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1 Introduction
In this paper, we consider iterative methods for solving the nonlinear least squares problem

(1.1) $\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{Z}\mathrm{e}x\in R^{n}f(x)=\frac{1}{2}||r(x)||^{2}$,

where $r(x)=(r_{1}(x), \ldots, rm(x))^{T}$ , and each $r_{i}$ : $R^{n}arrow R$ is twice continuously differentiable
for $i=1,$ $\ldots$ , $m(m\geq n)$ , and $||r(x)||$ denotes the $l_{2}$ norm of $r(x)$ . We assume that there
exists a local minimum of the problem, denoted by $x_{*}$ . Several kinds of Newton-based
methods for solving problem (1.1) have been proposed, and most of them deal with the
structure of the Hessian matrix of the function $f(x)$

(1.2) $\nabla^{2}f(x)=C(x)+G(x)$ ,

with
$C(x)=J(x)^{\tau}J(X)$ and $G(x)= \sum_{i=1}^{m}r_{i}(X)\nabla 2ri(X)$ ,

where $J(x)$ denotes the $m\cross n$ Jacobian matrix of $r(x)$ .
Among these methods, structured quasi-Newton methods are considered as promising

methods. These methods compute a step $s_{k}$ by solving the Newton equation

(1.3) $(C(Xk)+A_{k})s=-\nabla f(x_{k})$

at k-th iteration, and generate a sequence $\{x_{k}\}$ , which approximates the solution $x_{*}$ , such
that
(1.4) $x_{k+1}=x_{k}+sk$ ,

where $\nabla f$ denotes the gradient vector of $f$ . Here the matrix $A_{k}$ is a k-th approximation
to the matrix $G(x_{k})$ , and several kinds of structured quasi-Newton updates were proposed
and their local convergence properties were discussed. For example, Dennis, Gay and
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Welsch [6] proposed the structured DFP update, and Dennis and Walker [5] showed local
and superlinear convergence of this method. Dennis, Martinez and Tapia [7] derived the
structure principle, and proved local and superlinear convergence of the structured BFGS
update, which was proposed by Al-Baali and Fletcher [1]. Engels and Martinez [8] later
unified these methods, and proposed the structured Broyden family and showed local and
superlinear convergence of the convex class of this $\mathrm{f}\mathrm{a}\mathrm{m}\mathrm{i}\dot{\mathrm{l}}\mathrm{y}$. Very recently, Yabe and Yamaki
[15] have proved local and superlinear convergence of a wider class of the family in the way
different from [8]. Futhermore, the factorized forms of structured quasi-Newton methods
were studied by Yabe and Takahashi [13], and Yabe and Yamaki [14] with the aim of
constructing a descent search direction for $f(x)$ .

These methods overcome the weakness so that the Gauss-Newton method may perform
poorly for large residual problems. On the other hand, the Gauss-Newton method possesses
the quadratic convergence property in the case of zero residual problems, $\mathrm{i}.\mathrm{e}.,$ $r(x_{*})=0$

and then $G(x_{*})=0$ , while structured quasi-Newton methods do not perform as well as
the Gauss-Newton method does. This is caused by the fact that a matrix $A_{k}$ generated
by quasi-Newton updates does not approach the zero matrix. As practical remedies for
this difficulty, there are two typical strategies, a sizing technique and a hybrid method.
The former was independently proposed by Bartholomew-Biggs [2] and Dennis, Gay and
Welsch [6], and this strategy multiplies $A_{k}$ by a sizing factor before updating. The latter
was proposed by Al-Baali and Fletcher [1] and Fletcher and Xu [9], and this combines the
structured quasi-Newton method and the Gauss-Newton method. However, there is no
theoretical convergence $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{p}\dot{\mathrm{e}}$rty for these two strategies.

In order to overcome this difficulty, Huschens [10] proposed a new structured quasi-
Newton method that converges quadratically to $x_{*}$ for zero residual problems and converges
superlinearly to $x_{*}$ for nonzero residual problems. Specifically, he incorporated a self-sizing
strategy into structured quasi-Newton methods without losing a fast rate of convergence
for large residual problems. By considering that the matrix $G(x)$ is represented by

$G(x)=||r(X)|| \sum_{1i=}^{m}\frac{r_{i}(x)}{||r(X)||}.\nabla 2ri(x)$ ,

Huschens proposed to approximate the matrix $G(x_{k})$ by $||r(X_{k})||A_{k}$ , where the matrix $A_{k}\in$

$R^{n\cross n}$ is the k-th approximation to the part $\sum_{\mathrm{i}=1}^{m}(r_{i}(x)/||r(x)||)\nabla^{2}r_{i}(x)$ so that

$\nabla^{2}f(x_{k})\approx c(Xk)+||r(x_{k})||Ak$ .

