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1 Introduction

In this paper, we consider iterative methods for solving the nonlinear least squares problem

L 1 2
(1.1) minimize f(z) = 5[r(z)]%
where 7(z) = (r1(z),...,Tm())T, and each r; : R* — R is twice continuously differentiable
fori=1,...,m (m > n), and ||r(z)| denotes the I, norm of r(z). We assume that there

exists a local minimum of the problem, denoted by z.. Several kinds of Newton-based
methods for solving problem (1.1) have been proposed, and most of them deal with the
structure of the Hessian matrix of the function f(z)

(1.2) Vif(z) = C(z) + G(z),

with
C(z) = J(z)TJ(z) and G(z)= Zjn-(z)v%,.(z),

where J(z) denotes the m x n Jacobian matrix of r(z).
Among these methods, structured quasi-Newton methods are considered as promising
methods. These methods compute a step si by solving the Newton equation

(13) (C(.’L’k) + Ak)S‘ = —Vf(xk)

at k-th iteration, and generate a sequence {z}, which approximates the solution &, such
that
(14) Tk+1 = Tk + Sk,

where Vf denotes the gradient vector of f. Here the matrix Ay is a k-th approximation
to the matrix G(xx), and several kinds of structured quasi-Newton updates were proposed
and their local convergence properties were discussed. For example, Dennis, Gay and
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Welsch [6] proposed the structured DFP update, and Dennis and Walker [5] showed local
and superlinear convergence of this method. Dennis, Martinez and Tapia [7] derived the
structure principle, and proved local and superlinear convergence of the structured BFGS
update, which was proposed by Al-Baali and Fletcher [1]. Engels and Martinez [8] later
unified these methods, and proposed the structured Broyden family and showed local and
superlinear convergence of the convex class of this family. Very recently, Yabe and Yamaki
[15] have proved local and superlinear convergence of a wider class of the family in the way
different from [8]. Futhermore, the factorized forms of structured quasi-Newton methods
were studied by Yabe and Takahashi [13], and Yabe and Yamaki [14] with the aim of
constructing a descent search direction for f(z).

These methods overcome the weakness so that the Gauss-Newton method may perform
poorly for large residual problems. On the other hand, the Gauss-Newton method possesses
the quadratic convergence property in the case of zero residual problems, ie., r(z,) = 0
and then G(z,) = 0, while structured quasi-Newton methods do not perform as well as
the Gauss-Newton method does. This is caused by the fact that a matrix A, generated
by quasi-Newton updates does not approach the zero matrix. As practical remedies for
this difficulty, there are two typical strategies, a sizing technique and a hybrid method.
The former was independently proposed by Bartholomew-Biggs [2] and Dennis, Gay and
Welsch [6], and this strategy multiplies A; by a sizing factor before updating. The latter
was proposed by Al-Baali and Fletcher [1] and Fletcher and Xu [9], and this combines the
structured quasi-Newton method and the Gauss-Newton method. However, there is no
theoretical convergence property for these two strategies.

In order to overcome this difficulty, Huschens [10] proposed a new structured quasi-
Newton method that converges quadratically to z, for zero residual problems and converges
superlinearly to z, for nonzero residual problems. Specifically, he incorporated a self-sizing
strategy into structured quasi-Newton methods without losing a fast rate of convergence
for large residual problems. By considering that the matrix G(x) is represented by

G(a) = |r(@)| ‘f “

Huschens proposed to approximate the matrix G(zy) by ||r(zx)||Ax, where the matrix A, €
m

R™™ is the k-th approximation to the part Y (ri(z)/||r(z)||)V?ri(z) so that
' i=1

V2 f(zx) = Clzx) + ||r(ze)l| A

ri(z) oo (o
@ e

In this case, the step s; can be coAmputed by solving
(1.5) | (Clak) + [Ir(zx) | Ak)s = =V f(zk).

