DOO000D0000
989 0 1997 0 92-102 | 92

Product-type Krylov-Subspace Methods
for Solving Nonsymmetric Linear Systems

SHAO-LIANG ZHANG *, MakoTto NaTtorif, CHENG-HAI JiN?

Abstarct. Recently S.-L. Zhang has proposed a unification and generalization of results involving
product-type Krylov-subspace methods for the iterative solution of nonsymmetric linear systems. A
characteristic of this class of methods (that includes CGS and Bi-CGSTAB) is the relationship

Tn = Hp(A)Rn(A)To

where 7, is the residual vector corresponding to the n-th iterate x,, and R, is the Lanczos polynomial.
The polynomial H,, in the product H,(A)R,(A) is chosen to speed up and/or stabilize convergence,
while satisfying a standard three-term recurrence relations. Such product-type methods can be re-
garded as unification and generalization of Bi-CGSTAB. From the unification and generalization, we
can see how CGS and Bi-CGSTAB fit into a more general framework.

Key words. Bi-CG, Bi-CGSTAB, CGS, the Lanczos polynomial, nonsymmetric linear systems,
product-type methods, residual polynomial, three-term recurrence relations.

AMS(MOS) subject classification. 65F10

1 Introduction

Operations of transpose matrix-vector multications are needed in the Bi-Conjugate Gradient
method (Bi-CG hereafter) [2] for solving nonsymmetric linear systems because a Krylov subspace
generated from the transpose matrix is used. In order to avoid calculating the transpose matrix-
vector multiplications and improve the convergence rate in Bi-CG, recently many efforts have been
devoted to deriving more efficient methods from restructuring Bi-CG. A common technique to design
a new method by means of restructuring Bi-CG is to define its residual polynomial by product of
two polynomial factors where one factor is the Lanczos polynomial from Bi-CG and the other one is
an undetermined n degree polynomial. For example, the Conjugate Gradients-Squared (CGS here-
after) [5], Bi-CGSTAB [7] and GPBi-CG [8] were derived from Bi-CG by this technique. In CGS,
P. Sonneveld defined the undetermined polynomial by the same Lanczos polynomial, i. e., defined
the residual polynomial of CGS by the square of that of Bi-CG. CGS was recognized as a powerful
variant of Bi-CG in a lot of numerical experiments [5]. However, it often observed that CGS has a
rather irregular and oscillatory convergence behaviour in many situations because of the presence of
the round-off errors [7]. Therefore, in Bi-CGSTAB, H. A. Van der Vorst selected a polynomial with

*Institute of Information Sciences and Electronics, University of Tsukuba. Tennodai 1-1-1, Tsukuba 305, Japan.
E-mail:zhang@is.tsukuba.ac.jp.

tInstitute of Information Sciences and Electronics, University of Tsukuba. Tennodai 1-1-1, Tsukuba 305, Japan.
E-mail:natori@is.tsukuba.ac.jp.

*Doctoral Program in Engineering, University of Tsukuba. Tennodai 1-1-1, Tsukuba 305, Japan.
E-mail:kinsk@kiko.is.tsukuba.ac.jp. :

93

two-term recurrence relations instead of one factor of CGS to design the residual polynomial of Bi-
CGSTAB. Since the undetermined parameters with respect to the residual polynomial of Bi-CGSTAB
are chosen at least to minimize the residual 2-norm per iteration, Bi-CGSTAB is a rather stable and
more efficient variant of Bi-CG. In fact, many numerical experiments also indicated that Bi-CGSTAB
can often run faster and its convergence behaviour is more smooth than CGS [7]. In [8], S.-L. Zhang
proposed a unification and generalization of results involving product-type Krylov subspace methods
for the iterative solution of nonsymmetric linear systems, implemented several new methods.

- This paper is organized as follows: in the next section, we characterize product-type Krylov-
subspace methods based on Bi-CG, and derive a set of recurrence formulas among the related iterates.
In §3, several implementations of algorithms of the product-type methods are considered, and some
well-known variants are recalled. The way in which preconditioning can be incorporated in the al-
gorithms is discussed in §4. In §5, we report some numerical experiments and show that GPBi-CG
may be very attractive in comparison with Bi-CGSTAB in many situations. Finally, we make some
concluding remarks in §6.