In this case, the step $s_{k}$ can be computed by solving

(1.5) $(C(x_{k})+||r(\mathcal{I}_{k})||Ak)s=-\nabla f(x_{k})$ .

Based on this idea, he gave the following condition that a new approximation to the Hessian
matrix should $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}\mathrm{f}\mathrm{y}$

(1.6) $(C(X_{k+1})+||r(X_{k+1})||\acute{A}k+1)S_{k}=z_{k}$,

where
(1.7) $s_{k}=x_{k+}1-Xk$ ,
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$z_{k}=C(x_{k+1})s_{k}+||r(_{X_{k+})||}1y_{k}^{\#}$

and
$y_{k}^{\#}=(J(x_{k}+1)-J(xk))^{T} \frac{r(x_{k+1})}{||r(X_{k})||}$ .

Th.us the matrix $A_{k}$ is updated such that the new matrix $A_{k+1}$ satisfies the secant condition

(1.8) $Ak+1^{S}k=y_{k}\#$ .

Following the above condition, $\mathrm{H}\mathrm{u}\mathrm{s}\mathrm{c}\dot{\mathrm{h}}\mathrm{e}\mathrm{n}\mathrm{s}$ proposed a family with one parameter $\phi_{k}$ that
corresponds to the Broyden family, say Huschens-Broyden family, and showed convergence
properties of the convex class, $\mathrm{i}.\mathrm{e}.,$ $0\leq\phi_{k}\leq 1$ , of this family. Specifically, he showed local
and quadratic convergence for zero residual problems, and local and superlinear convergence
for nonzero residual problems.

In this paper, we will extend the results of Huschens to a wider class of the Huschens-
Broyden family and give local convergence properties in a way different from the proofs by
him. We emphasize that for zero residual problems, Huschens used a restricted value of
the parameter $\phi_{k}$ in the convex class, while we will deal with the case where $\phi_{k}$ can vary
fully in the wider class. This paper is organized as follows. In Section 2, we briefly review
the Huschens method. In Section 3, we present some useful lemmas to show convergence
properties in the following sections. In Sections 4 and 5, we show quadratic and super-
linear convergence properties of the method for zero and for nonzero residual problems,
respectively.

Throughout this paper, $||’\cdot||$ denotes the $l_{2}$ norm for vectors or matrices, and $||\cdot||_{F}$ and
$||\cdot||_{F,M}$ denote the Frobenius norm and the weighted Frobenius norm for some nonsingular
matrix $M$ , which are defined by

$||Q||_{F}=\sqrt{\mathrm{T}_{\Gamma \mathrm{a}\mathrm{C}}\mathrm{e}(QQ^{T})}$ and $||Q||_{F,M}=||M^{-1}QM^{-}1||_{F}$ ,

respectively.

2 Huschens method
In this section, we review the Huschens method. In what follows, we omit subscript $k$ and
simply denote “$k+1$” by $”+$

” if not necessary.
Let $\phi$ be a scalar parameter and

(2.1) $B=J(x)^{T}J(x)+||r\{x$ ) $||A$ and $B^{\#}=J(x_{+})^{\tau_{J(x}}+)+||r(x_{+})||A$.

Based on the structure principle given by Dennis et al. [7], Huschens [10] derived the
structured Broyden family:

(2.2) $B_{+}=B^{\#}- \frac{B\# ss^{\tau}B\#}{S^{T}B\# s}+\frac{zz^{T}}{s^{T}z}+\phi(s^{T\#}Bs)vv\tau$ ,

where

(2.3) $v= \frac{z}{s^{T}z}-\frac{B\# s}{S^{T}B\# s}$ .
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From this, an A-update can be obtained as follows:

(2.4) $A_{+}=A+ \frac{1}{||r(X+)||}[-\frac{B^{\#}ss^{T\#}B}{s^{T}B\#_{S}}+\frac{zz^{T}}{s^{T}z}+\phi(_{S^{\tau_{B}}}\# s)vv^{T]}$ .

