by tlle $optimi_{\sim}^{\sim}ation$ tool. By ’local’ we mean that if the predicted shape is locally
smooth, it rernains unchanged during this step.

In the past, we used this framework for optinlal shape design in 2 and $3\mathrm{D}[8,7,4,29]$ for
cases with fixed connectivity and control space. $\mathrm{t}\prime \mathrm{V}\mathrm{e}$ showed that configurations involving
several thousands of control points can be easily treated.

The importance of the smoothing step above can be understood by the following argu-
ment:

$1\prime \mathrm{V}\mathrm{e}$ want $\mathrm{t}\mathrm{l}$} e variation $\delta x_{w}\in C^{1}$ (Γ) , if Γ designs a $1\mathrm{n}\mathrm{a}\mathrm{n}\mathrm{i}\mathrm{f}_{0}1\mathrm{d}$ of dimension $(n-1)$ in
a domain $\Omega\in R^{\mathrm{n}}$. $\mathrm{F}1^{\cdot}\mathrm{o}\mathrm{m}$ Sobolev inclusions, we know that $H^{n}(\Gamma)\subset C^{1}(\Gamma)$. It is easy to
understand that the $\mathrm{g}_{\mathrm{l}\mathrm{a}}\mathrm{d}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}_{1}\mathrm{n}\mathrm{e}\{\mathrm{h}\mathrm{o}\mathrm{d}$ we use do not produce $\mathrm{n}\mathrm{e}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{a}1^{\backslash }\mathrm{i}1_{1,d}’\cdot c^{1}(\Gamma)$ variations

80

δx_{w} and therefore we need to project them into $H^{n}(\Gamma)$ (an example of this is given in
picture (1) $)$. This means that the projected variations $(\delta\tilde{x}_{w})$ is solution of an elliptic

Figure 1: Smoothed and unsmoothed shapes. l/Ve can see that the g radient jumps $th\uparrow\cdot ough$

shocks and also prodnces a non-smooth shape in leading edge regions. $Tll\dot{i}S$ is the result
of the first iteration of the $optimi_{\sim}^{\sim}ation$. If we keep continue the shape becomes more and
more irregular.

system of degree n . However, as we are using a P^{1} discretization, a $\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{d}$ order elliptic
system is sufficient even in $3\mathrm{D}$ because the edges of the geometry (like a trailing edge)
are considered as being a geometrical constraint for the design. Therefore we project the
variations (δx_{w}) only into $H^{2}(\Gamma)$ even in $3\mathrm{D}$.

Once $(\delta\tilde{x}_{w})$ known, we have to expand these variations $\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{l}\cdot \mathrm{a}\mathrm{l}\mathrm{l}$ the mesh. This is done
by solving a volunlic elasticity system which is also of the form of (2).

As these tools have to be differentiated, it is important to notice that both surfacic and
volumic elliptic systems are solved using iterative schemes. This is a real difficulty for AD
in reverse mode [8, 7, 4, 29] (see below).

4 Mesh Adaption by Metric Control
We give a $\mathrm{b}_{1^{\backslash }}\mathrm{i}\mathrm{e}\mathrm{f}$ description of our metric evaluation. The mesh generation technique is
not described here. It is based on a Delaunay algorithm $[22, 21]$.

The key idea is to modify the scalar product used in the nlesh generator for distance,
surface (or volume) evaluations. Hence, the Delaunay approach will generate equilateral
elements in a new nletric and not in the Euclidean one. This scalar product is based on
the evaluation of the Hessian of the variables of the problem. Indeed, for a P^{1} Lagrange
discretization of a variable $?\ell$, the interpolation error is bounded by:

$\mathcal{E}=|u-\Pi_{h}u|_{0\leq cll^{2}}|D2\iota \mathrm{t}|_{0}$, (3)

where h is the element size, Π_{h} [the P^{1} interpolation of $\mathrm{t}\iota$ and $D^{2}u$ its Hessian matrix.

