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Crossed G-sets and crossed Burnside rings

& HHT (YOSHIDA, Tomoyuki, 4tk - #)

1 The category of crossed G-sets

(1.1) Group action: Let G be a finite group. By a G-set, we mean a set with left G-
action. A mapping f : X — Y between two G-sets is called a G-map if it preserves
G-action, that is, f(gz) = gf(z) for all g € G and 2 € X. The category of finite G-sets
and G-maps is denoted by G-set.
A monoid S is called a G-monoid if the group G acts on S as monoid homomorphisms:
GxS—5S;(g,8)—9s,
Ghs =9(hg), ls =g, 9(st) =9s-9,91=1 fors,te S,9,h €G.

After this, G and S always denote a finite group and finite G-monoid.

(1.2) Crossed G-sets: A crossed G-set X (over 5) is a G-set X equipped with a G-map
called a weight function: '
Il : X — S; 2 — ||z

So |lgz|| = 9||z]| for g € G, 2 € X. If there is no special indication, we use the symbol ||z||
for the weight of an element 2 € X. For each s € S, the s-component is defined by

X[s]=={2 € X| |2]| = s}.

Then we have
9X[s]=X[%s], g€G,s€S.

In this paper, we study only finite crossed G-sets, that is, crossed G-sets in which the
underlying G-sets are finite sets.

(1.3) The category G-xset/S: A crossed C—map between two crossed G-sets X and
Y isa G-map f : X — Y preserving weights: ||f(z)|| = ||z] for all z € X. The set of
crossed G-maps of X to Y is denoted by

XMapg(X,Y).
Finite crossed G-sets and crossed G-maps make a Category

G-xset/S.



This category has two kinds of products, tensor product and Hadamard product, which
make G-xset/S closed monoidal categories, as stated below.

(1.4) Tensor products: The tensor product of two crossed G-sets X, ¥ over S is
defined by ' ‘

X®Y:=XxY,
9(z,y) = (92,9v), N l:= =zl vl (9€G re X,yeY).

Then the category G-xset/S becomes a monoidal category. The unit object I = {x} is a
singleton with weight ||| = 1.

(1.5) Closeness: The monoidal category G-xset /S is closed, that is, the functor
(-)®Y : G-xset/S — G-xset/S; X — X @Y
has a right adjoint functor called an internal hom-functor
hom(Y, ) : G-xset/S — G-xset/S.
In fé,ct, this functor is, on objects, defined by |

hom(Y, Z) := [[{s} x {A: Y — Z | AWl = s - llyll},
s€eS

where A is simply a mapping (not a G-mapping in general). The G-a(:tion and the weight

are given by
!I(s’ A) = ('(1'5'7 9/\)7 TN y— 9)‘((]_17/)
(s, M) 5= 5.

When Y is empty, we put hom(Y, Z) := I (the unit object).
For crossed G-sets X,Y, Z, the natural bijection

XMapg(X @ Y, Z) «— XMapg(X, hom(Y, Z))
is given by
(f: X®Y —2) — (@—(z|,Z:y— fz,y)));
(g: X — hom(Y,Z)) — ((,9) — ¢'(2)()),

where ¢'(z) is defined by g(z) = (||z]], ¢’ (). Furtherimore, the associativity of the tensor
product and the uniqueness of a right adjoint functor to a functor implies the natural
isomorphisms of crossed G-sets:

hom(X @Y, Z) 2 hom(X, hom(Y, Z)),

hom(I, Z) = Z.



