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The Terwilliger algebra is an algebraic tool for studying association schemes.
By a result of F. Jaeger, spin models can be interpreted as association schemes
which satisfy a few additional conditions. Thus it is natural to consider the
Terwilliger algebra of those association schemes which arise from spin model.
The strongest results can be stated for these spin model association schemes
which are actually distance-regular graphs.

In this note we will focus on the bipartite distance-regular graphs which
are spin models. These graphs are all known due to the work of Nomura. We
have also studied these graphs, but from an algebraic perspective. This note
is meant to be an elementary examination of some of the algebraic properties
of the Terwilliger algebra of these graphs.

1 Distance-regular graphs

Let I' = (X, R) denote a finite, connected, simple graph with diameter D. T
is said to be distance-reqular whenever for all integers 7, (0 < ¢ < D) and for
all z, y € X with 0(z,y) = ¢, the numbers

¢ = |{z]0(z,2) =i—1,0(y,2) = 1}],
a; = l{zla(l‘,Z) = 1, a(y,z) = l}l’
by = Hz|0(z,2)=1+1, d(y,z) =1}
are independent of z and y. The constants ¢;, a;, and b; (0 < ¢ < D) are

known as the intersection numbers of T.
For each integer i (0 <: < D), let A; denote the matrix with z, y entry

(Ai)(z,y) = {1 f0(z,9) =%  (5yeX).

0 otherwise

The matrix A; is known as i**-distance matriz for . (A = A, is the adjacency
matriz.) Let M denote the complex matrix algebra '

M=<A>.

The algebra M is called the Bose-Mesner algebra of T'. It is a well known fact
that M has basis Ag, Ay, ..., Ap. For more details about distance-regular
graphs we refer the reader to [1] or [2].
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2 Spin models

Let X be a finite nonempty set of size n. A spin model is a matrix W whose
rows and columns are indexed by X with nonzero entries which satisfies the
following equations for all a, b, c € X:

Z W(.’I:, b) W((I:, c)—l = n5b,c,
z€X
> W(z,a)W(z,b)W(z,c)™" = +aW(a,b)W(a,c)'W(c,b)™

zeX

For all b, c € X, define the column vector Y}, by

W(z,b)
W(z,c)

Then N(W) is defined to be the set of all matrices A such ‘that, for all b,

¢ € X, the vector Y;, is an eigenvector of A.

It turns out that N(W) is the Bose-Mesner algebra of some association
scheme and that W € N(W).

Let ' = (X, R) be a dlstance-regular graph, and let M denote the Bose-
Mesner algebra of I'. A spin model W is said to be supported by I' whenever
W € M C N(W). For more details on spin models and the facts quoted here -
we refer the reader to [6] (or [8]).

Yie(z) =

(z € X).

3 The Terwilliger algebra

Fix any z € X. We write

Li(z) = {y € X |9(z,y) = 1}.

For each integer i (0 < i < D), let Ef = E*(z) denote the diagonal matrix
in Matx(C) with y,y entry

. 1 ifye ia), |
E; ={ y X).
(B 0 otherwise (e )

Let T = T(x) denote the subalgebra of Matx(C) generated by M and Es,
Ef, ..., Ep. The algebra T is called the Terwilliger algebra of ' with respect

to z.

Define operators L = L(z), F' = F(z), R = R(z):

, D : D D
L=Y E; ,AE;, F=Y E;AE;, R=Y E;, AE]

h=0 h=0 h=0
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Then
A=L+F+R‘

We refer to L, F, and R as the lowering matriz, the flat matriz, and the
raising matriz with respect to z, respectively.

T is a semisimple algebra over C, so T' decomposes into the direct sum
of full matrix algebras:

T=@PT, T Mat,(C).
1=0 '

For all ¢ (0 < ¢ < s), let ; denote the orthogonal projection of T onto Tj.
For more details on semisimple algebra,-see for example [5].

By Terwilliger [9], for every ¢ (0 < i < s) there exist numbers r(z), d(z)
such that

Elpi =0 5 <r(i) or j > r(z) +d(3).

The numbers r(z) and d(z) are called the endpoint and diameter of T;, re-
spectively.

T; is said to be thin if EYp; has rank at most 1 forall j (0 <¢< D). T
is said to be thin if T; is thin for all 1 (0 <7 < s).

The bipartite distance-regular graphs are easily described.

Lemma 1 (see for ezample [3]) Let I' = (X, R) be a distance-regular graph
of diameter D. Then the following are equivalent.

(i) T is bipartite.
(ii) a; =0 for alli (0 <i < D).
(iii) F=0. o

4 Background

It turns out that the bipartite distance-regular graphs which support a spin
model] are the 2-homogeneous. Thus we will focus on this combinatorial

property.

Definition 2 Let I' = (X, R) denote a bipartite distance-regular graph of
diameter D > 3 and valency k > 3. T is said to be 2-homogeneous whenever
for all integers ¢ (1 < i < D—1) and all z, y, 2 € X with 9(y,2) = 2,
d(z,y) =1, d(z,2) = 1, the number |

v = |T1(y) NT1(z) N Ty (z)]

is independent of z, y, z.
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Theorem 3 (Nomura [7]) Any bipartite distance-regular graph which sup-
ports a spin model is 2-homogeneous.