81

This matrix being symmetric, we have:

$D^{2}u=$
$=\mathcal{R}\mathcal{R}^{-1}$,

where R is the eigenvectors matrix of $D^{2}\mathrm{c}\ell$ and λ_{i} its eigenvalues (always real). Using this
information, we introduce the following metric tensor $/\vee\iota$:

$/\vee[=\mathcal{R}\mathcal{R}^{-1},$ (4)

where
$\tilde{\lambda}_{i}=\min(\max(|\lambda_{i}|, \frac{1}{h_{\max}^{2}}),$ $\frac{1}{h_{\min}^{2}})$,

with h_{\min} and h_{\max} being the minimal and maximal edge lengths allowed in the mesh.
Now, if we generate, by a Delaunay procedure, an equilateral mesh with edges of length

of 1 in the metric $/\mathrm{V}\{/(c\mathcal{E})$, the interpolation error \mathcal{E} is equi-distributed over the edges a_{i}

of the mesh. $\backslash _{\perp}\mathrm{I}\mathrm{o}\mathrm{r}\mathrm{e}$ precisely, we have

$\frac{1}{c\mathcal{E}}a_{i}^{T}\mathrm{J}/Ia_{i}=1$. (5)

VVe notice however that (3) leads to a global error while we would like to have a relative
one. We therefore use the following metric definition which takes into account not only
the dimension of the variables but also their magnitude:

$\mathcal{M}=\frac{1}{c\mathcal{E}}|\frac{D^{2}(\Pi_{h}u)}{\max(|\Pi_{h}u_{h}|,\epsilon)}|_{0}$, (6)

$\mathrm{w}1_{1}\mathrm{e}\mathrm{r}\mathrm{e}$ we have introduced the local value of the variable in the norm. ϵ is a cut-off which
defines the admitted difference of the order of magnitude between the larger and smaller
scales we are looking for. Bellow ϵ , the phenomena is supposed impossible to be captured
by this grid and should therefore be modeled (as in turbulence modeling). This can also
be seen as looking for a nlore precise estimation in regions where the variable is small.
Another important consequence of this estimation is that it removes the dimensional
problems when intersecting metrics coming from different quantities.

Extension to $s\iota/ste\gamma nS$:
For $\mathrm{s}\mathrm{y}_{\mathrm{S}}\mathrm{t}\mathrm{e}\mathrm{n}1\mathrm{s}$ of equations, the previous approach leads to a metric for each variable and

we take the $\mathrm{i}\mathrm{n}\{\mathrm{e}\mathrm{l}\cdot \mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of all these metrics. Indeed, a metric can be seen through its
unit ball which $\mathrm{b}_{\mathrm{e}\mathrm{C}\mathrm{o}\mathrm{n}}1\mathrm{e}\mathrm{s}$ an ellipsoid in case of anisotropy (the unit ball of the Euclidean
metric is a sphere). lNIore precisely, for two metrics, we find an approximation of their
intersection by the following procedure:

Let λ_{i}^{i} and τ_{i}^{j}” $?,j=1,2$ the eigen-values and eigen-vectors of $\mathcal{M}_{i},$ $j=1,2$. The
intersection metric $(,\hat{\mathrm{W}})$ is defined by

$d^{\prime\hat{\vee}4}= \frac{/\hat{\vee}l_{1}+J\hat{\vee}\{2}{\underline{)}}.\cdot$ (7)

82

where $\hat{\mathcal{M}}_{1}$ (resp. $\hat{\mathcal{M}}_{2}$) has the same eigen-vectors than \mathcal{M}_{1} , (resp. \mathcal{M}_{2}) but with
eigen-values defined by:

$\tilde{\lambda}_{i}^{1}=\max(\lambda^{1}, v_{i}\text{ノ}4il_{2}1\tau v^{1}i)$, $i=1,2$. (8)

The previous algorithm is easy to extend to the case of several variables. As we said, one
advantage of (6) is to remove the problem of dimension when intersecting metrics coming
from variables with different physical meaning and scale (for instance.pressure, density
and velocity).

Boundary layers and a priori discretization
The evaluation of the Hessian is done by the Green fornuula with Neumann boundary

condition. This does not lead to a suitable mesh for boundary layers and situations where
an a priori minimal discretization along the wall is required. Indeed, the position of the
first layer of nodes can be quite irregular (this is important for viscous flows) and the
discretization along the wall can become too coarse for a good control space definition.