The first isomorphism is explicitly given by
(5, X2Y 25 Z) — (5,1 : X — hom(Y, Z)),
where A:az v+ (s- ||z], y(€ ¥) — A=, 7).
Similarly, the left adjoint functor hom’ (X, —) to .X @ (—) is given by

hom'(X, Z) := [[{s} x {A: X — Z| M@l =s- [}
$SES

There is an isomorphism:
hom(Y, Z) — hom'(Y, Z); (s, A) — (s, y — lyll - A())

(1.6) Exponentiation: When S is commutative, there is another interesting crossed G-
sets. For crossed G-sets X and Y, let YX be the set of all maps from X to Y. Then yX
is a crossed G-set with G-action and weight as follows: '

g zr—>golgTlz),
o]l = H o ()], ceY* geGreX.
reX

This functor (X,Y) — Y X works on coproduct and tensor product well more than hom.
In fact, the following natural isomorphisms hold:

XMON = (xMN O XT =X
XM+N > Mo xN O~y
(X @ Y')N o~ lx'N & },—1\7” IN ~7
(1.7) Braiding: The monoidal category G-xset/S is not braiding in general, and the
following problem seems still open:
Problem: Characterize the pair (G, S) where G-xset/S is symmetric or braiding.
: 1 A ' g

Joyal and Street showed that associators and braidings of a abelian categorical group
are constructed with abelian 3-cocycles ([JS93, Section 3]).

We give two examples. If S is abelian, then G-xset /S is symmetric by the transposition
exy : XY —Y o X;(x,y) — (y,2).
Furthermore, let G¢ be the G-set G with G-action defined by conjugation:

G x G° — G (g,5) — 95 := gsg~ .



In this case, G-xset/S is braided by the braiding
cxy : X @Y — Y @ X (z,y) — (lzlly, ).

Since
ax X @Y —Y @ X;(2,y) — (u, Iyl ),

we have cyx ™! # cxy in general, and so G-xset is not symmetric for a nontrivial group
G.

(1.8) Duality: Assume that S is a group. For a crossed G-set X with weight function |||,
the dual weight function ||z||’ := ||z||~! makes X a new crossed G-set, which we denote
by X*. The crossed G-set X* is called the dual(or more suitably the antipode) of X.

(1.9) Groupoid: A G-monoid S gives a groupoid (G, S), in which an object is an element,

of S and a morphism from s to ¢ is a triplet of the form (¢, g, s) such that t = 9s. A crossed
G-set X over S is completely determined by the S-grading:

X{s]:={ze X ||z =s}, se€S,
g:X[s] — X[!s];z— 92z, g¢g€G,

that is, the assignment s — X[s], (¢, g, $) — § makes a functor from the groupoid (G, S)
to set.

Viewing a crossed G-set as a functor on (G, S), the tensor product of crossed G-sets
X and Y is written as

(XoY)[s] = H Xu] x Y[w].
uy=s
(1.10) The category of elements: Here is another viewpoint to the concept of crossed
G-sets. Let
F : G-set — mon

be a contravariant functor from the category of finite G-sets (or another nice monoidal
category) to the category of finite monoids which maps disjoint unions to direct products.
Then an element of this functor is a pair (X, s) of a finite G-set X and an element -
s € F(X). A morphism f : (X,s) — (Y,t) between elements is defined to be a G-map
f + X — Y such that F(f)(t) = s. Thus we have a category Elem(G-set, F'). This
category is a monoidal category with tensor product:

(Xy8) @ (Y, ) .= (X x Y, F(m)[s] - F(ma)(t)),

where 7; is the i-th projection on X x Y.



(1.11) Lemma: Let S be o finite G-monoid. Then there is an equivalence of monoidal
categories:
G-xset/S = Elem(G-set, Map;(—, S))

where Map(—, S) : G-set — mon is a Hom-functor in. G-set and the monoid structure

3

on Mapg (X, S) is given by the element-wise multiplication: (« - B)(2) = «(2) - B(2).

PROOF: Easy. O

One of the author would like to propose a “monomial category ’

"as the name of
Elem(G-set, F') after monomial representations of finite groups. In fact, for the con-
travariant functor X — Ext3;(ZX, C*) (and so G/H — H, the group of linear charac-
ters), we have the category of inonomial representations, and then taking its Grothendieck
ring, we have the ring R4 (G), the ring of monomial characters, which was applied to the
explicit formula of Brauer induction theorem. We can develop a theory of the monomial
category and its Grothendieck ring which is a partial generalization of the theory of crossed
G-sets and crossed Burnside rings to a limited extent, e.g., induction-restriction maps, the
fundamental theorem, idempotent formula. '

(1.12) Transitive crossed G-sets: For a subgroup D of the group G and an element s of
Cs(D), the centralizer of D in S, the homogeneous G-set G/D becomes a crossed G-set
with the weight function ||gD| := 9s. We denote this crossed G-set by (G/D);.