Throughout this paper, superscript BCG is used to distinguish iterates generated in the algonthm
of Bi-CG.

2 Product-type Krylov—subspace Methods

The algorithm of Bi-CG, for solving linear system Ax = b where A be an N x N large and sparse
nonsymmetric matrix with complex spectrum, given by R. Fletcher [2] reads:

ALGORITHM 1 Unpreconditioned Bi-CG

xBCC is an initial guess, set pBCG* = r§C6* = pBOC = ¢BCC = p — Axf G,
forn=0,1,--- until || r2CC |<e| b do:
o = (T’I?CG*, TECG)

=

(pBCG+, ApBCG)’
2BCG = ¢BCC | o, pBOG,
(2.1) }BIS _ BOG _ g 480G,
pBOGr — yBCGx _ ¢ AT BOG+

(TRt 2 Tar)

Bn = (rBCGx BCGY
(2:2) | PRYr =Tast + 6P S,

BCG* __ ,.BCG= BCG+.
Prfl =Tpir +6aPn

’

Let 7§CC and r§CC* be abbreviated as 1y and 7. In the algorithm of Bi-CG, two Krylov subspaces

Kn(A; 7o) := span{rg, Arg,- -+, A" 1o} and Ky (AT;ry) := span{ry, ATrd,-- -, (AT)" 1§}
are generated, and the approximative solution a:BCG is given in such way that the re51dua1 rBCG (=
b — AzBCC theoretically) is made orthogonal with respect to K,(AT;r§). Therefore, we have the

94

following orthogonalities of Bi-CG[2].

23) | rBCC | K, (AT;r3), ApBCC L K,(AT;r}).

Notice that rB¢C* and pBCC* can be written as

n—-1 : n—1
B0 = (-1)" [T as(AT)"r5 + 91, PEOC* = (-1)" [] as(AT)"r5 + go.
i=0 =0

with g, and g, € K,(AT,r}). By the orthogonalities (2.3), auxiliary formulas for computing @, and
[can be recovered:
(rao%*,r2%%) _ ((AT)"r3,7a°C) 6, = (rags TRet) _ N ((AT)m+1rg, r2CP
- T = n — -_ n .
(PRCS, ApECS) ~ ((ATYvrg, ApECS)’ ™7 = (rBOGR, pBOG) =~ ((ATyorg, rBCC)
Here, we attempt to use an n degree polynomial H, to accelerate rEC¢, say, make H,(A)rECC as

new residual converge towards zero fast. By doing so, we can derive a class of methods which have
product-type residual polynomial. We characterize the product-type methods based on Bi-CG by the

(24) op =

following process:

e residual polynomial of a product-type method is defined by product of two n degree polynomials
(2.5) Hp(A)Rn(X)
where R, is the Lanczos polynomial [6] and H,, is undetermined.

The design of the polynomial H,, in practice is desired as:

(1) to make the polynomial H,, satisfy short-term recurrence relations so that little computational

work and.low storage costs are requjred per iteration;
(2) to choose parameters of H, reasonably to get rather fast and stable convergence behaviour.

Next, we will describe the basic idea to establish a standard polynomial H, which leads to gener-
alized product-type methods based on Bi-CG. _ A

We introduce two independent parameters ¢, and 7, and define the polynomial H,, as follows:
(2.6) Ho(A) =1, Hy(}):=(1—CoA)Ho(}),
2.7 Hyp1(A) == (1+ T — CaA)Hp(X) — ﬂan—l()‘),
where (;, and 7, are undetermined parameters. 7 :

Noticing that H,(0) = 1 holds for any n, we have Hy,41(0) — H,(0) = 0 for any n. Thus, we can

find an auxiliary polynomial G,(\) with degree n, and obtain a double sets of polynomials H,()) and
Gn()) mutually interlocked by recurrence relations:

(28)) Hn+1 ()\) = Hn(/\) ")‘Gn(A)a Gn+1 (A) = Cn+1Hn+l (/\) + 77n+1_Gn(A)-
Now, let us derive the product-type methods with residual:

(2.9) R ' Ty = n(A)'rECG =b- Az,

95

which can be obtained with the following iterates:

(2.10) tn = Ho(A)TESE, Y= ACn-1(A)rasT, Pn = Ha(A)PR,
(2.11) wy, = AH,(A)PECE, w, = AGn(A)pECC, 2z, = Ga(A)rBE.