Another important ingredient therefore, is a mixed Dirichlet-Neumann boundary con-
dition for the metric on wall nodes. $1\backslash \mathrm{I}_{0}\mathrm{r}\mathrm{e}$ precisely, the eigenvectors for these nodes are
the normal and tangent unit vectors and the eigenvalues $(\lambda_{\mathcal{T}}, \lambda_{n})$ are given by:

$\lambda_{n}=?nax(\frac{1}{l\iota_{n}^{2}}, \lambda_{n}^{c})$, $\lambda_{\tau}=7na\backslash T(\frac{1}{h_{\tau}^{2}}, \lambda_{\eta}^{c})\sim$

’

where h_{n} and $l\iota_{\tau}\mathrm{a}\mathrm{l}\cdot \mathrm{e}$ prescribed values to monitor the minimal mesh refinement along
the wall in the normal and tangential directions and λ_{n}^{c} and λ_{τ}^{c} are the computed values
(coming $\mathrm{f}_{\Gamma \mathrm{O}}\mathrm{n}1$ the Hessian). Along the wall the previous metric At (x) is therefore replaced
by a new metric $\hat{\mathcal{M}}(x)$:

$\hat{\mathcal{M}}(x)=\tau\Lambda\tau^{-}1$,

where
$\Lambda=dia_{\mathit{9}(}\lambda n’\lambda_{\tau})$ and $T=(??arrow(X),\vec{\mathcal{T}}(x))$.

From a practical point of view, for viscous applications h_{n} is small and function of the
Reynolds number while for inviscid cases h_{n} is taken large. This metric is slightly propa-
gated through the flow by a smoothing operator.

In the past, we have applied these ingredients to inviscid and viscous laminar and
turbulent flows involving shocks and boundary layers. Details on these techniques can be
found in [1, 2, 3, 18].

5 Optimization problem
We consider the following $\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{l}\mathrm{i}\mathrm{Z}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ problem:

$\min_{x_{c}}J(X_{C}, U(x_{C}))$,

$E(x_{C}, [/(\vee.T_{C}))=0,$ $g_{1}(x_{c})\leq 0$, $g_{2}(U(x_{C}))\leq 0$,
$\backslash \backslash \cdot \mathrm{h}\mathrm{e}\mathrm{l}\cdot \mathrm{e}’.\iota_{C}\in R^{7?\mathrm{c}}$ describe the control 1) $\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{l}\cdot \mathrm{S},$ $U\in R^{N}$ the flow, $E\in R^{N}$ the state
equation and $jC_{1,2}$ direct (’geonletrical’, on $\backslash ?_{C}$) and indirect (on U ($.T_{C}\mathrm{I}$, such as a given lift)
constraints.

83

Indirect constraints on U have been taken into account in the cost function by penalty.
Geometrical constraints are of two types:

1. shape deformation is allowed between two limiting surfaces (curves in $2\mathrm{D}$),
2. the volume of the shape can only increase.
The first constraint has been taken into account by projection and the second constraint

by penalty in the cost function.

5.1 The Gradient
As we said, in this approach all the nodes on the wall belong to the design space. This
makes out of reach an evaluation of the Jacobian by finite difference for instance. Intro-
ducing the Lagrangian $L=J+pE$, by the optimality conditions we get:

$\frac{\partial L}{\partial U}=\frac{\partial J}{\partial U}+p^{t}\frac{\partial E}{\partial U}=0$, (9)

whe.re to get $p.$ ’ we solve:
∂E^{t} ∂J^{t}

$\overline{\partial U}\overline{\partial U}p=-$ ’

which has the cost of one flow solution. And after substitution we have:

$\frac{dJ}{dx_{\mathrm{c}}}=\frac{\partial L}{\partial x_{c}}=\frac{\partial J}{\partial\tau_{\mathrm{c}}}.+_{P}\frac{\partial E}{\partial x_{c}}t$.