A crossed G-set X is called transitive if the underlying G-set X is a transitive G-set.
Such a transitive crossed G-set is isomorphic to (G/D)s for some D < G, s € Cq(D).

(1.13) Lemma:
(a) (G/D); =2 (G/E)y <= D=YE(=gEg71),s=9% 3Fg9€G.
(b) For a crossed G-set X,
XMapg((G/D)s, X) = X[s]” = {x € XP | |lal| = s},
where XD is the set of D-fixed points of X. In particular,
XMapg((G/1)s, X) = X[s](= {z € X | |||l = s}).

(¢) Any crossed G-set X is uniquely decomposed into a direct sum of transitive crossed
G-sets.

(d) (G/D)s®(G/E)t = H (G/DngE)s-gt'
DgEED\G/E .



2 The quantum double of a finite group

(2.1) Definition: Let F' be a commutative ring. We denote by F’ [G] the group algebra of
a finite group G and by F[G]* the dual space of F[G]. Take a basis of F[G]* to be the
characteristic functors e(g) at g € G, that is, ' '

1 ifg=nh,

e(9) : F[G] — F; h(€ G) —> { 0 ifgs#h

The quantumr double of G is now defined by
D(G) := F|G)* @ F|[G].
The multiplication is given by

(e(z)@9) - (ff(yj ® h) := e(x)e(gyg™") @ gh.

The identity element is 1 ® 1 = Y cqe(x) @ 1. The comultiplication A : D(G) —
D(G) ® D(G), the counit ¢ : D(G) — F, and tho antipode S : D(G) — D((”) are glven
as follows:

ce(z) @ g — Z e(n) @ 9) @ (e(v) @ g);

UY=1]

where the summation is taken over the all pairs of u,v € G such that ww = a;

1 dfx=1,
0 ifx#l;

S:e(zx)@gr—e(g lz ) @g™

e:e(r)@g — {

1

(2.2) Proposition: Let G¢ := (G, G°) be the groupoid of which object is an element of G
with homomorphisms defined by G-conjugation. The path algebra of the groupoid G¢ over
F is isomorphic to D(G).

PROOF. In general, the path algebra (or category algebra) F[C] of a category C is the
path algebra of the digraph of which arrows are morphisims in C and of which vertices are
objects of C. Thus F[C] is a free F-module generated by Mor(C), the set of morphisms,
equipped with multiplication

0 else.

of = { gf if cod(f) = dom(g),

(Note that F[C] does not possess an identity element unless Mor(C) is a finite set and that
equivalent two categories do not always give isomorphic path algebras.) Thus the path



algebra F[G] is spanned by the triples (y, g, %), where y,9.2 € G and y = gzg~'. The

triple (v, g, z) expresses a morphismn g in G* from x to y. Thus in F[G], we have

y,9¢ 0 ifx=yy
(v,9,2) - (v, 9',2) = (4, 99,2) Y
- 0 else.

Hence the correspondence
(y,9,2) +— ¢e(x)2yg
gives an isomorphism between F[C] and D(G). . a

(2.3) Corollary ([Whi 96, Theorem 2.2]) : The category of D(G)-modules and the category
of G¢-graded F[G]-modules are equivalent (as monoidal categories).

3 Crossed Burnside rings

(3.1) Crossed Burnside ring X£2(G, S): The Crossed Burnside ring XQ(G, S) is the
Grothendieck ring of the category G-xset/S with respect to disjoint unions and tensor
products, and so this ring is, as abelian group, ‘generated by the isomorphism classes [X]
of crossed G-sets with relations: '

X +Y]=[X]+[Y]
The multiplication is defined by the tensor product of crossed G-sets:
Y] [¥] = [X & Y],

Since any crossed G-set is a sum of transitive crossed G-sets, XQ(G, S) has the fol-
lowing free Z-basis as an abelian group:

{[D,s]| D <G,s€ Cs(D)}, (ID,s]:= [(G/D),)).