According to the recurrence relations (2.1) ~ (2.2) and (2.6) ~ (2.8), we have a set of recurrence
formulas among the sequences of the iterates T, Dy, tn, Un, Wa, Y, and z,:

(2.12) Tntl = tn = TaYp — (nAts

(2.13) =Tp — @nAp, — Az,

(2.14) t, =Tn — anApy,

(2.15) Ynt1 = bn — Tntl — Qn41Wn + Ont1 AP,
(2.16) Pni1 = Tat1 + Bn(Pn — un),

(2.17) wy, = Aty + B Ap,,

(2.18) Un = APy, + Ma(tn-1 — T + Po-1Un-1),
(2.19) Zn = (aTn + MnZn-1 — Qnlin.

From (2.9) and (2.13), we have a formula to update the approximating solution n+1:

(2.20) Tpt1 = Tp + AnPy, + Zn.
n—1
Since the coefficient of the highest order term of Hy, is (—1)" H (i, we have
i=0

. n—1 n—1
(r5,ma) = (=1)" [] G((AT)*r5,7ECC), (5, Ap,) = (-1)" [] G((AT)"r5, APROS).
=0 1=0

Then, from the formula (2.4), oy, and B, can be recovered from the iterates rn41, Tn and py:
(T‘Barn) On (Ta,"n+1)
(2.21) Op = ﬂ = — —
' " (r(;,Apn) " Cn (7'0, Tn)

Due to the lack of a criterion for choices of ¢, and 7,, it is very hard in fact to determine the
parameters (, and 7, that are closely and indissolubly connected with convergence behaviour in
practice. Implementations of the parameters ¢, and 7, will be discussed in §3 in detail.

3 Details of Implementation

In accordance with the requirement (2) described in §2, we summarize several possibilities to
select ¢, and 7, for the actual implementation of the product-type methods based on Bi-CG. As
well-known variants, the algorithms of CGS, Bi-CGSTAB and GPBi-CG will be recalled in terms of

special choices.

96

3.1 The Choice for GPBi-CG

It is convenient to determine parameters ¢, and 7, in terms of minimizing the residual 2-norm as
the function of ¢ and 7:

F(Gm) =l Taga 1= tn — nyn — CAtn | -

Thus, we have a variant of the product-type methods, and name it GPBi-CG [8]:

ALGORITHM 2 Unpreconditioned GPBi-CG

g is an initial guess,ro = b — Amg; set ry =19, t_1 =w_1 =0, f_; =0;
forn=0,1,--- until || 7, [<e|b] do:
Ppn=7Tn+ Bp-1(Pp-1 — Un-1),
_ (7‘6,"‘11))
~ (r5,Ap,)’ |
Yp =ln—1—Th — QpWy_1 + anAp,,
t, =1, —anAp,,
¢y = W Un) (Abn, tn) = (W) (Abn, ¥n)
(Atn, Aty) (Y Yn) — (Yn, Atr)(Atn, y,)
_ (Athtn)(ymtn) — (ymAtn)(Atmtn)

™7 (A, A80) U, Un) — Wy At (A,)’
. (At,,t,)
(if n=0, then {, = m,
Uy = (AP, + Mn(tho1 — Tn + Buo1Un-1),
Zp = (uTn + MnZn—1 — Cpln,
Tp41 = Tp + anP,, + zy,,
Tnt1 = tn — Yy, — (aAly,
B = On (Tﬁ,fn+1)

o (r8y7a) ’
wy, = At, + B Ap,;

an

Nn = 0)

3.2 The Choice for CGS

Suppose that ¢, = a, and 5, = g::i oy in recurrence relations (2.6)~(2.7), we obtain a significant
variant of the product-type methods which only depends on information of Bi-CG. It is easy to see
that this variant is mathematically equivalent to CGS. ‘

Notice that t,_; — r, = Az,_;. In this case, we have H, = R, and G, = P,, and use the
recurrence formula (2.13) to update rp,;. This fact leads to relation p, — u, = z,/ay, for any n, then
the iterates £, ¥, and w, can be omitted in the recurrence formulas (2.12)~(2.19).