Here the cost is independent of n_{c} but we still need to compute $\partial E/\partial x_{c}$. This can be
easily done using AD in direct mode for instance [23]. In the present, to avoid developing
a particular adjoint solver, we use AD in reverse mode.

5.2 AD in reverse mode
To get the Jacobian of the cost function with respect of control parameters, all the tools
described in the previous sections have to be differentiated. But the systems involved are
solved using iterative schemes. This is a real problem as the intermediate states have to
be stored for the adjoint computation $[7, 4]$.

We use Odyss\’ee developed at INRIA [24, 25, 26]. In [27, 28, 29] the gradients obtained
by Odyss\’ee have been compared with those obtained using finite differences in similar
contexts. In this approach, the lines of the programs describing the relations between
the variation of the design variables and the cost function including the grid and the flow
equations are considered as constraints. We associate to each of them a Lagrange mul-
tipliers (p) and we construct an augmented Lagrangian (L) . The values of the Lagrange
multipliers are obtained from the condition that the first variations of L with respect to
intermediate variables vanish. The solution can be always obtained simply by back substi-
tution (hence the notion of reverse mode). Once the Lagrange multipliers $\mathrm{a}\mathrm{l}\cdot \mathrm{e}$ evaluated,
the gradient of L can be easily calculated. Technical details can be found in [4, 7, 29].

84

5.2.1 Limitations and keys points

As we said, in reverse mode a dual variable is introduced at each new substitution in the
program. This is a problem when the solver contains nested loops (for instance a time
integration loop with inside loops over nodes, segments and elements). The limitation of
the reverse mode comes therefore from the required nlemory for Lagrange multipliers and
intermediate variables. More details about the limitations we encountered can be found
in [4, 7, 8, 29, 28]. For a efficient use of AD in reverse mode in our optimization process,
the following key-remarks are essential:

1. For steady flows, the adjoint is independent of the intermediate solutions obtained
during time integration. Therefore, we only need to store one state if for a given shape
the steady solution is known.

2. Use interprocedural differentiation [26] which consists of replacing what is inside
nested loops by routines and differentiating these routines.

3. As we said, to compute the adjoint we always use the steady solution. Therefore, we
need to know when the adjoint convergence is sufficient for the optimization to converge.
Of course, we can integrate backward for a very long time but this will not be optimal. In
fact, it is sufficient for the norm of the gradient of the discrete cost function to be strictly
decreasing during optimization $[4, 7]$ (n being the optimization iteration):

$|\nabla J_{h}^{n+1}|<|\nabla J_{h}^{n}|$.

In other words, when computing the adjoint, we have two different numbers of time
step. One for the forward system (taken equal to one) and another for the adjoint $\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\ln$

(very large) and we leave the reverse time integration loop once the above criteria is
satisfied.

5.3 Adaptive optimization algorithm
The gradient is used in a gradient method to solve the optimization problem. Our mini-
mization tool is quite simple. It is based on a gradient method with a fixed descent step.
But more sophisticated methods can be used as far as they do not require the solution
of large systems (proportional to n_{c}). Indeed, the number of nodes on the wall can be
quite large, especially in $3\mathrm{D}$ applications (several thousands in [4, 7]). Moreover, as in
this approach the number of control variables may vary during optimization due to mesh
adaption, the optinlization tool should not be sensible to this.

For seek of simplicity, the adaptive optimization algorithm is given with only one opti-
mization after each adaption. But several iterations of optimization can be made on the
same nlesh. Indeed, $\backslash \mathrm{v}\mathrm{e}$ use of the following criteria to detect the tinle when adaption can
be made:

$J_{i}^{n} \leq J_{0}^{n}-\epsilon h^{2}\max$

’

where n and i denote $\mathrm{r}\mathrm{e}\mathrm{s}1\supset \mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}_{\lambda}\cdot \mathrm{e}1\vee \mathrm{V}$ the adaption and the associated (on this level) opti-
mization steps and ϵ is free. l? is the maximum segment length allowed in the mesh and
$\backslash \backslash ’ \mathrm{e}$ known that all the segments in the $\mathrm{n}\mathrm{T}\mathrm{e}\mathrm{s}\mathrm{h}$ have the same length in the local metric M.
Moreover, it is $\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{l}\cdot \mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{n}g$ to notice that $l_{l_{m\mathfrak{a}x}}$ is usually chosen once for all. This criteria
has to be seen as a sufficient (not necessary) condition for the 0_{1}) $\mathrm{t}\mathrm{i}_{1}\mathrm{n}\mathrm{i}_{\mathrm{Z}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}}$ to $\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{l}\backslash ;\mathrm{e}\vee \mathrm{r}\mathrm{g}\mathrm{c}$.