Based on this idea, he gave the following condition that a new approximation to the Hessian
matrix should satisfy

(1.6) (C(zrq1) + | (zrg2) | Ars1) sk = 2i,
where ,
(1.7) Sk = T+l — Ty



64

2k = Cl@npa) sk + (o) |t

and ( )
™I

Y = (J(@rp1) = J(an)) T s

(@)

Thus the matrix Ay is updated such that the new matrix Ax4y satisfies the secant condition

(18) Ak+1sk - y}i

Following the above condition, Huschens proposed a family with one parameter ¢ that
corresponds to the Broyden family, say Huschens-Broyden family, and showed convergence
properties of the convex class, i.e., 0 < ¢ < 1, of this family. Specifically, he showed local
and quadratic convergence for zero residual problems, and local and superlinear convergence
for nonzero residual problems.

In this paper, we will extend the results of Huschens to a wider class of the Huschens-
Broyden family and give local convergence properties in a way different from the proofs by
him. We emphasize that for zero residual problems, Huschens used a restricted value of
the parameter ¢, in the convex class, while we will deal with the case where ¢ can vary
fully in the wider class. This paper is organized as follows. In Section 2, we briefly review
the Huschens method. In Section 3, we present some useful lemmas to show convergence
properties in the following sections. In Sections 4 and 5, we show quadratic and super-
linear convergence properties of the method for zero and for nonzero residual problems,
respectively.

Throughout this paper, | - || denotes the Iy norm for vectors or matrices, and | - || and
| - | F.ar denote the Frobenius norm and the weighted Frobenius norm for some nonsingular
matrix M, which are defined by

1QllF = Trace(QQT) and [[Qllpa = IM7" QM ||,

respectively.

2 Huschens method

In this section, we review the Huschens method. In what follows, we omit subscript k& and
simply denote “k + 1”7 by “+” if not necessary.
Let ¢ be a scalar parameter and

(21)  B=J@"J(@)+r@]A and B! = J(@,)TI(zs) + r(sy)A.

Based on the structure principle given by Dennis et al. [7], Huschens [10] derived the
structured Broyden family:

BlssTBY 22T

(2.2) B, = B! - Tpis T, T ¢(sT Bls)voT,
where .
(2.3) v=— Bs

sTz sTBis
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From this, an A-update can be obtained as follows:

(2.4) A=A+

1 [ BissTBl 2T
I (z )l sTBis Tz

We call the families (2.2) and (2.4) Huschens-Broyden families of B and A, respectively.
Note that these families contain important members. For example, we call the cases of
¢ = 0and ¢ = 1 structured BFGS and structured DFP updates in the sense of Huschens, re-
spectively. By using the preceding families, Huschens proposed the following clever method.

+ QS(STB”S)UUT].

Totally Structured Secant Method (TSSM):
Given z € R", A € R™" symmetric, solve

(2.5) Bs= -V f(z)
and set ,
(2.6) xy =z + s,

and calculate B A;r, ¥*, z and B, by (2.1), (2.4),

(27) F o= ) - J@) T
(2.8) z = J(xy) I (@4)s + [r(zs) |1y
and

(2.9) By = J(@4) I (z4) + Ir(z4) | Ay,
respectively.

His essential ideas are that the matrices A in B and B are multiplied by the sizing factors
lr(z)|| and ||r(z4)||, respectively, and that ||r(z)| is used as the denominator of y* instead
of ||r(z4)]. These ideas lead to the self-sizing property of the method, and consequently
enable us to possess the quadratic convergence property for zero residual problems. He
dealt with the least change formulation of secant updates

(2.10) B, = B + (z — Bus)wT + w(z — Bﬁs)T B (z — B”S)Ts

ww
wTs (wTs)? '
where
- 27 py 0,1
w=z+T This B T € 1[0,1].

For zero residual problems, he showed local and quadratic convergence of the method with
a fixed 7 in (2.10), which corresponds to the subclass in the convex class of (2.2). On the
other hand, for nonzero residual problems, he proved local and superlinear convergence of
the method with any ¢ in the convex class of the family (2.2). Then by using the fact that
there exists a bijective mapping between 7 € [0,1] in (2.10) and ¢ € [0,1] in (2.2), which
was proved by Schnabel [11], he showed local and superlinear convergence of the method
with any 7 € [0, 1] in the family (2.10).
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In the following sections, we will deal with a wider class of the family than that of
Huschens. Specifically, we only impose a boundedness condition on the parameter ¢. We
will directly deal with the family (2.2) for both cases, and show quadratic and superlinear
convergence properties for zero and nonzero residual problems, respectively. We will use
the way of proof similar to that by Stachurski [12] or by Yabe and Yamaki [15].