Theorem 4 (Curtin [{]) Let T = (X, R) denote a bipartite distance-regular
graph with diameter D > 3 and valency k > 3. Suppose I' is 2-homogeneous.
Then there exists a real scalar q such that

(®+ 4% (¢ -1)

. , . <i<
T Proe-y 05D
_ P+ -P) :
o= (AP + ) (P -1) (0=i=D)
= ,cD—i7'
D 2 D 2142
o (¢° +4°) (¢° + ¢**?) 1<i<D-1)

(¢° +¢*) (¢° + ¢%)

where we allow the limiting cases g — +1.

This parameterization is equivalent to the 2—homdgeneous property.

5 The operators R and L

Lemma 5 Let I' = (X, R) denote a bipartite distance-reqular graph of di-
ameter D > 3 and valency k > 3. Fiz z € X. Then the following are
equivalent.

(i) T is 2-homogeneous.

(ii) There exist scalars v; (1 <i < D —1) such that
B;LRE; = b;E; + (i — %) E; A, .
(iii) There exist scalars v; (1 <i < D —1) such that |
E{RLE} = ¢;E} + v;E A;E?.

(iv) RLE?, LRE?, Ef are linearly dependent.

Suppose (i) - (iv) hold. Then the scalars ¥: of 2-homogeneous and (ii), (iii)
are all equal.
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Proof. (sketch) ,
(i)=(iii) For vertices y, z € T';(z) consider the y, z entry of RL.

7 ¢ ify=z,
RL(y’Z) = {71 if a(yaz) =2,

0 otherwise.

The matrix form of this observation is (iii). Pictorially, we have:

(iii)=(i) Consider the y, z entry of each side when y, z € I';(z) and
A(y,z) = 2.

(i) (ii) Similar.

(ii), (iii)=-(iv) Clear |

(iv)=(i) Straight forward. ]

Observe that 0 <y; < pforall: (1 <i< D —1).

Lemma 6 LetT' = (X, R) denote a 2-homogeneous bipartite distance-regular
graph with diameter D > 3 and valency k > 3. Fizz € X. Then

E!LRE! = 0;ERLE} + p;E?,

where

(¢°*2 +¢%)

(P + ¢#+2)’

= (CHPP(7—a")
2 qD(q2 — 1)(qD + q2i+2)

a;

Proof. By scaling, we can choose nonzero elements v; € BT (0 <
J < d(7)) such that
Rv; = vjy;. |
We show that this is a basis for T; and describe the action of L on this
basis by induction. Observe that Lvy = 0 by the definition of endpoint.
Suppose that
Lvj = xj-1()vj-1,



98

where x_;(z) = 0.
Now |
Lvjyy = LRE[ v;

i RLET, jv; + pivi Efyjv5)

= 0i4jXj-1(1)Rvj1 + Pis;V;

= (0iiXj-1(8) + piti)vj- |
In particular, for every ¢, Lv;,; is a multiple of v;. We define x;(¢) to be the
solution to the recurrence

Xi(1) = oirixi-1(1) + piti
X—l(i) = 0.
It is now routine to verify that
. (P + ¢?)*(g¥+? — 1)(¢P — q4i+2j—D)
x;(i) = (g% — 1)2(qP + q2+2)(qD + g+2i+2)

is the solution to the recurrence. ' O

Corollary 7 Referring to Lemma 6:
(i) T is thin.
(ii) For everyr (0 < r < |D/2]) there is a unique T; with r(i) =r.
(iii) The diameter of T; is d(z) = D — 2r(z).
Proof. (sketch)
(i) Observe that the v; form a basis.
(ii) Observe that the numbers x; only depend upon <.

(iii) This is a lower bound for d(i) by Terwilliger ([9]), and this is an
upper bound since Xp_z-(i)+1(J) = 0. ' O

Corollary 8 Let T, be the unique block with endpoint r. Then T, has basis
Vo, V1, ..., UD—2r Such that

Lo; = bia(r)vjos,

Ru; civ1(r)vis1,

where
o) = LT ¢®)(¢% - 1)
) = (P r @@ —1)
(qD + qZ)(qD _ q47‘+2j—D)
7 (¢° + ¢#+¥)(¢* - 1)
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Proof. This is just a rescaling of the basis of Lemma 6. Observe that it
preserves LRv; = x;_1(r)vj, Lvo = 0, and Rvg()4r = 0. 0

A simple consequence of this corollary is the following.

Theorem 9 The Terwilliger algebra of any 2-homogeneous bipartite distance-
regular graph is a quantum Lie algebra with respect to the operators L, F,

and R.

We conjecture that the Terwilliger algebra of any distance-regular graph
which supports a spin model has a similar structure.
Let us conclude with an observation about the numbers ¢;(r) and b;(r).

Lemma 10 Fiz r (0 < r < d). Let 0, be the r** eigenvalue, and write
d=d(r)=D - 2r.

bo(r) = 6,
bi(r) + ci(r) = bo(r),
bd_,-(r) = C,'(T'),

c(r) = 0,

ba(r) = 0.

Proof. (sketch)

Compare the various formulas in q for the quantities involved. O

These conditions satisfied by the intersection numbers with d = D. In
fact, ¢;(0) = ¢;, b;(0) = b;.
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