85

Indeed, we use this criteria together with an a priori maximum number of optimization
iterations allowed between two adaptions. A theoretical background for the optimiza-
tion with a variable discretization and justifications for the previous criteria under more
restrictive conditions are available in [30].

At step i of adaption, we denote the mesh, the solution, the metric and the cost
$J.(X_{ci}, U(X_{C}i))$ by $\mathcal{H}_{i},$ $S_{i},$ \mathcal{M}_{i} and $J(x_{i})$.

$\mathrm{A}_{0\Gamma \mathrm{i}}\mathrm{t}\mathrm{h}\mathrm{n}1$

\mathcal{H}_{0},S_{0} , given,

do $i=0,$ $..$, iadapt

define the control space (wall nodes) : $\mathcal{H}_{i}arrow x_{i}$,

compute the gradient: $(x_{i}, \mathcal{H}_{i},S_{i})arrow\frac{dJ(x_{i})}{dx_{i}}$,

$. \tilde{x}_{i}=P_{i}(xi-\lambda\frac{dJ(x_{i})}{dx_{i}})$,

deforme the mesh : $(\tilde{x}_{i},\mathcal{H}_{i})arrow\tilde{\mathcal{H}}_{i}$,

update the solution over the deformed mesh: $(\tilde{\mathcal{H}}_{i}, s_{i})arrow\tilde{S}_{i}$,

compute the metric: $(\tilde{\mathcal{H}}_{i},\tilde{s}_{i})arrow \mathcal{M}_{i}$,

generate the new mesh using this metric: $(\tilde{\mathcal{H}}_{i}, \mathcal{M}_{i})arrow \mathcal{H}_{i+1}$,

interpolate the previous solution over the new mesh : $(\tilde{\mathcal{H}}_{i},\tilde{S}_{i}, \mathcal{H}_{i+1})arrow\overline{S}_{i+1}$,

compute the new solution over this mesh : $(\mathcal{H}_{i+1},\overline{S}_{i}+1)arrow S_{i+1}$,

end do.

In the previous algorithm, P_{i} is the projection operator which changes after each adap-
tion as the control space changes and

$\frac{dJ(\tau_{i})}{dx_{i}}.\cdot.=\frac{\partial J}{\partial x_{i}}+(\frac{\partial J}{\partial U})\tau(\frac{\partial U}{\partial x_{i}})$.

6 Results
In this section we present some results for constrained optimization problems at vari-
ous Mach number. All these computations have been $\mathrm{p}\mathrm{e}1^{\cdot}\mathrm{f}_{0}\mathrm{r}\mathrm{m}\mathrm{e}\mathrm{d}$ on a workstation making
about 10 $\mathrm{M}\dot{\mathrm{e}}\mathrm{g}\mathrm{a}\mathrm{f}\mathrm{l}\mathrm{o}\mathrm{p}$ with less than 64 Megabytes of memory in simple precision. These con-
figurations, including mesh adaptions, gradient computations and flow solutions require
less than 2 hours. Concerning memory requireinents, due to the optimization described
in the previous section, the reverse mode requires approximately 10 times more memory
$\mathrm{t}1_{1}\mathrm{a}\mathrm{n}$ the direct solver. An $\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{n}1\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}$ of the nlemory required by the direct solver is given
by 50 $\cross N$ words (1 word $=32$ or 64 bits depending on architectures), where N is the
$\mathrm{n}\iota\iota \mathrm{l}\mathrm{n}\mathrm{l}\supset \mathrm{e}\mathrm{r}$ of nodes. This is more thall what is necessary in a structured solver because that
the data struct $\iota 1^{\cdot}\mathrm{e}\mathrm{s}$ involved $\mathrm{a}\mathrm{l}\cdot \mathrm{e}\mathrm{n}\mathrm{l}\mathrm{t}\mathrm{c}\mathrm{h}$ more complicated in an $\iota\iota \mathrm{n}\mathrm{S}\mathrm{t}\mathrm{r}\mathrm{t}\mathrm{l}\mathrm{C}\mathrm{t}_{\mathrm{t}\mathrm{r}}\mathrm{e}\mathrm{C}\mathrm{l}\mathrm{a}\mathrm{p}\mathrm{P}\mathrm{l}\cdot \mathrm{o}\mathrm{a}\mathrm{c}\mathrm{h}$.