We call the families (2.2) and (2.4). Hvschens-Broyden families of $B$ and $A$ , respectively.
Note that these families contain important members. For example, we call the cases of
$\phi=0$ and $\phi=1$ structured BFGS and structured $DFP$ updates in the sense of Huschens, re-
spectively. By using the preceding families, Huschens proposed the following clever method.

Totally Structured Secant Method (TSSM):
Given $x\in R^{n},$ $A\in R^{n\cross n}$ symmetric, solve

(2.5) $BS=-\nabla f(_{X})$

and set
(2.6) $x_{+}=x+s$ ,

and calculate $B^{\#},$ $A_{+},$ $yz\#$, and $B_{+}$ by (2.1), (2.4),

(2.7) $y^{\#}$ $=$ $(J(x_{+})-J(X))^{T} \frac{r(x_{+})}{||r(X)||}$ ,

(2.8) $z$ $=$ $J(x_{+})^{T}J(x_{+})S+||r(x_{+})||y^{\#}$

and
(2.9) $B_{+}=J(x_{+})^{\tau_{J}}(x+)+||r(x_{+})||A_{+}$ ,

respectively.

His essential ideas are that the matrices $A$ in $B$ and $B\#$ are multiplied by the sizing factors
$||r(X)||$ and $||r(x_{+})||$ , respectively, and that $||r(x)||$ is used as the denominator of $y\#$ instead
of $||r(x_{+})||$ . These ideas lead to the self-sizing property of the method, and consequently
enable us to possess the quadratic convergence property for zero residual problems. He
dealt with the least change formulation of secant updates

(2.10) $B_{+}=B^{\#}+ \frac{(z-B\#_{S})w^{T}+w(_{Z}-B\#_{S})^{\tau}}{w^{T}s}-\frac{(z-B\#_{S)^{T}s}}{(w^{T}s)^{2}}ww^{T}$ ,

where

$\tau\in[0,1]$ .

For zero residual problems, he showed local and quadratic convergence of the method with
a fixed $\tau$ in (2.10), which corresponds to the subclass in the convex class of (2.2). On the
other hand, for nonzero residual problems, he proved local and superlinear convergence of
the method with any $\phi$ in the convex class of the family (2.2). Then by using the fact that
there exists a bijective mapping between $\tau\in[0,1]$ in (2.10) and $\phi\in[0,1]$ in (2.2), which
was proved by Schnabel [11], he showed local and superlinear convergence of the method
with any $\tau\in[0,1]$ in the family (2.10).
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In the following sections, we will deal with a wider class of the family than that of
Huschens. Specifically, we only impose a boundedness condition on the parameter $\phi$ . We
will directly deal with the family (2.2) for both cases, and show quadratic and superlinear
convergence properties for zero and nonzero residual problems, respectively. We will use
the way of proof similar to that by Stachurski [12] or by Yabe and Yamaki [15].

We note that the $\mathrm{H}\mathrm{u}$.schens-Broyden family (2.2) can be rewritten by

(2.11) $B_{+}=B_{+}^{DFP}+(\phi-1)\triangle B$ ,

where

(2.12) $B_{+}^{DFP}=B^{\#}+ \frac{(z-B\# s)_{Z+Z}\tau(Z-B\#_{s})\tau}{s^{T}z}-\frac{s(_{Z}\tau-B\#_{s})}{(s^{T}z)2}zz^{\tau}$,

(2.13) $\triangle B=(s^{T}B^{\#}s)(\frac{z}{s^{T}z}-\frac{B^{\#}s}{S^{T}B\# s})(\frac{z}{s^{T}z}-\frac{B^{\#}s}{S^{T}B\# s}\mathrm{I}^{\tau}$

Notice that the matrix $\triangle B$ is the difference of the structured DFP and $\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{C}^{\perp}\iota \mathrm{u}\Gamma \mathrm{e}\mathrm{d}$ BFGS
updates.

We define here the difference matrix

(2.14) $\triangle(a, b, x)=(a^{T}Xa)(\frac{b}{a^{T}b}-\frac{Xa}{a^{T}Xa})(\frac{b}{a^{T}b}-\frac{Xa}{a^{T}Xa}\mathrm{I}^{\tau}$ ,

so that
(2.15) $\triangle B=\triangle(S, Z, B^{\#})$ .