Noticing that (73, Ap,) = (1§, Au,), and setting new iterates u, := A~ u,/a, and 2z, := z5/an,
then the algorithm of CGS [5] is recalled as follows:

ALGORITHM 3 Unpreconditioned CGS

T is an initial guess, g = b — Axzg; set ry = 1o, -1 =0;
forn=0,1,--- until || r, ||<e]b] do:

Pp =Tn+ Pn-12n-1,

97

Up =P, + .Bn-l(zn—l + ﬂn—lun—l)y
—)

(7§, Auy)’
Zp =P, — anAu,,
Tntl = Tn + an(Py + 24),
Tn+1 =Ty — anA(p,, + 2n),

— (1‘6, rn+1) .
Pn= o)

0 rn

Qn

3.3 The Choice for Bi-CGSTAB

If one attempts to get a variant of the product-type methods with little computational work, one
would define all 7, by a quantity w called the relaxation factor in advance. Here, we suppose that
7n = 0 for any n, and ¢, is selected to minimize the residual 2-norm as function of ¢

F(Q) =l Tn41 I=ll tn — At, ” .

In this case, u, = (,Ap,, and then z, = (,t,. Notice that the iterates y,, un,, z, and w,
become worthless. In this way an important and economical variant will be obtained again, recalled
Bi-CGSTAB([7]: |
ALGORITHM 4 Unconditioned Bi-CGSTAB

Zo is an initial guess, 7o = b — Amg; set r5 =19, -1 =0;
forn=0,1,--- until | r, ||<eb]| do: |
Pn=7n+Bn-1(Pn_1 — Ca-14Pn_1),

oy = (13:7n)
(15, APn) ’
t, =1, —a,Ap,,
_ _(Ata,1,)

Gn = (At,, At,)’
Tpt1 = Ty + app, + Cntrn
Tntl = t, — CnAtn)

5 (hruis)
" Cn ,("'6,7'11) ’

4 Preconditioned Algorithms

For solving realistic problems, any variant will be hardly competitive without preconditioning tech-
niques. All variants can be combined with the efficient preconditioning techniques, such as imcomplete
LU factorizations [3].

Let K be a suitable preconditioning matrix, i. e., K ~ A. We write K = K; K3, and apply CGS,
Bi-CGSTAB, and GPBi-CG to the explicitly preconditioned system

(4.1) Az =b.

with A = KT 1AK2“ 1'% = Koz, and b = K 1p. For example, for K3 = I we have preconditioning
from the right, for K3 = I we have preconditioning from the left, and for K; = L, K = U we have
the well-known preconditioning from both sides. '

98

Now we write the algorithm of GPBi-CG for (4.1), and denote all the occurring iterates by’ e.g.,

Tn-
With the change of variables:

&, = Koyn, P, = Kopy, Un = Kouy, z, = Kazy,
- -1, . -1 - -1, = _ T
Tn = K{ Tn, ta = K[ty, W => K[Wy, Y = K; Yp, 7o = Kirg,

then we have the algorithm of preconditioned GPBi-CG. Here, for computing ¢, and 7,, we are
minimizing the current residual for the original system rather than the preconditioned one.

ALGORITHM 5 Preconditioned GPBi-CG

T is an initial guess, 7o = b — Axo; set To="70, t.1=w_1=0, 1 =0;
forn=0,1,--- until || r, [[<e||b] do:
D, = K—I'rn + ﬂn-—l(pn_l - un—l),
(r3:n)
p = ~2
" (5 Ap,)
Yp =tn1 —Tn — QpWp—g +-anApn7
t, =71y — anAp,,
K 't, =K r, —o,K'Ap,,
C‘n — (yn’ yn)(AK_ltﬂdtn)' - (yrntﬂ)(AK_ltn’ yn)
(AK_ltﬂ’ AK—ltﬂ)(ynJ yn) - (yrn AK_ltﬂ)(AK_ltna yn) ’
o = (AKt,, AK~',) (Y, tn) — (Y, AK71t,)(AK 1ty t,)
" (AK U, AK10) (U Un) — (Uny AKTHR)(AK 0, y,)]

AK 1t , T

(-1 = :‘3 bl 77n = 0)
(AK t,, AK t.,,)
Up = CnK_lApn + nn(K_ltn——l - K_l"'n + ,Bn—lun—l);
Zn = CnK—lrn + NMnZn-1 — ApUy,
Tpt1 = Ty + 0Py, + Za,
Totl1 =t — MY, — gnAK—ltrn