86

In the following examples, when global constraints are $\mathrm{p}_{\mathrm{l}\mathrm{e}\mathrm{S}\mathrm{e}}\mathrm{n}\mathrm{t}$, the different penalty
coefficients in the cost function are initially chosen for the different quantities involved to
have variations of the same order of magnitude. During optimization, they are reduced
with the same ratio than the cost $\mathrm{f}_{\mathrm{t}\mathrm{t}}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}_{0}\mathrm{n}$.

The same drag reduction $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{l}\mathrm{e}\ln$ with constraints on the lift and the volume of the
airfoil has been considered for three different airfoils at different Mach regimes. The cost
function for all three cases is given by:

$J(x)=C_{d}+\alpha|C_{l}-C_{l}^{0}|+\beta|Vol-V_{\mathit{0}}l0|$,

where C_{d} is the drag coefficient, $C_{l}\text{ノ}$ and C_{l}^{0} are the actual and initial lift coefficients
and Vol and Vol_{0} the actual and initial airfoil volumes. Our aim is therefore to reduce
the drag while the lift and the airfoil volume are kept unchanged. To be sure that the
solutions are mesh-independent, a final computation has been done on the final shape
until convergence.

The flow solver $\mathrm{N}\mathrm{S}\mathrm{C}2\mathrm{I}\backslash \mathrm{E}\vee$ and the mesh generator $\mathrm{B}\mathrm{L}2\mathrm{D}$ are in free access under
$\mathrm{f}\mathrm{t}\mathrm{p}://\mathrm{f}\mathrm{t}\mathrm{p}$. inria. $\mathrm{f}\mathrm{r}/\mathrm{I}\mathrm{N}\mathrm{R}\mathrm{I}\mathrm{A}/\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{i}\mathrm{e}\mathrm{C}\mathrm{t}\mathrm{S}/\mathrm{G}\mathrm{a}\mathrm{m}\mathrm{m}\mathrm{a}/$.

6.1 Drag reduction for a transonic flow

The initial airfoil is the NACA 0012. The design takes place at Mach number 0.754 and
2 degrees of incidence. The drag coefficient has been reduced by more than 10 percent
while the lift and volume slightly increased.

7 Concluding Remarks
A new approach for optimal shape design on variable control spaces and on meshes with
$\mathrm{v}\mathrm{a}\mathrm{l}\cdot \mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$ connectivities has been presented. The reverse mode of automatic differentiation
has been used to produce the Jacobian of the discrete operators. In this approach, the
mesh is part of the optimization procedure and function of the solution. This is an easy
way to avoid mesh dependencies in the optimization as well as in the direct problem.

Acknowledgments
The author would like to thank professor 0 . Pironneau for his $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}\mathrm{o}\mathrm{r}\dot{\mathrm{t}}$. The author

would like also to thank N. Rostaing-Schmidt and C. Faure of INRIA Sophia Antipolis
for their assistance in using Odyss\’ee.

References
[1] H. Borouchaki. M.J. Castro-Diaz, P.L. George, F. Hecht, B. Mohammadi (1996),

Anisotropic adaptive mesh generation in two dimensions for CFD, 5th Inter. Conf.
on Numerical Grid Generation in Computational Field Simulations, Mississipi State
Univ.