Note that
[D,s]=[E,t] <= E=9D,t="% for3geG

and that :
[D,s]-[E,)]= ). [DNYE,s-%]
DyEED\G/E

The identity element is [G, 1]. .

The crossed Burnside ring is not commutative in general(see the next section). When
S = 1, the crossed Burnside ring is the ordinary Burnside ring Q(G), that is, the
Grothendieck ring of G-set with respect to the disjoint unions and the Cartesian products.
On the other hand, when G = 1, the crossed Burnside ring is the semigroup algebra ZS.



(3.2) Proposition: The rank of the free abelian groups XQ(G, S) is equal to

> LI s,
(Hec@) e

where C(G) is the set of all conjugacy classes (H) of subgroups H of G and H' denotes
the commutator subgroup of H.

(3.3) Hadamard products: The crossed Burnside ring XQ(G, S) has another product
called the Hadamard product : '

[X]*[V] = [¥ xg ¥],

so that XQ(G,S) becomes a commutative ring, which is isomorphic to the Grothendieck
ring of the comma category G-set/S, and so

XQUG, Ngaa = [ UGs),
(5)55/"‘(;

where (s) runs over G-orbits of S and each component (Gy) is the ordinary Burnside
ring of the stabilizer G at s. _
(3.4) The Burnside ring £2(G): Let (G) be the Burnside ring of G. Then the triv-

ial G-monoid homomorphisms 7 : 1 — S and ¢ : § — 1 induce the following ring
homomorphisins:

m o QG) — XQG,S); [G/D]— [D,1]
a : XQG,S) — QG); [D,s]— [G/D].

Clearly, € o 1 is an identity map. We view the Burnside ring Q(G) as a subring of the
crossed Burnside ring XQ(G, S) through the injection i, and so XQ(G, S) is an Q(G)-
algebra and

XQG,S) = QG) & Ker(up).

(3.5) induction and restriction: Various kinds of adjoint functors constructed in the
preceding section induce mappings between crossed Burnside rings. For a subgroup of
H and a normal subgroup N of G, the functors Ind,.Jnd, XJnd, Res, Con, Orb, Inf, Fix
induce the following mappings:

Cind§ ¢ XQ(H,S) — XQ(G, S),
ind§ : XQH,S) — XQ(G, S),
xjndg : XQ(H,S) — XQ(G, S),
res§] : XOG,S) — XQ(H,S),



cony; : XQ(H,S)— XQ(H,S),
orbS™ 1 XQ(G, S) — XQ(G/N, S),
infSN . XQG/N,S) — XQ(G, S),
8™ . XQG,S) — XQ(G/N, S).

Here, when we refer to xjnd, the G-monoid S has to be commutative; and when we refer to
orb, inf, fix, the G-monoid S has to be fixed elementwise by N. Furthermore, a G-monoid
homomorphisin ¢ : S — T induces three maps ¢, ¢*, 2y

o XQ(G,S) — XQG,T)
' o XQG,T) — XQG,S)
pe  XQG,S) — XQG,T).

Among them, ind, res, con, orb, py, p* are really additive homomorphism because the
corresponding functors preserve coproducts(disjoint unions) aund so they can eéxtend to
additive homomorphisms of Grothendieck groups. Furthermore, res, ¢ are ring homo-
morphisms and con is a ring isomorphism. However, the functors Jnd, X.Jnd, v« do not
preserve coproducts, and so it is not clear that they are really extended to maps between
crossed Burnside rings preserving Hadamnard or tensor products. We prove the existence
of the multiplicative maps jnd, xjnd, ¢, by using the fundamental theorem in the next
section.