,B — _a_ﬂ_ . (7'5,1‘"4.1)
= AU BT/
Cn ("'aarn) ’

Wy = AK_ltn + ,BnApn,;

(ifn=0,then (, =

When we rewrite the algorithm of CGS for (4.1), then with the change of variables:
En = Kokn, Pp = K[Dy, Gtn = K[Un, 2 = K712y, in = K 'rs, 74 = K{ 1§,

- we have the algorithm of preconditioned CGS.
ALGORITHM 6 Preconditioned CGS

xg is an initial guess,rg = b — Axg; set 7y =19, f_1 =0;
forn=0,1,--- until || r, ||I<e|}b] do:
Pp=Tn+ ﬂn—lzn—ly
Up =P, + ,Bn—l(zn—l + Br-1Un-1),
_ (13:Tn)
Oy = 2
(r§, AK uy,)

99

Zn =p, — 0y AK uy,
Tpg1 = Tp + KD, + 20),
a4l =Tn — anAKnl(pn + Zn),
B = ("5,"‘n+1);-

(r3:7n)

When we rewrite the algorithm of Bi-CGSTAB for (4.1), then with the change of variables:
#n = Ko, Pp = K7 Dy, Tn = K711, ta = K7 ta, 75 = K] 5,

we have the algorithm of preconditioned Bi-CGSTAB. Here, for computing (,, we are minimizing the
current residual for the original system rather than the preconditioned one.
ALGORITHM 7 Preconditioned Bi-CGSTAB
T is an initial guess, rg = b — Axg;set vy =79, -1 =0;
forn=0,1,--- until |7, ||[<e| b do:
Pp="Tn+ ﬂn——l(Pn—1 - Cn—lApn—l)’
(r3:7n)
(rs; AK—'p,,)’
ta=rn—a,AK 'p,,
(= (AK o t)
» = (AK-1t,, AK-'t,)’
Tpy1 =Tn + 0 K 'p, + (KM,
Toy1 =1, — (RAK ',
g 8n (i Tnr).
G (5,7n)

Finally, we estimate computational work in the above algorithms. Preconditioned GPBi-CG re-
quires evaluation of two matrix vector products with A, two solvers for K, 32N flops for vector
updates, and seven inner products. Preconditioned CGS requires evaluation of two matrix vector
products with A, two solvers for K, 13N flops for vector updates, and two inner products. Precon-
ditioned Bi-CGSTAB requires evaluation of two matrix vector products with A, two solvers for K,
12N flops for vector updates, and four inner products. In practical situations, however, a few vector
updates and inner products lead to only a small increase in computational work per iteration step,

especially on vector and parallel computers vector updates and inner products are uaually computed

On =

much faster rather than matrix vector products with A, and solvers for K.

5 Numerical Experiments

In this section we consider some numerical experiments to show the characteristic behaviour
of GPBi-CG for certain linear systems with complex spectrum. These experiments have been car-
ried out with CGS, Bi-CGSTAB and GPBi-CG applied to the explicitly preconditioned system
L YAU-}(Uz) = L™1b in double. precision floating point arithmetic on a SUN SPARCstation IPX
computer. In all cases the iteration was started with o = 0, and the convergence plots show the
relative residual 2-norms || 7, || / || 7o || (on the vertical axis) versus the iteration number n (on the
horizontal axis). The convergence behaviours of CGS were omitted because CGS has shown rather

irregular and oscillatory convergence behaviours in all cases.

100

5.1 Example 1

In the first example, we consider two nonsymmetric linear systems which come from central
difference discretization of the following partial differential equation (described in [7])

~(Aug)s ~ (Auy)y + vexp(2(z® +y*)uy = F

over thé unit square. Along the boundaries we have Dirichlet conditions: u = 1,fory=0,z =0 and
z =1, and u = 0 for y = 1. The function A is defined as shown in Fig. 1; F = 0 everywhere, except
for the small subsquare in the center where F' = 100.

u=0

u=1 | Arpe u=1

u=1
Fi1G. 1. The coefficients for example 1.