If we note that from the definitions of $z$ and $B\#$

(2.16) $z-B^{\#}s=||r(x_{+})||$ ( $y^{\#}$.-As),

then we also have
(2.17) $A_{+}=A_{+}^{DFP}+ \frac{\phi-1}{||r(X+)||}\triangle B$ ,

where

(2.18) $A_{+}^{DFP}=A+ \frac{(y-\# A_{S})z^{T}+Z(y-A\# s)^{\tau}}{s^{T}z}-\frac{s(\tau y-As\#)}{(S^{T}Z)^{2}}zz^{\tau}$ ,

and $\triangle B$ is defined in (2.13).
The structured DFP updates $B_{+}^{DFP}$ and $A_{+}^{DFP}$ are connected with the relation

(2.19) $B_{+}^{DFP}=J(x_{+})^{\tau_{J}}(x+)+||r(x+)||A_{+}DFP$ .

These forms (2.11) and (2.17) are useful ones for our analysis of convergence properties in
the following sections.
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3 Preliminaries
In this section, we give assumptions and useful lemmas to show local convergence properties.
Let $D$ be an open convex subset of $R^{n}$ , which contains a local minimizer $x_{*}$ . We assume
the following standard conditions.

(A1) There exists a positive constant $\xi$ such that

$||\nabla^{2}f(x)-\nabla 2f(_{X)|}*|$ $\leq$ $\xi||x-x_{*}||$ ,
$||C(X)-C(X)/||$ $\leq$ $\xi||x-X’||$ ,
$||J(X)-J(_{X’})||$ $\leq$ $\xi||x-X|/|$ ,
$||r(X)-r(_{X’})||$ $\leq$ $\xi||x-X|/|$

for any $x$ and $x’$ in $D$ .

(A2) $\nabla^{2}f$ is symmetric positive definite at $x_{*}$ , i.e., there exist positive constants \iota ノ 1 and
\iota ノ 2 such that

$\nu_{1}||u||^{2}\leq u^{T}\nabla^{2}f(x_{*})u\leq\iota \text{ノ}2||u||2$ for all $u\in R^{n}$ .

We mention here a few technical assumptions. We include for easy reference the conditions
of the Lipschitz-continuity of $C(x)$ and $r(x)$ in (A1), though these are implied by the
condition of $J(x)$ . Furthermore, when we consider the sequence of iterates $\{x_{k}\}$ , we always
assume for convenience that finite convergence does not occur, i.e., $\nabla f(x_{k})\neq 0$ , which
implies $x_{k}\neq x_{*}$ for all $k$ .

It follows easily from assumption (A1) that, for $x\in D$ ,

(3. 1) $|| \nabla f(X)-\nabla f(x_{*})-\nabla^{2}f(X_{*})(X-x_{*})||\leq\frac{\xi}{2}||x-x_{*}||^{2}$ ,

(3.2) $||r(X)-r(x_{*})-J(X*)(x-x_{*})|| \leq\frac{\xi}{2}||x-x_{*}||^{2}$,

(see Lemma 4.1.12 in [4]) and

(3.3) $||J(x)||\leq\xi||x-x_{*}||+||J(X_{*})||$ .

We define throughout the paper

(3.4) $D_{\epsilon}=\{X|||x-x_{*}||<\epsilon\}$ ,

(3.5) $\sigma(x, x_{+})=\max(||x-x_{*}||,-||x_{+}-x_{*}||)$ ,

(3.6) $M=\nabla^{2\frac{1}{2}}f(x_{*})$ ,

and set
(3.7) $\hat{A}=M^{-1}AM^{-1}$ , $\hat{B}^{\#}=M^{-1}B^{\#}M^{-1}$ , $\hat{B}_{+}=M^{-1}B_{+}M^{-1}$ ,

(3.8) $y\eta=M^{-1}y^{\#}$ , $z\wedge=M^{-1}z$ and $s\wedge=Ms$ .
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Note that assumptions (A1) and (A2) ensure that $x_{*}$ is an isolated local mimimizer, $\mathrm{i}.\mathrm{e}.$ ,
there exists some positive constant $\epsilon_{*}$ such that

(3.9) $||r(X_{*})||<||r(x)||$ for all $x\in D_{\epsilon_{*}}\subset D,$ $x\neq x_{*}$ ,

because $D$ is an open subset of $R^{n}$ . In what follows, we assume the choice of $\epsilon\leq\epsilon_{*}$ for $\epsilon_{*}$

defined above.
We note further that by the equivalence of norms, for any $n\cross n$ matrix $Q$ , there exists

a positive constant $\eta$ such that

(3.10) $\frac{1}{\eta}||Q||_{F,M}\leq||Q||\leq\eta||Q||_{F,M}$ .