[2] M. Castro-Diaz, F. Hecht and B. Mohammadi $(1995)\text{ノ}.$
”

$Anisot\Gamma opic$ Grid Adaption
for Inviscid and $l^{r}\prime i_{S}cous$ Flows Simulations”, to appear in $\mathrm{J}\mathrm{C}’|\mathrm{P}$.

87

[3] H. Borouchaki, P.L.George, B. Mohammadi, (1996) Delaunay lVIesh Generation $G_{ov}-$

erned by $P\prime Iet?’ ic$ Specifications. Part II.. Applications, Finite Element in Analysis and
Design, special issue on mesh adaption.

[4] B. Mohammadi $(1996),A\wedge^{\gamma}ew$ Optimal $Sl\iota ape$ Design Procedure for Inviscid and Vis-
cous Turbulent Flows, submitted to IJNMF.

[5] 0. Pironneau (1984), Optimal Shape Design for Elliptic Systerns, Springer-Verlag,
New York.

[6]. A. JanTeSon (1994), Optimum $Ae?^{\backslash }odyn$amic Design via Boundary Control, AGARD
Report 803, Von $\mathrm{I}\backslash ^{r}\mathrm{a}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{n}$ Institute Courses.

[7] B. Mohammadi (1996), Optimal Shape $Design_{f}$ Reverse Λ Iode of Autornatic Differen-
tiation and Turbulence, 35 th AIAA conference, Reno.

[8] M. Hafez, B. Mohammadi, 0. Pironneau (1996), Optimum Shape Design using Auto-
matic Differentiation in Reverse Mode , ICNMFD conference, Monterey.

[9] B.E. Launder and D.B. Spalding $(197‘ 2..),\Lambda/Iathemati_{C}al$ AIodels of Turbulence, Aca-
demic Press.

[10] B. Mohammadi and 0. Pironneau $(1994),Analy_{3}\backslash is$ of the $I\mathrm{i}’$-Epsilon Turbulence
Model, WILEY.

[11] B. Mohammadi, 0. Pironneau (1996), Unsteady Separated Turbulent Flows Compu-
tations with MVall-Laws and $k-\epsilon$ Model, Submitted to Computer Method in Applied
Mechanics and Engineering. .

[12] A. Dervieux $(19\mathrm{s}5),steadyEuler$ Simulations using Unstructured Meshes, VKI lecture
series, 1884-04.

[13] B. Mohammadi (1994), CFD with $NSC\mathit{2}I\mathrm{i}E’$: an User Guide, Technical report INRIA
No.164.

[14] P.L.Roe (1981), Approximate Riemann $SolverS_{f}$ Parameters Vectors and Difference
$SchemeS_{;}$ J.C.P. Vol.43.

[15] G.D.Van Albada, B. Van Leer $(1984),Flux$ Vector Splitting and $Runge-I\mathrm{i}^{r}utta$ Methods
for the Euler Equations, ICASE 84-27.

[16] J. Steger, R.F. Warming (1983), Flux Vector Splitting for the Inviscid gas dynamic
with Applications to Finite-Difference Methods, J. Comp. Phys. 40, pp: 263-293.

[17] S. Osher, S. Chakravarthy (1982), Upwind Difference Schemes for the Hyperbolic
systems of conservation laws, mathematics of Computation.

[18] F. Hecht, B. Mohammadi $(1997),\Lambda IeSh$ Adaption by Metric $c_{ont},\backslash ol$ for ΛMulti-scale
Phenomena and Turbulence, submitted to the 35th AIAA, Reno.

88

[19] D. Vandromme (1983), Contribution \‘a la $mode^{\text{ノ}}li_{S}ation$ et la pr\’ediction d’\’ecoulements
turbulents \‘a masse volumique $variable_{f}$ Ph.D. thesis, University of Lille.

[20] R. Struijs, H. Deconinck, P. de Palma, P. Roe, G.G.Powel (1991), Progress on AIul-
tidimensional Upwind Euler Solvers for Unstructured Grids, AIAA paper 91-1550.