We note that the Huschens-Broyden family (2.2) can be rewritten by

(2.11) B, = BY"P + (¢ —1)AB,
where (s = BYs)sT + 22 = Bls)T _ §7(z — Bls)
— +z(z — S sz — S
12 BDFP _pt 4 ¥ T 0P - T
(2.12) ’ + T, : (5722 2z,
Bls / z | Bls T
2.1: : AB = (sTBis) [ 2- — ~ .
(213) (s B's) (st sT Bis sTz sTBls
Notice that the matrix AB is the difference of the structured DFP and structured BFGS
updates. '
- 'We define here the difference matrix
b Xa b Xa \T
14 X) = (aT o o _Aae
(214) Afa, b, X) = (a” Xa) (aTb aTXa) (aTb aTXa) !
so that
(2.15) AB = A(s, z, BY).
If we note that from the definitions of 2 and B
(2.16) z— B's = ||r(z})l|(¥" — As),
then we also have b1
(2.17) A A, = APFPL Y __AB
A T
where (ﬂ A)T .(ﬂ .)T _ )
DFP Y — As)z' + z(y* — As s (Y —As) 1
(2.18) AT =A+ T, — (7272 2z,

and AB is defined in (2.13).
The structured DFP updates BPY¥* and APFF are connected with the relation

(2.19) BPFP = J(2,)7 J(zy) + [Ir(z) | AP,

These forms (2.11) and (2.17) are useful ones for our analysis of convergence properties in
the following sections.
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3 Preliminaries

In this section, we give assumptions and useful lemmas to show local convergence properties.
Let D be an open convex subset of R", which contains a local minimizer z,. We assume
the following standard conditions.

(A1) There exists a positive constant £ such that

IVEf(z) = Vi (@)l < €llz — ],
IC(=) —CE)| < Ellz—2,
1J(z) = J(=@) < Ellz—2'|,
Ir(z) —=r(@)] < €z -2

for any x and z’ in D.

(A2) V2f is symmetric positive definite at z., i.e., there exist positive constants v, and
vy such that

nlul? < W'V f(z)u <vpllu)®  forallu € R™

We mention here a few technical assumptions. We include for easy reference the conditions
of the Lipschitz-continuity of C(z) and r(z) in (Al), though these are implied by the
condition of J(z). Furthermore, when we consider the sequence of iterates {z}}, we always
assume for convenience that finite convergence does not occur, i.e., Vf(z;) # 0, which
implies z # z, for all k.

It follows easily from assumption (Al) that, for z € D,

(3.1) IVf(z) = Vf(z.) = Vif(z)(z — 2| < gllx —z.|?

(32 I(@) ~ @) - I 2] < Sllz ],
(see Lemma 4.1.12 in [4]) and .
(33) @) < Elle — 2] + 1)),

We define throughout the paper

(3.4) ' D.={z|||z— :t,;ll <€},

(3.5) o(z,z4) = max(||z — z.||, |25 — z.]),

(3.6) M =V2f(z.)3,

and set R R R

37 A=M'AM, B'=M71'B'M™' B,=M'BM™,

(3.8) F=M1ly z=M7'2 and 5= Ms.
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Note that assumptions (A1) and (A2) ensure that z, is an isolated local mimimizer, i.e.,
there exists some positive constant ¢, such that

(3.9 lr(z)|l < ||r(z)|| forall z € D, C D, z # z.,

because D is an open subset of B”. In what follows, we assume the choice of € < ¢, for ¢,

defined above.
We note further that by the equivalence of norms, for any n x n matrix @), there exists
a positive constant 7 such that

(3.10) %MQMF,M <10l < 7l Qlra.

Now we give the following two lemmas. These lemmas are elementary but useful in the
analysis presented in Sections 4 and 5.

Lemma 1 If two vectorsa and b satisfy the following inequality
(3.11) [6—al| < &llaf

for a nonnegative constant k < 1, then it holds that

(312) (L =r)lall < 6] < (1 + &)lla],
(3.13) (1 —r)a)?<aTb < (1 + K)||a|?,
(3.14) l—Jr—Ill‘)II2 a™b =ix IIbll2
Lemma 2 If
(3.15) TXa>0 and 0< 20N "“””b" )
then : 1b— X “2
— Xa
(3.16) |A(a,b, X)|F < 4/32W‘,

where A(a, b, X) is the difference matriz defined by (2.14).