We consider two case of v = 2 and v = 0, and take a 101 x 101 gridmesh which lead to systems
with 1002 unknowns. The linear systems were preconditioned by incomplete LU factorizations.

T
'Bi-CGSTAB’' —+—
‘GPBi-CG* ~—

1 L 1 ! 1 R I} L n 1 1 1 1
(] 20 4“0 60 80 100 120 0 20 40 &0 80 100 120 140 160

F1G. 2. The history of the residual 2-norms Fic. 3. The history of the residual 2-norms
(i. e, log(|l ma |l / Il mo 1) vs. m) (i e, log([[ra |l / I mo {I)) vs. m)
- for example 1 (y = 2) for example 1 (y = 0)

Fig. 2 shows the history of the residual 2-norms when v = 2. We observe that in this case, though
GPBi-CG converges, it does not improve the iteration process with respect to efficiency.

101

Fig. 3 shows the historyv of the residual 2-norms when v = 0. We observe that in this case,
GPBi-CG converges slightly faster. '

5.2 Example 2

As the second example, we consider two linear systems with complex spectrum which come from
a 100x 100 and a 200x200 central difference discretization of the Helmholtz equation over [0, 7] x [0, 7]
described in [1] ' ' '

Ugg + Uyy + Ku = 0

with Dirichlet condition u = 0 along y = m, Neumann conditions u = i1/k2 — 1 cos(¥) along z = 0

and u, = 0 along y = 0, and radiation condition u; — %4/k? — %u = 0 along z = 7. This leads to
two systems with unkowns 101x100, 201x200. Here we only consider the case k = 2.27. The linear
systems were preconditioned by incomplete LU factorizations.

T T
’Bi-CGSTAB’ —+—
‘GPBi-CG' ~4—

-10 b

-12 I L L 1 L r I -12 I I ! 1
0 100 200 300 400 500 600 700 800 L] 500 1000 1500 2000 2500

FiG. 4. The history of the residual 2-norms Fi1G. 5. The history of the residual 2-norms
(i- e, log(l 7 Il / I 7o) vs. n) (i. €., log(ll 7 || / | mo II)) vs. n)
for example 2 (101x100) ~ for example 2 (201x200)

Although GPBi-CG is more expensive with respect to the number of inner products and vector
updates, we observe in Fig. 4 that GPBi-CG performs much better so that the total CPU-time of
GPBi-CG needs only 57% of that of Bi-CGSTAB for this coarser grid.

In Fig. 5, GPBi-CG required 734 iteration steps to get the residual 2-norm below 10712, Bi-
CGSTAB required 2404 iteration steps. For this finer grid, GPBi-CG needs only 41% of the total
CPU-time of Bi-CGSTAB.

6 Concluding Remarks

In view of more stable convergence behaviour and little work and low storage cost, we emphasize
that the polynomial H,, generated by the three-term recurrence relation (2.7) is better than the others

102

which come from such restarted iterative method as GMRES(k)(k > 2) [4] for the requirement (1)
described in §2. From our experiments we have learned that GPBi-CG may be an attractive method.

References

[1] A. Bayliss, C. I. Glodstein and E. Turkel, An iterative method for the Helmholiz equation, J.
Comput. Phys., 49(1983), pp. 443-457.

[2] R. Fletcher, Conjugate gradient methods for indefinite systems, Lecture Notes in Mathematics
506, Springer-Verlag, Berlin, Heidelberg, New York, 1976, pp. 73-89.

(3] J. A. Meijerink and H. A. Van der Vorst, An iterative solution method for linear systems of which
the coefficient matriz is a symmetric M-matriz, Math. Comput., 31(1977), pp. 148-162.

[4] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving non-
symmetric linear systems, SIAM J. Sci. Stat. Comput., 7(1986), pp. 856-869.

[5] P. Sonneveld, CGS, A fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci.
Stat. Comput., 10(1989), pp. 36-52.

[6] E. L. Stiefel, Kernel polynomials in linear algebra and their numerical applications, in: Further
contributions to the determination of eigenvalues, NBS Applied Math. Ser., 49(1958), pp. 1-22.

[7] H. A. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13(1992), pp. 631-644.

[8] S. L. Zhang, GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving Nonsym-
metric Linear Systems. Submitted to SIAM J. Sci. Comput., 18(1997), to appear.