Now we give the following two lemmas. These lemmas are elementary but useful in the
analysis presented in Sections 4 and 5.

Lemma 1 If two vectors $a$ and $b$ satis.$fy$ the following inequality

(3.11) $||b-a||\leq\kappa||a||$

for a nonnegative constant $\kappa<1_{f}$ then it hol& that

(3.12) $(1-\kappa)||a||\leq||b||\leq(1+\kappa)||a||$ ,

(3.13) $(1-\kappa)||a||^{2}\leq a^{T}b\leq(1+\kappa)||a||^{2}$ ,

(3.14) $\frac{1}{1+\kappa}||b||^{2}\leq a^{T}b\leq\frac{1}{1-\kappa}||b||^{2}$ .

Lemma 2 If
(3.15) $a^{T}Xa>0$ and $0< \frac{||a||||b||}{a^{T}b}\leq\beta$ ,

then

(3.16) $|| \triangle(a, b, x)||_{F}\leq 4\beta^{2}\frac{||b-Xa||^{2}}{a^{T}Xa}$,

where $\triangle(a, b, X)$ is the difference matrix defined by (2.14).

4 Quadratic convergence for zero residual problems

To show local and quadratic convergence of TSSM, we begin by giving the following three
lemmas.

Lemma 3 Suppose that assumptions (A1) and (A2) hold in a zero residual case, $i.e$ .,
$||r(x)*||=0$ . Let $B_{f}s,$ $x_{+},$ $z$ be given by (2.1), $(\mathit{2}.\mathit{5})_{f}(\mathit{2}.\mathit{6})_{f}(\mathit{2}.\mathit{8})$ , and let $z\wedge$ and $s\wedge$ be
defined by (3.8) Assume that $||A||\leq\tau$ for some positive constant $\tau$ . Then there $ex?\dot{s}t$

positive constants $\epsilon,$ $K,$ $(^{\#},$ $\zeta\wedge and$
$\beta$ such that if $0<||x-x_{*}||<\epsilon_{f}$ then it holds that

(4. 1) $||x+-x*||\leq K||x-X_{*}||2$ ,
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(4.2)

(4.3)

$||y^{\#}||\leq\zeta^{\#}\sigma(x, x_{+})||_{S}||$ ,
$||z-\wedge s|\wedge|\leq\zeta\sigma(x, x_{+})||^{\wedge}s||\wedge$ ,

(4.4) $\frac{1}{\beta}||_{S}\wedge||\leq||z|\wedge|\leq\beta||_{S}^{\wedge}||$ ,

(4.5) $\frac{1}{\beta}\max(||s\wedge||^{2}, ||Z|\wedge|^{2})\leq SZ\wedge\tau\wedge\leq\beta\min(||_{S|}\wedge|2, ||z|\wedge|2)$

and
(4.6) $\frac{1}{\beta}||_{S|}^{\wedge}|||^{\wedge}Z||\leq s^{T}z\wedge\wedge$ .

The following lemma states the bounded deterioration property of the matrix $A_{+}^{DFP}$ in
(2.18).

Lemma 4 Suppose that the assumptions of Lemma 3 hold and that $s\neq 0$ . Then $A_{+}^{DFP}$

given by (2.18) is well defined and

$||A_{+}^{DFP}||F,M\leq||A||_{F},M+\omega_{1}\sigma(X, x_{+})$ ,

where
$\omega_{1}=||M^{-}1||2\beta\{(2+\beta)\zeta\#+4\tau(\beta+1)\zeta\}\wedge$ .

The following lemma gives an estimate of the part $\triangle B/||r(x_{+})||$ in (2.17).

Lemma 5 Suppose that the $as\mathit{8}umptions$ of Lemma 3 hold and that $s\neq 0,$ $||r(x_{+})||>0$ .
Then for $\epsilon$ sufficiently small,

$\frac{||\triangle B||_{F,M}}{||r(X+)||}\leq\omega_{2}\sigma(X, x_{+})$ ,

where $\omega_{2}$ is some positive constant.

Now we present the local and quadratic convergence theorem of TSSM.