[21] P.L. George, F. Hecht, E. Saltel (1990), Fully automatic mesh generator for $\mathit{3}dd_{\mathit{0}}-$

mains of any $sl\iota ape$, Impact of Comp. in Sci. and Eng., 2, pp.187-218.

[22] P.L. George (1991), Automatic mesh generation. Applications to finite element
method, Wiley.

[23] J.M. Mal\’e, B. Mohammadi, N. Rostaing-Schmidt $(1996),Direct$ and Reverse AIodes
of Automatic $Differe\uparrow?tiation$ of Programs for Inverse Problems: Application to Op-
timum Shapes Design Proc. 2nd Int. SIAM Workshop on Compu,tational Differenti-
ation, Santafe.

[24] J.C. Gilbert, G. Le Vey, J. Masse $(1991),La$ diff\’erentiation automatique de fonctions
$repre\text{ノ}sent\acute{e}eS$ par des programmes, Rapport de Recherche INRIA 1557.

[25] N. Rostaing-Schmidt (1993), $Diffe^{\text{ノ}}\Gamma entiation$ automatique: Application \‘a un probl\‘eme
d’optimisation en $m\acute{e}t_{6}’orologie$, Ph.D. Thesis, University of Nice.

[26] C. Faure (1996), Splitting of Algebraic Expressions for Automatic $Differentiation_{f}$ In
proc. of the Second SIAM Inter. Workshop on $\mathrm{C}_{\mathrm{o}\mathrm{n}1}\mathrm{p}_{\mathrm{U}}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}1$ Differentiation, Santa
Fe.

[27] B. Mohammadi, 0. Pironneau $(1996),New$ Progress in $O_{l},timum$ Shapes $Desig?\iota$, CFD
Review 95, Hafez-Oshima Eds, J. Wiley Pub.

[28] B. Mohamnladi (1996), Automatic Differentiation and Nonlinear PDE, ECCOMAS,
Paris.

[29] B. Mohammadi $(1996),Diff\acute{e}rentiati_{on}$ Automatique par Programme et Optimisation
de Formes A\’erodynamiques, MATAPLI 07/96.

[30] E. Polack (1993), On tlre Use of Consistent Approximations in the Solutions of Semi-
Infinite $Optimi^{\sim}\sim ation$ and Optimal Control Problems, Math. Progranuming, Series B,
Vol. 62, No. 2, pp: 385-414.

89

$(^{\mathrm{A}_{/}}\sim\grave{\overline{\mathrm{C}^{\overline{(}}}}//,\varphi\backslash /\nearrow_{\sim}1\nearrow\sim\backslash -$

\nearrow

$.d\backslash$

/

$\gamma\iota$

$(\vee\backslash$

’
-

\rangle

’.// $/\sim’\backslash \prime’/\backslash \sim\backslash$

’

$\backslash \backslash \vee^{arrow/}\prime’/-$

$/–\sim/\sim/\angle\backslash \backslash b’\prime^{4}.\tau$

,
$.\backslash \backslash \acute{\acute{k}}- h\prime’\backslash \backslash \grave{\mathfrak{x}}’\backslash -\backslash /\backslash \backslash \sim\backslash \backslash$

$-_{-\prime}\backslash //$

$\backslash .\sim.<\backslash -’\backslash ’\backslash \backslash \simeq\backslash \backslash \sim’\backslash \nearrow_{\backslash }/\backslash ’\backslash \backslash -^{--}\backslash \backslash /$

\backslash

$\backslash -\vee/\backslash \cdot.’.\mathrm{t}\mathrm{k}_{\prec}^{\backslash \prime}\mathrm{i}‘--/,/,’-\wedge’\sim.\backslash \tau\backslash .\backslash ’\.\backslash ’\backslash ’\backslash ,\grave{j}’\backslash \underline{\mathrm{K}}\wedge^{\backslash }\vee^{-}\sim’\backslash ’/-\backslash /\vee^{\backslash \backslash \backslash }-\wedge\backslash \backslash \sim//$

$/-$
$\backslash //\sim\sim-^{-\prime’}\backslash \sim\backslash \backslash \backslash /\backslash /^{\backslash }$

90

$/fl_{k}$

,
c \mathfrak{S}

91