4 Quadratic convergence for zero residual problems

To show local and quadratic convergence of TSSM, we begin by giving the following three
lemmas.

Lemma 3 Suppose that assumptions (Al) and (A2) hold in a zero residual case, i.e.,
lr(z)|| = 0. Let B, s, =, z be given by (2.1), (2.5), (2.6), (2.8), and let Z and 5 be
defined by (3.8) . Assume that ||Al| < 7 for some positive constant 7. Then there exist
positive constants £, K, (!, { and 8 such that if 0 < ||z — z.|| < &, then it holds that

(41) Iz — 2] < K|z — =%,
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(4.2) I scugm z)sll,

(4.3) 12 - 8| < Co(z,24)13]),

(4.4) S5 < 121 < Bl

(4.5) %max(ns‘u?, I211%) < 372 < Bmin(||3]1%, |3]|?)
and i

(4.6) glsllzl < &z

The following lemma states the bounded deterioration property of the matrix AP** in
(2.18).

Lemma 4 Suppose that the assumptions of Lemma 3 hold and that s # 0. Then AfF P
qiven by (2.18) is well defined and

1A Pl pe < 1Al pmr + wrio(z, 24),

where

wr = [MPB{(2 + B+ 47(6 + 1)C}.
The following lemma. gives an estimate of the part AB/|r(z,)| in (2.17).

Lemma 5 Suppose that the assumptions of Lemma 3 hold and that s £ 0, ||r(zy)| > 0.
Then for € sufficiently small,

|AB| Far
(=)

where wa 1s some positive constant.

< wp0(z,74),

Now we present the local and quadratic convergence theorem of TSSM.

Theorem 1 Suppose that the standard assumptions (A1) and (A2) are satisfied in a zero
residual case. Assume that there exists a positive constant ¢’ such that || < ¢'. Let the
sequence {xy} be generated by TSSM. Then there exist positive constants € and § such that
for zo € R™ and symmetric Ag € R™*" satisfying

”.’L‘() — Z’*” <& and ”AOIIF,M < 5,

the sequence {x} 1s well defined and converges quadratically to ..
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5 Superlinear convergence for nonzero residual prob-
lems

This section is devoted to the study of the superlinear convergence property of TSSM for
nonzero residual nonlinear least squares problems. For this purpose, we give the following
two lemmas.

Lemma 6 Suppose that assumptions (Al) and (A2) hold in a nonzero residual case, 1.e.,
|r(z.)|| > 0. Let B, s, z, z be given by (2.1), (2. 5), (2.6), (2.8), and let Z and S be deﬁned
by (3.8). Then there exist positive constants €, (!, ¢ and 8 such that if |z — z.|| <€ and
lz+ — z:|| <€, then it holds that

G - 3 e < ooz,
(5.2) | Iz -8l < Co (=, =4)3,

(53 %ngu <1zl < B8l

(5. 5 max([E1%, [21P) < 72 < Bmin3IP, 121°)
and

(5.5) SlslE <57

The following lemma. implies the bounded deterioration property of the matrix BPFP in
(2.12).

Lemma 7 Assume that, for some positive constants &% and ¥,
0<||B' - Vf(z)|lew < 8  and |BY <A
Suppose that the assumptions of Lemma 6 hold. Then

Iz - B'z)®

B2 = V2§ (el < 1B = VS @) leas =+ g

+ CUO'(iL', CU+),

where R
w=CA(1+ 4B +1)).
Finally we give local and superlinear convergence theorem of TSSM.

Theorem 2 Suppose that the standard assumptions (Al) and (A2) are satisfied in a
nonzero resudual case. Assume that there exists a positive constant ¢’ such that || < ¢'.
Let the sequence {z} be generated by TSSM. Then there exist positive constants € and &
such that 1f

lzo — z.|| < & and | Bo — V2f(z )|l rar < 6,

the sequence {z} 1s well defined and converges superlinerly to z,.
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