4 The fundamental theorem

(4.1) Ghost rings: As before, let G be a finite group and S a finite G-monoid. For any
subgroup H of G, the centralizer of H in S

Cs(H):={scS|"s=s VheH

is a submonoid of S, on which WH := Ng(H)/H “acts as monoid automorphisms. The
semigroup algebra Z[S] of S is a permutation G-module with G-basis S. Clearly, Z [Cs(H)]
is a subring of Z[S].

The group G acts as ring automorphisms on the ring

o(G) = [] ZlCs(H)]
H<G

0= Z 0(H,s)s = := Z 6(YH,%s)s
s€Cg(H) H s€Cs(H) H
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The subring consisting of G-fixed clements of ©(G) is called the crossed ghost ring:

XQ(G, S) := 6(@)¢

= {( Z ()(H,s)s)
s€Cgs(H) H

The H-component 0(H) = ¥, 0(H, 5)s € Z[Cp(S)] of any 0 € XQ(G,S) is flxed by WH,
and so - : ' ' '

0("H,%s) =0(H,s) Vge& G} :

G
Xﬁ(G,S) = (H Z[CS(H)]‘,VH)

H<G

=~ JI zcsE™vH
- (H)eC(G)

as rings, where C(QG) is the set of G-conjugacy classes (H)'s of subgroups'H s of G and
WH := Ng(H)/H. Since XQ(G, S) has a basis consisting of [D, s], we have

rankz X Q(G, ) = rankz X (G, S).

(4.2) Burnside homomorphism: For each subgroup H of G and for any crossed G-set
X over S, define '

op(X):= Y llall= > [X[s)"]s € z[Cs(ENMY,
zext s€Cs(H)

where X := {z € X | ha =2 Vh € H} as usual. Since the map @y is constant on each
isomorphism class of crossed G-sets and is additive, it can extended to an additive map
on the Grothendieck ring X Q(G, S):

or : XQG,S) — Z[Cs(H)"H
W = Y el Y N

- xeXH s€Cg(H)
It is easily proved that ¢y is a ring homomorphism. The Burnside homomorphism is
now defined by
¢ := (o) : XQG,S) — XO(G, S).

We often write the value ¢y (2) simply by 2(H). Using this notation, we have that for
any g € G,
2(H) =9(x(H)),

where we extended the action of G on S to the semigroup ring ZS. The Burnside homo-
morphism ¢ is a ring homomorphism.
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The Hadamard product on Z[Cs(H))] is defined by

( Z ass> *( Z ,/3tt> = Z g f3s S,

s€Cs(H) teCs(H) $s€Cs(H)

Then the Burnside homomorphism ¢ preserves also Hadamard products.
When S is a trivial monoid, we have the Burnside homomorphism

¢ [X]— (X")n

from the classical Burnside ring (G) to the ghost ring Q(G).

(4.3) The group of obstructions: We, furthermore, define the group of obstructions
by
X0bs(G,S) == [[ (Z/(WH)|Z),
(H.s]

where [H, s] runs over the isomorphism classes of transitive crossed G-sets, that is, the
complete representatives of G-conjugacy classes of pairs (H,s) of H < G and s € Cs(H)
under G-action 9(H,s) = (YH,9s), and where (W H), is the stabilizer at s € Cs(H) in
WH = Ng(H)/H. For each H < G and s € Cg(H), define a linear map

Vs XQ(G,S) — Z/|(WH),|Z
; ( > ()(H,s)s) — > 6((nyH,s) mod [(WH),.
seCs(H) nHe(WH),

Thus we have a linear map called a CFB-map after Cauchy, Frobenius and Burnside:
%= (Pu,s) 1 XQG, S) — XObs(G, ).
(4.4) Theorem: The following sequence of abelian groups is ezact:

0 — XQ(G,S) £ X(G, S) £ XObs(G, S) — 0.

~ The proof is similar to the one of the ordinary Burnside rings.