Theorem 1 Suppose that the standard assumptions (A1) and (A2) are satisfied in a zero
residual case. Assume that there exists a positive constant $\phi’$ such that $|\phi_{k}|\leq\phi’$ . Let the
sequence $\{x_{k}\}$ be generated by TSSM. Then there $exi_{\mathit{8}}t$ positive constants $\epsilon$ and $\delta$ such that
for $x_{0}\in R^{n}$ and symmetrz$cA_{0}\in R^{n\cross n}sati\mathit{8}hing$

$||x_{0^{-X}}*||<\epsilon$ and $||A_{0}||_{F,M}<\delta$,

the sequence $\{x_{k}\}$ is well defined and converges quadratically to $x_{*}$ .
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5Superlinear convergence for nonzero residual prob-
lems

This section is devoted to the study of the superlinear convergence property of TSSM for
nonzero residual nonlinear least squares problems. For this purpose, we give the following
two lemmas.

Lemma 6 $Suppo\mathit{8}e$ that $a\mathit{8}sumptio\eta S$ (A1) and (A2) hold in a nonzero residual $ca\mathit{8}e,$ $i.e.$ ,
$||r(x)*||>0$ . Let $B_{f}s,$ $x_{+},$ $z$ be given by (2.1), $(\mathit{2}.\mathit{5})_{f}(\mathit{2}.\mathit{6}),$ $(\mathit{2}.\mathit{8})_{\mathrm{Z}}$ and let $z\wedge and$ $s\wedge be$ defined
by (3.8). Then there exist positive constants $\epsilon_{f}\zeta_{f}^{\#}\zeta\wedge and$

$\beta$ such that $if||x-x_{*}||<\epsilon$ and
$||x_{+}-x_{*}||<\epsilon_{f}$ then it holds that

(5.1) $||y^{\#}- \sum_{=i1}^{m}\frac{r_{i}(x_{*})}{||r(X_{*})||}\nabla^{2}r_{i}(_{X_{*})S||}\leq\zeta^{\#}\sigma(x, x_{+})||_{S}||$ ,

(5.2) $||z-\wedge S|\wedge \mathrm{i}\leq\zeta\sigma(x, x_{+})|\wedge|_{S||}\wedge$ ,

(5.3) $\frac{1}{\beta}||_{S}\wedge||\leq||z|\wedge|\leq\beta||_{S}\wedge||$ ,

(5.4) $\frac{1}{\beta}\max(||s\wedge||^{2}, ||z\wedge||2)\leq SZ\leq\wedge T\wedge\beta\min(||_{S|}\wedge|2, ||z|\wedge|^{2})$

and
(5.5) $\frac{1}{\beta}||s|\wedge|||^{\wedge}Z||\leq sz\wedge\tau\wedge$ .

The following lemma implies the bounded deterioration property of the matrix $B_{+}^{DFP}$ in
(2.12).

Lemma 7 Assume $that_{f}$ for some positive constants $\delta\#$ and $\tau_{f}\#$

$0<||B^{\#}-\nabla 2f(X_{*})||_{pM},\leq\delta^{\#}$ and $||\hat{B}^{\#}||\leq\tau^{\#}$ .

Suppose that the assumptions of Lemma 6 hold. Then

$||B_{+}^{DFP}- \nabla 2f(_{X_{*}})||_{F},M\leq||B^{\#}-\nabla^{2}f(x*)||_{F,M}-\frac{||z-\wedge\hat{B}^{\#_{z}}\wedge||2}{2\delta\#||^{\wedge}Z||^{2}}+\omega\sigma(x, x_{+})$ ,

where
$\omega=\zeta\beta(\wedge)1+4\tau(\#\beta+1)$ .

Finally we give local and superlinear convergence theorem of TSSM.

Theorem 2 Suppose that the standard assumptions (A1) and (A2) are satisfied in a
nonzero residual case. Assume that there $exi\mathit{8}tS$ a positive constant $\phi’$ such that $|\phi_{k}|\leq\phi’$ .
Let the $\mathit{8}equence\{x_{k}\}$ be generated by TSSM. Then there exist positive constants $\epsilon$ and $\delta$

such that if
$||x_{0^{-X}}*||<\epsilon$ and $||B_{0-}\nabla 2f(X_{*})||F,M<\delta$ ,

the sequence $\{x_{k}\}$ is well defined and converges superlinerly to $x_{*}$ .
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