(4.5) Corollary: For two crossed G-sets X,Y over S, the following statements are equin-
alent :

(a) X and Y are isomorphic.
(b) o (X) = pu(Y) for any subgroup H < G.
(c) |X[s]#| = |Y[s]®] for any H < G and s € Cs(H).
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(4.6) Corollary: If the category of crossed G-sels is braided, then the W H-fized point ring
Z[Cs(H)|WH is a commutative ring.

(4.7) Corollary: Let F be a commutative ring in which |G| - 17 is invertible. Then

Fog XUG.5)= ] FIOs(H)"Y.
(H)eC(G)

In particular, XQ(G, S) is commutative if and only if Z[Cs(H)"WH is commutative for
any H<G. '

(4.8) The p-local crossed Burnside rings: Let 4, be a p-local domain of characteristic
0 with the residue field of characteristic p > 0. We use the following notation:

A,X0G,8) = A, @z XQG, S);

G
A,XQNG,S) = (1‘[ AP[CS(H)]) ;

H<G

A XObs(G,S) = [ (Ap/(WH)slpAp)
‘ [H,s] '

where |(WH)|, is the p-part of [(WH)|;
A,XQ(G, S)

WP =10¢p A, XQ(G, S) —
[X] — (Y Nl
_ : reXH
PP A, XQ(G, S) —  A,XObs(G, S)

( > G(H,s)s) b ( > 0(('/'1,)H,S)),

seCs(H) nHe(WH),.,

where (WH),,, denotes a Sylow p-subgroup of (W H),.
We note that 1, is differ from 1r &1 in general.

(4.9) Theorem: The following sequence of Ap-modules is exact:

(r)

() ~ i
0 — A, XQG, S) L5 4,X0G, S) L5 4,X0bs(G, S) —> 0.

5 Idempotent formula

(5.1) Mébius functions: The Mobius function g : P x P — Z of a finite poset P is
inductively defined by

wz,z) = Lp(z,y) =0 ifx Ly;
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Z[L(.’L‘,t) = Zu(t,y) =0 ifz<y.

t<y {27

(5.2) Proposition (Inversion formula): Let

0= ( > 6(H, s)s) € Q vz XQ(G, S).

s€Cs(H)
Then the inverse image of 0 by 1q @ ¢ is given by
1
el > D] Y w(D,H)0(H,s)[D, s,

D<G  (Hys)

where (H,s) runs over all pairs of H < G and s € Cs(H), and p is the Mébius function
of the subgroup lattice of G. : ‘
(5.3) Idempotents of a Burnisde ring: Let (G) be the Burnside ring of the finite
group G. Then any primitive idempotent of Q@ xz Q(G) has the form

1

€GH = TN DXS;H |D|is(D, H)[G/D).

fo=(o):QONG) — Q& Q(@) denotes the Burniside map, then

1 fH~¢gK
0 else.

vi(eg,a) = {

For a primes p, let Z(p)) be the p-local integers a/b,a € Z,b € Z — pZ. Then the
idempotent of Z,) @ (G) has the form

(17(’;,(3 = Z CGLH
(H)EC(G)
:OP(H)=Q

where @ is a p-perfect subgroup of G, that is, a subgroup which has no normal subgroup
of index p and OP(H) is the smallest normal subgroup of H of index a power of p.
Let a be a G-functor over Z (). Then Z,) @ Q(G) acts on each component a(H), and
so we have a decomposition
a= H g G
(@
in particular,
a(G) = H(J(’;’Q - a(G).
(@
Finally, note that if p : @ x b — ¢ is a pairing of G-functors, then p is a ©(G)-bilinear
map.
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(5.4) Lemma (Transfer theorem):Let A be a G-functor over Z,) and Q a p-perfect sub-
group of G. Put N := Ng(Q) and lel ¢, o and ¢y o be the primitive idempotents of

Zy) @z

UG) and Z ) @z QUG), respectively. Then there is an isomorphism of modules:

€g0a(G) = dy ga(N).

This isomorphism is given by

P — e? . resS
eG,Q a _ €N.Q l(v.SN((l.).

Furthermore, the isomorphism X is commutative with pairings.
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